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Local chiral effective field theory interactions have recently been developed and used in the context of quantum
Monte Carlo few- and many-body methods for nuclear physics. In this work, we go over detailed features of
local chiral nucleon-nucleon interactions and examine their effect on properties of the deuteron, paying special
attention to the perturbativeness of the expansion. We then turn to three-nucleon interactions, focusing on operator
ambiguities and their interplay with regulator effects. We then discuss the nuclear Green’s function Monte Carlo
method, going over both wave-function correlations and approximations for the two- and three-body propagators.
Following this, we present a range of results on light nuclei: Binding energies and distribution functions are
contrasted and compared, starting from several different microscopic interactions.
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I. INTRODUCTION

Theoretical nuclear physics has undergone a renaissance
in recent decades because of two main developments: The
increasing reach and precision of nuclear many-body methods,
and the formulation of systematic nuclear interactions based
on chiral effective field theory (EFT).

Ab initio many-body methods in nuclear physics include
the no-core shell model [1], nuclear lattice simulations [2], the
coupled-cluster method [3,4], the in-medium similarity renor-
malization group (SRG) method [5], self-consistent Green’s
function methods [6,7], and quantum Monte Carlo (QMC)
methods [8]. Among these, QMC methods, which are based
on the imaginary-time evolution of a trial wave function and
include the Green’s function Monte Carlo (GFMC) method and
the auxiliary-field diffusion Monte Carlo (AFDMC) method,
are notable for their high accuracy across various physical
systems.

In a typical calculation, QMC methods reach uncertainties
of ∼1%. By design, QMC methods introduce only a lim-
ited number of approximations that can be controlled and
accounted for systematically. Both the GFMC method and
the AFDMC method rely on the diffusion equation

lim
τ→∞ e−Hτ |�T 〉 → |�0〉, (1)

where H is the Hamiltonian of the system, τ is imaginary
time, and |�T 〉 is a trial state for the system not orthogonal
to the ground state |�0〉. These “diffusion” methods solve
Eq. (1) stochastically by casting it as a path integral and
sampling the paths using Monte Carlo methods. This allows
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one to extract ground- and low-lying excited-state properties
of nuclear systems with high accuracy.

Furthermore, QMC methods are notable because they
approach the many-body problem with a correlated wave-
function-oriented framework. For certain nuclear systems,
e.g., the Hoyle state of 12C, many-body methods that rely on
basis-set expansions can experience difficulties in capturing
physics that requires a large number of basis states to describe,
such as clustering effects. For QMC methods, which rely on a
trial wave function to describe the state of interest, these effects
are more straightforward to incorporate. While the GFMC
method has an unfavorable scaling behavior with respect to
the nucleon number A, the above-mentioned strengths make
QMC calculations of smaller systems an ideal benchmark for
other methods.

Besides the exciting advancements for nuclear many-
body methods, the development of chiral EFT as a tool for
the derivation of systematic nuclear interactions connected
to the underlying theory of strong interactions, quantum
chromodynamics (QCD), represents a major step forward in
nuclear theory. The idea, first presented by Weinberg in the
1990s [9–11], is to write down the most general Lagrangian
consistent with all the symmetries of the underlying the-
ory, including the chiral symmetry of low-energy QCD, in
terms of the relevant degrees of freedom at low energies,
i.e., nucleons and pions. Together with a power counting
scheme to order the resulting contributions according to their
importance, the result is a low-energy effective field theory
for nuclear forces. The idea was further developed by van
Kolck et al. in early pioneering work [12–14]. The first
“modern” chiral EFT interactions with a χ2/datum around
1 in a fit to NN scattering data were introduced in the early
2000s by Entem and Machleidt [15] and by Epelbaum et al.
[16].
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The advantages of the chiral EFT approach to nuclear in-
teractions over commonly used phenomenological approaches
include the ability to systematically determine consistent
many-body interactions and electroweak currents, as well as
to estimate theoretical uncertainties. The chiral EFT approach,
however, is not without some open problems. These include,
e.g., power counting schemes, residual cutoff dependences,
and associated regulator artifacts. In the past few years,
various groups have investigated several aspects involved
in constructing nuclear forces from chiral EFT, e.g., the
fitting protocol [17,18], regulators [19,20], or uncertainty
estimates [21], with the goal of improving predictions based
on chiral interactions.

For many years, chiral EFT interactions could not be
implemented in QMC methods because these interactions
are derived in momentum space and are typically nonlocal
while QMC methods rely on local interactions. In spite
of some work to remedy this shortcoming [22], it remains
technically challenging to develop QMC methods that both
can use nonlocal interactions and lead to results without large
statistical uncertainties; see also Ref. [23] for an alternative
approach.

In recent years, however, it was realized that all sources
of nonlocality can be removed up to next-to-next-to-leading
order (N2LO) in the standard Weinberg power counting. This
led to the development of local chiral interactions and their
implementation in QMC methods [19,24–27] and has allowed
for the first QMC studies of light nuclei, neutron matter, and
other light neutron systems with chiral EFT interactions at
N2LO, including 3N interactions [28–32]. In this paper, we
provide details for the calculations of light nuclei and present
additional results.

The structure of this paper is as follows. In Sec. II, we
discuss how local chiral EFT interactions have been derived,
highlight some interesting features of these local interactions,
and discuss open questions. In Sec. III, we describe the GFMC
and AFDMC methods in more detail and discuss the necessary
changes in order to accommodate local chiral EFT interactions.
In Sec. IV, we provide a summary of results for light nuclei
obtained with QMC methods and chiral EFT interactions.
Finally, we give a summary in Sec. V.

II. LOCAL CHIRAL INTERACTIONS

As stated in the introduction, chiral EFT is a systematic
way of organizing nuclear interactions. Based on the most
general Lagrangian consistent with the symmetries of QCD,
and combined with a power counting scheme, it is possible
to expand nuclear interactions in a series with the expansion
parameter p/�b, where p is a typical low-momentum scale
in nuclear systems of the order of the pion mass mπ , and
�b ∼ 500 MeV is the breakdown scale that determines the
range of applicability of the EFT. Then, nuclear interactions
can be arranged as

VNN = V
(0)

NN + V
(2)

NN + V
(3)

NN + · · · , (2)

where the superscript denotes the chiral order (the power
of Q ∼ p/�b in the corresponding contributions). At lead-
ing order (LO), Q0, two contributions add to the nuclear

interaction: the one-pion exchange (OPE) and momentum-
independent short-range contact interactions. At higher or-
ders, two-pion-exchange interactions (TPE) and momentum-
dependent (derivative) contact interactions appear. For more
details on chiral EFT, see Refs. [33,34].

Because chiral EFT is naturally formulated in momentum
space, it can contain nonlocal parts by construction. In this
section, we review the strategy to remove all sources of
nonlocality, present selected results for the deuteron, show
details of the inclusion of 3N interactions at N2LO, and discuss
several open questions regarding locality and regularization.

A. Locality in chiral EFT

Chiral EFT interactions, with the exception of early pio-
neering work [12], have been developed in momentum space.
We define the incoming (outgoing) single-particle momenta in
the NN sector as p1, p2 (p′

1, p′
2). Then the incoming (outgoing)

relative momentum p (p′), the momentum transfer q, and
momentum transfer in the exchange channel k are defined
as

p ≡ 1
2 (p1 − p2), p′ ≡ 1

2 (p′
1 − p′

2), (3a)

q ≡ p1 − p′
1 = p′

2 − p2 = p − p′, (3b)

k ≡ 1
2 (p + p′). (3c)

The Fourier transformation of a function of q leads to a local
function in coordinate space that depends only on the two-
particle distance r, whereas a function of k does not.

Chiral EFT NN interactions depend on two linearly inde-
pendent momenta out of the four possible momenta (p and p′
or q and k). There are two possible sources of nonlocality (k
dependence):

(1) The momentum-space regulator functions used to reg-
ulate high-momentum contributions to the interaction
and

(2) momentum-dependent higher order contact operators.

We review the method to remove these sources of nonlocality,
which was first discussed in Ref. [35] and later employed in
practice in Refs. [24,25].

1. Local regulators

When employing chiral EFT interactions in few- and many-
body calculations, momentum-dependent regulator functions
need to be introduced to cutoff divergences from high-
momentum modes. The typical functional form employed
to regulate both the short-range contact interactions and
long-range pion exchanges in nonlocally regulated chiral EFT
interactions is

f (p2) = exp
[−(

p2/�2
NN

)n]
, (4)

where �NN is the momentum-space cutoff for the NN sector
of the interaction and n is an integer. Then, the interaction
V (p,p′) is regulated as

V (p,p′) → V (p,p′)f (p2)f (p′ 2). (5)
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FIG. 1. The (normalized) regulator functions for the short-range
contact contributions to the local chiral interactions with the typical
low (hard, R0 = 1.0 fm) and high (soft, R0 = 1.2 fm) coordinate-
space cutoffs. In addition, we show the Woods-Saxon core for the
central part of the Argonne v18 interaction for deuteron pairs. (See
text for details.)

Even when these regulators are applied to a local interac-
tion V (p,p′) = V (q), e.g., a momentum-independent contact
interaction or the local one-pion-exchange interaction, the
regularized interaction becomes nonlocal due to the explicit
k dependence of the regulator functions.

A possible solution is to introduce local short- and long-
range regulators. In our case, we regulate the chiral interactions
directly in coordinate space. Short-range contact interactions,
which Fourier transform to δ functions in coordinate space,
are regulated by “smearing them out,” i.e.,

δ(3)(r) → δR0(r) = e−(r/R0)n

4π
n

�
(

3
n

)
R3

0

. (6)

In this work, we choose n = 4. The constant R0 serves as
a coordinate-space cutoff parameter. The normalization is
chosen such that ∫

d3rδR0(r) = 1. (7)

For the long-range parts of the interaction, we use a similar
functional form:

flong(r) = 1 − e−(r/R0)4
. (8)

In Fig. 1, we compare the short-range regulator used in
the local chiral interactions for two values of the cutoff
parameter R0 with the short-range part used in the Argonne
v18 interaction [36]. Specifically, the short-range part of the
Argonne v18 interaction is given by [P i

ST ,NN + μrQi
ST ,NN +

(μr)2Ri
ST ,NN ]W (r), where μ is the average pion mass; P , Q,

and R are a set of parameters; and W (r) is a Woods-Saxon

potential. We display this short-range part of the Argonne v18

interaction in the central channel for deuteron-like pairs, i = c
(central), ST = 01, and NN = np, and normalize as in Eq. (7);
see Ref. [36] for details on the values of the parameters P , Q,
R, and μ and the Woods-Saxon potential W (r).

Regarding the range of cutoff parameters, one would like to
take R0 as small as possible in coordinate space to minimize
regulator artifacts. However, as has been argued in Ref. [37]
in the context of the multiple-scattering series, the chiral
expansion for the pion-exchange potentials breaks down for
distances of r ∼ 0.8 fm. For r � 1.0 fm, the convergence of the
multiple-scattering series, however, is found to be rather fast.
Taking R0 to be arbitrarily large, on the other hand, cuts off
long-range pion physics that is resolved. We therefore adopt
the range 1.0–1.2 fm for the cutoff R0.

Although we stress that there is no direct correspondence
between coordinate- and momentum-space cutoffs, a possibil-
ity of comparing the coordinate-space cutoff R0 with typical
momentum-space cutoff parameters �NN can be obtained by
Fourier transforming the coordinate-space regulator function
Eq. (6), integrating over all momenta, and identifying the
result with a sharp cutoff. This gives �NN = h̄c[6π2δR0(0)]1/3,
and thus we identify the corresponding momentum scales
∼500 MeV with R0 = 1.0 fm and ∼400 MeV with R0 =
1.2 fm. While a clear translation between coordinate-space and
momentum-space cutoffs can only be obtained when looking
at a particular system or channel, we note that the estimated
range encompassed by our cutoff choice is typical of other
nonlocal chiral EFT interactions; see also [38].

Regarding the long-range regulator, there are additional
advantages in choosing a local regulator function. As has been
argued recently [21], the standard regulator choice Eq. (4)
distorts the analytic structure of the partial-wave amplitude
near threshold. Since the long-range interactions in chiral
EFT are local [with the exception of relativistic corrections
entering at next-to-next-to-next-to-leading order (N3LO)], it is
logical to employ a local regulator in coordinate space, which
cuts off the short-range part of the pion-exchange interactions
but leaves the long-range part undisturbed. For this reason, a
(different) local long-range regulator function is also chosen
in the semilocal interactions of Epelbaum et al. [21,39].

To regularize pion loops in the TPE contributions at NLO
and higher orders, we use the framework of spectral function
regularization (SFR). In SFR, the integrals over loop momenta
in the spectral representation of the TPE contributions are
cut off at �̃. In the following, we use the SFR cutoff
�̃ = 1000 MeV since only a negligible dependence on its
choice was found [25,28]. In particular, increasing the SFR
cutoff from 1 to 1.4 GeV lowered the 4He binding energy and
the energy per particle of pure neutron matter (with only NN
interactions in both cases) by less than ∼2%, which is well
within the ∼5% truncation uncertainty at this order.

2. Local contact operators

Choosing local regulators removes the first source of
nonlocality in chiral interactions. The second source of
nonlocality originates in the momentum dependence of higher
order contact interactions. Up to N2LO, these can be eliminated
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by exploiting Fierz ambiguities. At next-to-leading order
(NLO), i.e., Q2 in the chiral expansion, the general set of
contact operators consistent with all the symmetries contains
14 different operators. In addition to spin-isospin dependences,
these operators contain momentum dependences of the form q2

and k2 or q × k, where the k2 dependences are undesirable for
local interactions. One can show using the Pauli principle that
between antisymmetric states only 7 out of the 14 operators are
linearly independent. Six linearly independent operators can
be chosen to be local (q2 dependent) while the 7th operator
can be chosen to be the spin-orbit interaction; see Ref. [25] for
more details.

At N3LO, there are an additional 15 linearly independent
contact operators. Only 8 of these are local, while the other
7 operators contain k dependences that cannot be removed.
Nevertheless, it is possible to construct maximally local N3LO
interactions that contain, at most, nonlocalities of second order
in momentum; see Ref. [26] for initial work in this direction. To
summarize, by choosing an appropriate set of contact operators
and local regulator functions, all sources of nonlocality in
chiral EFT can be removed up to N2LO.

3. Uncertainty estimates

To estimate the truncation uncertainty of the chiral expan-
sion, we follow Ref. [21] and estimate the uncertainty of an
observable X at N2LO as

	XN2LO = max
(
Q4|XLO|,Q2|XNLO − XLO|,

Q|XN2LO − XNLO|), (9)

and correspondingly at lower orders. Furthermore, we re-
quire the uncertainties to be at least the size of the ac-
tual higher order corrections. We define the scale Q as
Q = max(p/�b,mπ/�b) with p being a typical momentum
scale of the system. For the work we present below, for
nuclei, we choose Q = mπ/�b, whereas for our neutron
matter results, we take Q from the average momentum in
a Fermi gas Q = √

3/5kF /�b, with Fermi momentum kF ;
see Ref. [29]. This choice is conservative, because typical
binding momenta in nuclei are smaller than the pion mass.
These uncertainty estimates provide a quantitative estimate of
the effect of truncating the chiral expansion at some order ν.
A careful statistical analysis using Bayesian procedures has
been undertaken in Ref. [40], where it was shown that the
prescription we use, first introduced in Ref. [21], results in
ν/(ν + 1) × 100% degree-of-belief (DOB) intervals. That is,
our NLO and N2LO uncertainty estimates are equivalent to
50% and ∼67% DOB intervals.

Further details of the NN interaction, e.g., on the inclusion
of charge-independence and charge-symmetry breaking terms,
the values of the fitted low-energy constants (LECs), and phase
shifts, are given in Ref. [25].

B. Deuteron properties

The deuteron is the lightest nucleus with A > 1 in nature
and provides a natural testing ground for the NN interaction. In
this section, we present some properties of this simple system
using chiral interactions at N2LO. The deuteron wave function
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FIG. 2. The deuteron wave functions with L = 0 (S-wave) and
L = 2 (D-wave) at N2LO for R0 = 1.0 fm and R0 = 1.2 fm.
Also shown are the deuteron wave functions for the Argonne v18

interaction.

can be written in terms of its S- [u(r)] and D-wave [w(r)]
components as

ψ
(MJ )
d (r) =

[
u(r)

r
+ S12(r̂)√

8

w(r)

r

]
χMJ√

4π
, (10)

where χMJ
is the spin wave function for the total angular

momentum projection MJ , and Sik(r) = 3σ i · r̂σ k · r̂ − σ i · σ k

is the tensor operator. The S- and D-wave components are
normalized such that∫ ∞

0
drr2

[(
u(r)

r

)2

+
(

w(r)

r

)2]
= 1. (11)

The S- and D-wave components in momentum space are then
related by Fourier-Bessel transforms

ũ(q)

q
= 4π

∫ ∞

0
drr2j0(qr)

u(r)

r
, (12a)

w̃(q)

q
= 4π

∫ ∞

0
drr2j2(qr)

w(r)

r
(12b)

(where jl(x) is a spherical Bessel function) so that the
normalization is∫ ∞

0

dqq2

(2π )3

[(
ũ(q)

q

)2

+
(

w̃(q)

q

)2]
= 1. (13)

We show the S- and D-wave components of the deuteron
wave function in Fig. 2 for chiral interactions at N2LO with two
different cutoff scales along with the deuteron wave function
for the Argonne v18 interaction. Compared to the hard Argonne
v18 interaction, the S-wave components of the local chiral
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TABLE I. Deuteron properties including the binding energy
Eb, asymptotic D/S ratio ηd , quadrupole moment Qd (impulse
approximation), and root-mean-square (rms) matter radius

√
〈r2

d 〉.
Electromagnetic interaction effects are neglected here (when included
they change the values below only within the uncertainties). The
uncertainties for the local chiral interactions represent the discussed
truncation error estimate. See text for more details. Experimental
values are from Refs. [41–44].

R0 = 1.0 fm R0 = 1.2 fm Exp

Eb (MeV) 2.21(2) 2.20(3) 2.224575(9)
ηd 0.0263(3) 0.0267(6) 0.0256(4)
Qd (fm2) 0.286(5) 0.289(6) 0.2859(3)√

〈r2
d 〉 (fm) 1.97(2) 1.97(3) 1.9660(68)

interactions are softer, reflected in the larger value at vanishing
pair separation r . As a result, the D-wave component is pushed
away from r = 0. In addition, the D-wave component at N2LO
with cutoff R0 = 1.0 fm (R0 = 1.2 fm) has a node at ∼0.2 fm
(∼0.02 fm). This node has no physical consequences for the
deuteron structure and for both cutoffs occurs at very short
distances, where the uncertainty coming from the truncation
of the chiral expansion is largest.

In Table I, we collect a number of properties of the deuteron
at N2LO and compare with experiment. The deuteron binding
energy is not used in fits of the LECs and can be used as a
check for the local potentials. At N2LO, the deuteron binding
energy is consistent with experiment, taking into account the
uncertainties.

1. Momentum distribution

The deuteron momentum distribution can be written in
terms of the S- and D-wave components as

n(q) = 1

4π

[(
ũ(q)

q

)2

+
(

w̃(q)

q

)2]
, (14)

so that the normalization is∫
d3q

(2π )3
n(q) = 1. (15)

In Fig. 3, we show the deuteron momentum distribution for
our two cutoff choices along with the momentum distribution
obtained for the Argonne v18 interaction. It is interesting
to note that the three momentum distributions display very
similar behavior up to the respective cutoffs of the two
chiral interactions. For R0 = 1.0 fm ∼ 500 MeV ≈ 2.5 fm−1,
the blue curve begins to deviate significantly from the Argonne
v18 result at momenta ∼2.5 fm−1, while for R0 = 1.2 fm ∼
400 MeV ≈ 2.0 fm−1, the red curve begins to deviate signifi-
cantly from the Argonne v18 result at ∼2.0 fm−1. However, we
also emphasize that momentum distributions are necessarily
renormalization scale and scheme dependent and are thus not
observable [45].

2. Tensor polarization

Since momentum distributions are scheme and scale de-
pendent, we now consider the tensor polarization. The charge
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FIG. 3. The deuteron momentum distributions at N2LO for the
two different cutoff scales we use. Also shown is the deuteron
momentum distribution for the Argonne v18 interaction.

form factors for different MJ states are given by

FC,MJ
(q) = 1

2

∫
d3r ′ρ(MJ )

d (r′)eiq·r′
, (16)

with the deuteron two-body density ρ
(MJ )
d (r′) in state MJ in

terms of the distance r′ from the center of mass:

ρ
(0)
d (r′) = 4

π
[C0(2r ′) − 2C2(2r ′)P2(cos θ )], (17a)

ρ
(±1)
d (r′) = 4

π
[C0(2r ′) + C2(2r ′)P2(cos θ )]. (17b)

The functions C0 and C2 are in turn written in terms of the S-
and D-wave components of the deuteron wave function:

C0(r) =
[
u(r)

r

]2

+
[
w(r)

r

]2

, (18a)

C2(r) =
√

2

[
u(r)

r

][
w(r)

r

]
− 1

2
+

[
w(r)

r

]2

. (18b)

The tensor polarization T20(q) is defined (in the impulse
approximation) by [47]

T20(q) ≈ −
√

2
F 2

C,0(q) − F 2
C,1(q)

F 2
C,0(q) + 2F 2

C,1(q)
. (19)

We compare the tensor polarization for both cutoffs and for
the Argonne v18 interaction with experimental data [46] in
Fig. 4. The first minimum of T20(q) is experimentally known
at q ≈ 3.5(5) fm−1 [46–48], in agreement with the predictions
of all three cases displayed. At higher values of q, we expect

054007-5



J. E. LYNN et al. PHYSICAL REVIEW C 96, 054007 (2017)

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0

q (fm−1)

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

T
20

(q
)

FIG. 4. The deuteron tensor polarization at N2LO for the two
different cutoff scales we use. The bands correspond to an estimate
for the uncertainty coming from the truncation of the chiral expansion
as described in the text. Also shown is the deuteron tensor polarization
for the Argonne v18 interaction. The experimental data are from
Ref. [46].

some disagreement between our calculations and experiment
given that we work in the impulse approximation.

3. Perturbation-theory calculations

The chiral expansion is meant to be a perturbative expansion
in powers of a small parameter Q ∼ p/�b. One may well
ask if the expected perturbative expansion is evident in
the interactions themselves. To investigate this, we treat
the difference of the N2LO and the NLO interactions as a
perturbation

Vpert ≡ VN2LO − VNLO (20)

and perform first-, second-, and third-order perturbation-
theory calculations for the deuteron binding energy. For
example, at first order,〈

ψ
(NLO)
d

∣∣HNLO + Vpert

∣∣ψ (NLO)
d

〉
= ENLO + 〈

ψ
(NLO)
d

∣∣Vpert

∣∣ψ (NLO)
d

〉
. (21)

These results at second order and above are displayed in
Fig. 5. As is evident from the figure, the softer interaction with
R0 = 1.2 fm is more perturbative than the harder interaction
with R0 = 1.0 fm. In both cases, the perturbative series appears
to be converging to the value at N2LO, but the convergence is
faster for the R0 = 1.2 fm cutoff.

C. Three-nucleon interactions at N2LO

Phenomenological models for 3N interactions, including
the Urbana [49], Illinois [50], and Tucson-Melbourne [51]
models, have been very successfully used in QMC calculations

LO NLO NLO + pert.(2) NLO + pert.(3) N2LO
−2.3

−2.2
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−2.0

−1.9
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−1.7
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)

R0 = 1.0 fm

R0 = 1.2 fm
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FIG. 5. The deuteron energy at LO, NLO, and N2LO for R0 =
1.0 fm (1.2 fm) in blue (red). The error bars are the uncertainty
estimates coming from the truncation of the chiral expansion as
described in the text. Also shown, between the NLO and N2LO
results, are second- and third-order perturbation theory calculations
for the N2LO deuteron energies, taking HNLO as the unperturbed
Hamiltonian, and treating VN2LO − VNLO as a perturbation. For the
perturbation-theory calculations, we take as the uncertainty the same
estimate as for the NLO calculations. The dashed lines serve as guides
to the eye. The horizontal dotted line is the experimental binding
energy.

of nuclear systems. These models are based on the 3N TPE
interaction that was first proposed by Fujita and Miyazawa
nearly 60 years ago [52]. Despite their undeniable success,
they suffer from several shortcomings: They do not emerge
naturally from the phenomenological NN interactions and they
are not systematically improvable.

In chiral EFT, however, 3N interactions naturally emerge
in the expansion and are consistent with the NN interactions.
Furthermore, they are systematically improvable. The leading
3N interactions appear at N2LO in Weinberg power counting
and can be visualized in terms of the diagrams in Fig. 6. The
first diagram, proportional to the pion-nucleon LECs c1, c3,
and c4, corresponds to the long-range S- and P -wave TPE
interactions by Fujita and Miyazawa. The LECs ci already
appear in the subleading TPE interactions at the NN level
at the same chiral order, which highlights the consistency

π π

c1, c3, c4

π

cD cE

FIG. 6. The diagrams contributing to 3N interactions at N2LO.
Solid lines are nucleons; dashed lines are pions.
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of the NN and 3N interactions in chiral EFT. The second
diagram, proportional to the LEC cD , is an intermediate-range
one-pion-exchange-contact interaction, and the third diagram,
proportional to the LEC cE , is a 3N contact interaction.

The diagrams in Fig. 6 give rise to the following
momentum-space 3N interactions:

VC = 1

2

(
gA

2Fπ

)2 ∑
π(ijk)

(σ i · qi)(σ j · qj )(
q2

i + m2
π

)(
q2

j + m2
π

)F
αβ
ijk τ

α
i τ

β
j ,

(22a)

VD = − gA

8F 2
π

cD

F 2
π�χ

∑
π(ijk)

σ j · qj

q2
j + m2

π

(τ i · τ j )(σ i · qj ), (22b)

VE = cE

2F 4
π�χ

∑
i �=j

τ i · τ j , (22c)

where Roman indices refer to nucleon number, Greek indices
refer to Cartesian coordinates, π (ijk) gives all permutations
of the indices, gA is the axial-vector coupling constant, Fπ

is the pion decay constant, �χ is taken to be a heavy meson
scale, and mπ is the pion mass. The function F

αβ
ijk is defined

in Ref. [19] and depends on the LECs, c1, c3, and c4. The two
LECs cD and cE first appear in the 3N sector at N2LO and
have to be fitted to A � 3 experimental data. We discuss our
fitting procedure further below.

1. Local 3N interactions

The Fourier transformations of Eqs. (22a) to (22c) can
be found in Ref. [19]. Here, we briefly review some im-
portant details from that work and point out additional
details that arose in the implementation of the coordinate-
space interactions in finite nuclei and neutron matter.

In commonly used phenomenological models, any short-
range structures which arise in the Fourier transformation
of long-range parts of the 3N forces are typically absorbed
by other short-range structures (e.g., the scalar short-range
structure in the Urbana IX (UIX) 3N interaction): However, we
retain these additional structures explicitly. Our regularization
scheme for the 3N interactions is consistent with that used in
the NN sector, i.e., δ functions denoting contact interactions are
replaced with Eq. (6), long-range pion-exchange interactions
are regulated by applying Eq. (8), and the 3N cutoff parameter
is taken in the same range as the NN cutoff parameter (in
the following, we choose R3N = R0 = 1.0–1.2 fm). The full
Fourier transformations of Eq. (22a) are available in Ref. [19],
but we note that a compact form of V

ijk
C,c3

and V
ijk
C,c4

can be
obtained by writing them in the form of an anticommutator and
a commutator of a modified coordinate-space pion propagator

Xij (r) ≡ Xij (r) − 4π

m2
π

δR3N
(r)σ i · σ j . (23)

See the Appendix for details.

2. Regulator artifacts

As was discussed in Refs. [19,20,29], the use of local regu-
lators in the 3N sector leads to two kinds of observable regula-
tor artifacts. The first kind of regulator artifact affects the short-
range parts of the interactions in Eqs. (22b) and (22c). These
parts retain additional ambiguities at finite cutoff R3N �=0.
The first ambiguity concerns the choice of momentum vari-
ables in the Fourier transformation. Depending on how this
choice is made, Eq. (22b) Fourier transforms to one of the
following two equations:

VD1 = gAcDm2
π

96π�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ k

[
Xik(rkj )δR3N

(rij ) + Xik(rij )δR3N
(rkj ) − 8π

m2
π

σ i · σ kδR3N
(rij )δR3N

(rkj )

]
, (24a)

VD2 = gAcDm2
π

96π�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ k

[
Xik(rik) − 4π

m2
π

σ i · σ kδR3N
(rik)

][
δR3N

(rij ) + δR3N
(rkj )

]
, (24b)

where Xik(r) = [Sik(r)T (r) + σ i · σ k]Yik(r) is the coordinate-
space pion propagator, and the tensor and Yukawa functions
are defined as T (r) = 1 + 3/(mπr) + 3/(mπr)2 and Y (r) =
e−mπ r/r . The sum with i < j < k runs over all particles 1 to A,
and the cyclic sum runs over the cyclic permutations of a given
triple. It is clear that in the limit R3N → 0 the two possible VD

structures are identical, because then the δ functions enforce
i = j (k = j ) in the first (second) term. The interaction VD

does not distinguish which of the two nucleons in the contact
interaction participates in the pion exchange. The term VD2
can also be obtained by imagining a heavy fictitious scalar
particle being exchanged between the two nucleons in the
contact; see Fig. 7. This ambiguity was already pointed out
in Ref. [53].

The second ambiguity in the 3N short-range interactions
relates to the choice of the contact operator in Eq. (22c). The
same Fierz-rearrangement freedom that allows for a selection
of local contact operators entering in the NN sector at NLO

also allows for the selection of one out of the following six
operators in the 3N sector [54]:

{1,σ i · σ j ,τ i · τ j ,σ i · σ jτ i · τ j ,

σ i · σ jτ i · τ k,[(σ i × σ j ) · σ k][(τ i × τ j ) · τ k]}. (25)

σ

π

cD

FIG. 7. The cD-dependent diagram with a fictitious heavy scalar
particle σ exchanged between two of the nucleons making the
participants in the pion exchange explicit. Solid lines are nucleons,
the dashed line is a pion, and the dotted line is the fictitious heavy
scalar particle.
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The usual choice is τ i · τ j . This Fierz-rearrangement freedom
holds as long as the regulator is symmetric under individual
nucleon permutations. However, in the presence of local
regulators, the Fierz-rearrangement freedom is violated, and
different operator choices can lead to different results. Cor-
rections to the violated Fierz rearrangement freedom are of
higher order in chiral EFT. A systematic study of these effects
in the NN sector is in preparation [55]. In the following, we
have explored three different choices for the contact operator:

VEτ = cE

�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ kδR3N
(rkj )δR3N

(rij ), (26a)

VE1 = cE

�χF 4
π

∑
i<j<k

∑
cyc

δR3N
(rkj )δR3N

(rij ), (26b)

VEP = cE

�χF 4
π

∑
i<j<k

∑
cyc

P δR3N
(rkj )δR3N

(rij ). (26c)

The first two operator structures are chosen because 1 and
τ i · τ j have opposite signs in light nuclei but the same sign
in neutron matter and thus give an estimate of the uncertainty
due to this ambiguity. The last choice contains the projection
operator P that projects on to triples with S = 1

2 and T = 1
2 ,

P ≡ 1

36

(
3 −

∑
i<j

σ i · σ j

)(
3 −

∑
k<l

τ k · τ l

)
, (27)

where the sums are over pairs in a given triple. These are the
triples that survive in the limit δR3N

(r) → δ(3)(r), that is, the
limit R3N → 0 (or � → ∞ in momentum space).

The second regulator artifact affects the long-range 3N
TPE interaction. It has been found that the effective 3N cutoff
for a local regulator is lower (in momentum space) than
for a typical nonlocal regulator [19,20]. As a consequence,
one finds less repulsion from a local 3N TPE interaction
than for the standard nonlocal formulation. This, again, is
a regulator artifact that vanishes when R3N → 0. Lowering
the 3N cutoff well below the NN cutoff, however, leads
to collapses because the increasing 3N attraction cannot be
counteracted by additional NN repulsion; see Ref. [19].

3. Fitting procedure

We now turn to the fitting procedure for the LECs cD and
cE . This procedure was presented and discussed in Ref. [29],
but we review it here for completeness. In the past, the binding
energies of 3H and 4He or the binding energy of 3H and the
nd doublet scattering length 2and have been used to fix cD

and cE . However, these observables are correlated and thus
underconstrain the two LECs [56]. The 3N couplings have
also been fit to the 3H binding energy and the 4He radius [57].
Arguments can be made that 3N interactions should be fit in
A � 3 systems only [56] or that reproducing observables over
a wider range in the nuclear chart is more appropriate [18,50].
We take a middle-ground approach and have two goals with
our fitting strategy: (1) to probe properties of light nuclei and
(2) to probe T = 3/2 physics. With these in mind, we take as
observables the 4He binding energy and n-α scattering P -wave
phase shifts. The n-α system is the lightest nuclear system

for which three neutrons can be found interacting and thus
provides an indirect constraint on T = 3/2 physics.

We first find contours for cD and cE that reproduce the 4He
binding energy. We further constrain cD and cE by calculating
the P 3/2− and P 1/2− phase shifts for the n-α system as
described in Ref. [58] and demanding a good reproduction
of the splitting between these two P -wave phase shifts. See
Ref. [29] for more details.

In Ref. [29], we explored the various combinations of VD

[Eqs. (24a) and (24b)] and VE [Eqs. (26a)–(26c)] and found
some dependence on these choices. In particular, no fit to
both observables (the 4He binding energy and the n-α P -wave
scattering phase shifts) was obtained for the case with VD1

and the softer cutoff R0 = 1.2 fm. For all other combinations,
results for light nuclei with A = 3,4 were similar. Below
we take a representative choice (VD2,VEτ ) for the results we
display.

III. QUANTUM MONTE CARLO METHODS

In this section, we provide details on QMC methods
including the variational Monte Carlo (VMC) method, which
is used as a starting point for both GFMC and AFDMC
calculations.

A. Variational Monte Carlo

The variational Monte Carlo (VMC) method relies on the
Rayleigh-Ritz variational principle:

〈�T |H |�T 〉
〈�T |�T 〉 � E0, (28)

where |�T 〉 = |�T ({ci})〉 is a trial wave function with a set of
adjustable parameters {ci}, and E0 is the energy of the ground
state of H . The equality above only holds if |�T 〉 = |�0〉, the
ground state of H .

For few-body nuclei with A = 3,4 the form of the varia-
tional trial wave function is given as

|�T 〉 =
⎡
⎣1 +

∑
i<j<k

Uijk

⎤
⎦

⎡
⎣S

∏
i<j

(1 + Uij )

⎤
⎦|�J 〉. (29)

The two-body part of the wave function consists of a sym-
metrized product of correlation operators acting on a Jastrow
wave function, ⎡

⎣S
∏
i<j

(1 + Uij )

⎤
⎦|�J 〉, (30)

where the Jastrow wave function is

|�J 〉 =
∏
i<j

fc(rij )|�〉. (31)

The Jastrow factor is a product of central two-body correlations
fc acting on an appropriate antisymmetric single-particle state.
For few-body nuclei with A = 3,4, |�〉 can be taken as an
appropriate antisymmetric linear combination of spin-isospin
states. For example, for 4He, one can take

|�4〉 = A|p↑ p↓ n↑ n↓〉. (32)
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FIG. 8. Correlations of Eqs. (31) and (33) entering the trial wave functions used in the calculations of 4He for the AV18 + UIX (left panel),
N2LO R0 = 1.0 fm (middle panel), and N2LO R0 = 1.2 fm (right panel) interactions.

The correlation operators are defined as

Uij =
∑

p

up(rij )O(p)
ij , (33)

where the {O(p)
ij } are the operators{

σ i · σ j ,τ i · τ j ,σ i · σ jτ i · τ j ,Sij ,Sijτ i · τ j ,L · S
}
, (34)

taken from the two-body interaction. We use the short-hand
notation p = {σ,τ,στ,t,tτ,b} for the operators as in Ref. [59].
The symmetrizer in Eqs. (29) and (30) is necessary to maintain
the overall antisymmetry of the wave function, since in general
the Uij do not commute with each other. In Fig. 8, we
display the two-body correlations fc and {up} obtained in the
simulation of 4He with the N2LO interactions with both cutoffs
as well as those obtained for the Argonne v18 NN interaction
supplemented by the UIX 3N interaction. What can be seen
from these correlations, most particularly in the case of the
central correlation fc, is the softening of the interaction as
we take the cutoff from R0 = 1.0 fm to R0 = 1.2 fm. We
find that the spin-orbit correlation has only a minimal effect
on the variational energies we obtain and a relatively high
computational cost, and therefore we set ub(rij ) = 0 in our
calculations.

The three-body correlation operator takes the following
form:

Uijk = εVijk(r̄ij ,r̄jk,r̄ik), (35)

where r̄ is a scaled relative separation and ε is a small negative
constant. This form is suggested by perturbation theory [49].
In addition to the explicit three-body correlations of Eq. (35),
a central, geometric three-body correlation is wrapped into the
two-body correlations,

ũp(rij ) =
∏
k �=i,j

fijkup(rij ), (36)

with

fijk = 1 − t1

(
rij

Rijk

)t2

exp(−t3Rijk), (37)

where Rijk = rij + rjk + rik and the {ti} are variational param-
eters. These correlations serve to reduce the repulsion which
arises from the product of certain spin-isospin correlation op-
erators when any two nucleons come close together. Reducing
this repulsion was found to improve variational energies with
wave functions of the form of Eq. (30) [60].

Equation (28) is evaluated by means of Monte Carlo
integration,

〈H 〉 =
∑

a,b

∫
dR[�†

a(R)H�b(R)/Wab(R)]Wab(R)∑
a,b

∫
dR[�†

a(R)�b(R)/Wab(R)]Wab(R)
, (38)

where a and b stand for a given order of operators in the
product Eq. (30), a complete sum over all spin and isospin
states is assumed, and the integrals are performed as a Monte
Carlo integration over the coordinate-space configurations
R = {r1,r2, . . . ,rA}. The sums over the orders a and b are also
performed via a Monte Carlo sampling as discussed below. The
weight function can be taken as

Wab(R) = |Re{〈�†
a(R)�b(R)〉}|, (39)

for example. In practice, because of the different orders a
and b in the left and right wave functions, Eq. (39) is not
guaranteed to be nonzero, and so we add to it an additional
term proportional to

∑
s,t |�a(R; s,t)†�b(R; s,t)|. That is, we

add a term proportional to the sum of the absolute value of
the overlaps of the individual spin-isospin components of the
wave functions.

The symmetrizer in Eqs. (29) and (30) requires, in principle,
the evaluation of all [A(A − 1)/2]! possible orderings of the
operators. To save computational cost, the order of operators is
instead sampled. This approximation does not contribute much
to the statistical variance since all orderings share the same
linear (dominant) contributions and the differences between
different orderings are proportional to {u2

p}.
The Metropolis algorithm is employed and the result is,

after sufficient equilibration, a set of configurations labeled by
the 3A coordinates and the orderings of the operators, {R,a,b},
which are distributed according to the square of the trial wave
function. As the integration and sum over all orderings is done
stochastically, there is an error associated with the expectation
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value of any operator 〈O〉, given by

σO =
√

〈O2〉 − 〈O〉2

N − 1
, (40)

where N is the number of statistically independent evaluations.
For more details, see Refs. [8,59].

With the algorithm described above, the variational param-
eters {ci} are adjusted to minimize the expectation value of the
Hamiltonian in Eq. (28). Wave functions so obtained can be
used as reasonable approximations to the exact ground state
(especially in few-body nuclei) and are a necessary starting
point for the GFMC method.

B. Diffusion Monte Carlo

Even with the sophisticated wave functions described in
Sec. III A, it is not possible to construct by hand exact solutions
to the many-body Schrödinger equation. Diffusion Monte
Carlo methods including the AFDMC and GFMC methods
rely on the fact that, given a nuclear system specified by
the Hamiltonian H with ground state |�0〉 and a trial wave
function for that system |�T 〉 with nonvanishing overlap with
the ground state,

lim
τ→∞ e−Hτ |�T 〉 → |�0〉. (41)

The object e−Hτ is the many-body imaginary-time Green’s
function (or imaginary-time propagator) for the system with
the imaginary time τ . This “sifting” property of the imaginary-
time propagator is easy to understand if the trial wave function
is expanded in a complete set of eigenstates of H , {|φn〉}, with
energies {En},

e−(H−ET )τ |�T 〉 =
∞∑

n=0

e−(Ei−ET )τ an|φn〉, (42)

where we have introduced the trial energy ET and an =
〈φn|�T 〉. In principle, ET can take any value, but it is often
adjusted to be the ground-state energy (or the energy of the
low-lying excited state sought). Then, since Ei > ET for all
i > 0, in the large-imaginary-time limit all of the excited-state
components of the trial state are exponentially damped and
one is left with the exact many-body ground state. In this
language, we can say that with the VMC method alone it is
not possible to avoid some contamination in nuclear wave
functions from excited states. That is, while we can make a0

of Eq. (42) the dominant contribution through the adjustment
of the variational parameters {ci}, it is not possible with the
VMC method alone to guarantee that an>0 = 0.

In the remainder of this section, we discuss diffusion
Monte Carlo methods, paying particular attention to the GFMC
method, which we use to calculate properties of light nuclei.
For more details, we refer to Ref. [8] and references therein.
We begin with a discussion of the calculation of the imaginary-
time propagator, which plays a central role in diffusion Monte
Carlo methods.

In general, it is difficult to compute the exact many-body
imaginary-time propagator for arbitrary imaginary times.
Instead, the properties of the exponential are exploited to

rewrite the propagation to large imaginary time as a product
of small propagations,

e−Hτ =
N∏

i=1

e−H	τ , (43)

with 	τ = τ/N , and N large enough (	τ small enough) such
that one of several approximations can be used to calculate the
short-imaginary-time propagator. In the case of the AFDMC
method, for example, a Trotter breakup is used [8],

e−H	τ =
⎡
⎣∏

i<j

e−Vij
	τ
2

⎤
⎦e−T 	τ

⎡
⎣∏

i<j

e−Vij
	τ
2

⎤
⎦ + O(	τ 3),

(44)
where T is the kinetic energy operator and Vij is a local two-
body interaction. In Eq. (44), the order in the product on the
left is taken in the opposite order of the product on the right.
This keeps the propagator unitary (in real time) and eliminates
terms of O(	τ 2).

In the GFMC method, the exact two-body propagator is
used to construct the many-body propagator, as suggested by
studies of condensed helium systems [61]:

〈αR|e−H	τ |βR′〉
≡ Gαβ(R,R′; 	τ )

= G0(R,R′; 	τ )〈α|S
∏
i<j

gij (rij ,r′
ij ; 	τ )

g0,ij (rij ,r′
ij ; 	τ )

|β〉+O(	τ 3).

(45)

Here, α and β stand for the appropriate spin-isospin states for
a given nucleus, R = {r1,r2, . . . ,rA} and R′ = {r′

1,r
′
2, . . . ,r

′
A}

are the collections of 3A coordinates before and after the
propagation step, G0(R,R′; 	τ ) is the many-body free-particle
imaginary-time propagator

G0(R,R′; 	τ ) =
(

m

2πh̄2	τ

) 3A
2

exp

[
− (R − R′)2

2h̄2	τ/m

]
, (46)

gij is the exact two-body interacting imaginary-time propaga-
tor,

gij (rij ,r′
ij ; 	τ ) = 〈rij |e−Hij 	τ |r′

ij 〉, (47)

which can be computed to high accuracy (∼8- to 10-digit
accuracy or better than half machine precision), and g0,ij is the
two-body free-particle analog of gij . This construction allows
for taking much larger time steps than in the Trotter breakup
in Eq. (44). The trade-off is that the calculation of the exact
two-body propagator of Eq. (47) is too costly to compute “on
the fly” and must be carried out in advance and stored on a grid
of points to be interpolated on during the GFMC propagation.

The complete two-body propagator depends on initial and
final relative coordinates, the initial and final spin states of the
pair, and the isospin of the pair,

〈α|g(r,r′; 	τ )|β〉
→ 〈r′SM ′

ST MT |e−H	τ |rSMST MT 〉, (48)

where the indices ij as in Eq. (47) are suppressed here and in
what follows for simplicity unless they are explicitly needed
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for clarity. Reference [62] originally proposed using fast
Fourier transforms (FFT) and the Trotter breakup for scalar
interactions, and this idea was adapted to realistic nuclear
interactions in Ref. [49]. In this method, interactions are
first decomposed into partial waves. The nuclear Hamiltonian
commutes with the operators J 2, Jz, S2, T 2, and Tz, and, thus,
sets them as good channel quantum numbers: S = S1 + S2 is
the total spin, J = L + S is the total angular momentum, and
T = T1 + T2 is the total isospin. Then, the channel propa-
gators 〈r ′JMJ L′ST MT |e−H	τ |rJMJ LST MT 〉 are computed
and resummed to obtain the two-body propagator:

〈r′SM ′
ST MT |e−H	τ |rSMST MT 〉

=
∑

γ

CJM
SM ′

SL′M ′
L
YL′M ′

L
(�′)CJM

SMSLML
Y ∗

LML
(�)

×〈r ′JMJ L′ST MT |e−H	τ |rJMJ LST MT 〉. (49)

Here, γ stands for the set of quantum numbers
{JMLL′MLM ′

L}, C is a Clebsch-Gordan coefficient, Y is a
spherical harmonic, and � (�′) are the angular coordinates of
r (r′).

Each of the channel propagators is calculated by breaking
up the (already-small) time step 	τ into smaller steps δτ =
	τ/Nτ , with Nτ large, using the symmetrized Trotter breakup,
and FFT:

e−H	τ = (e−Hδτ )Nτ , (50a)

e−Hδτ = e−V δτ/2e−T δτ e−V δτ/2 + O(δτ 3). (50b)

In Eq. (50b), the right-most exponential acts upon an array
of initial relative separations, the result is transformed to

momentum space using FFT, the exponential of the kinetic
energy acts upon that result, which is then transformed back
to coordinate space using FFT, whereupon the left-most
exponential acts upon the array. This method introduces errors
of O(δτ 3), is fast, and is easy to implement.

An alternative method is to diagonalize the channel Hamil-
tonians in momentum space [22]. When the interaction is
nonlocal (no longer diagonal in coordinate space), then the
advantages of the Trotter breakup vanish. That is, it is just
as difficult to calculate the matrix elements 〈r′|e−V 	τ |r〉 as it
is to calculate the original matrix elements 〈r′|e−H	τ |r〉. In
order to diagonalize the channel Hamiltonians, we take as an
orthonormal basis the set of spherical Bessel functions which
solve the free radial Schrödinger equation with a Dirichlet
boundary condition at some radius R much beyond the range
of the interaction,

φnL(r) =
√

2

R3j ′
L(knR)2

jL(knr), (51)

where {kn} is the set of discrete momenta for a given L
and R. In this basis, the kinetic energy is diagonal, and the
potential-energy matrix elements can be obtained with simple
matrix multiplications, which perform the necessary numerical
integrals. While this method was originally developed to
calculate two-body propagators for nonlocal interactions, it
works equally well for local interactions, providing equal
accuracy and speed when compared with the symmetrized
Trotter break up with FFT.

So far, we have discussed only the contribution to the
many-body propagator coming from NN interactions. We
include 3N interactions in the propagator as a symmetric linear
approximation to e−V3N 	τ :

Gαβ(R,R′; 	τ ) = G0(R,R′; 	τ )〈α|1 − 	τ

2

∑
p

V
(p)

3N (R)|γ 〉

× 〈γ |S
∏
i<j

gij (rij ,r′
ij ; 	τ )

g0,ij (rij ,r′
ij ; 	τ )

|δ〉〈δ|1 − 	τ

2

∑
p

V
(p)

3N (R′)|β〉, (52)

where the sums
∑

p V
(p)

3N are over all 3N operators of
Eqs. (A1a)–(A1c), one of Eqs. (A2a) and (A2b), and one of
Eqs. (A3a)–(A3c). As before, α, β, γ , and δ are appropriate
spin-isospin states and γ and δ are summed over. This linear
approximation is a controlled approximation that becomes
more exact with smaller 	τ . There are improvements to
this linear approximation possible. For example, replacing
[1 − 	τ

2

∑
p V

(p)
3N (R)] with

∏
p[1 − 	τ

2 V
(p)

3N (R)] would capture
at least some O(	τ 2) effects. Another possibility is to
include all parts of the 3N interaction that can be rewritten
effectively as two-body operators into the two-body propagator
as suggested in Ref. [63] [these include the TPE P -wave
anticommutator contribution Eq. (A1b), the TPE S-wave
contribution Eq. (A1a), the VD contributions Eqs. (A2a)
and (A2b), and two of the three VE contributions Eqs. (A3a)
and (A3b)]. However, we have found that with the time step

we typically use, 	τ = 0.0005 MeV−1, the time-step error
introduced by this linear approximation is negligible.

With the imaginary-time propagator so obtained, one would
ideally like to calculate expectation values such as 〈O(τ )〉 =
〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉 , with �(τ ) defined as

�(RN ; τ ) ≡
∫ N−1∏

i=0

dRiG(Ri+1,Ri ; 	τ )�T (R0). (53)

However, in practice, one does not have direct access to the
propagated wave function, and an evaluation of that expec-
tation value is cumbersome for spin- and isospin-dependent
operators, and especially for momentum-dependent operators.
Thus, what is more commonly used is the mixed expecta-
tion value of a given operator (suppressing the spin-isospin
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indices), defined as

〈O〉mixed ≡ 〈�T |O|�(τ )〉
〈�T |�(τ )〉 =

∫
dR�

†
T (RN )OG(RN,RN−1; 	τ ) . . . G(R1,R0; 	τ )�T (R0)∫

dR�
†
T (RN )G(RN,RN−1; 	τ ) . . . G(R1,R0; 	τ )�T (R0)

, (54)

with the paths dR ≡ ∏N−1
i=0 dRi , and the total imaginary time

τ = N	τ . The paths are Monte Carlo sampled to perform the
integrals. Note that the operator O must act on the trial wave
function (to the left).

The mixed estimate introduces an explicit dependence on
the trial wave function. However, if the trial wave function is
a good approximation, we can write

�(τ ) = �T + δ�(τ ), (55)

where δ�(τ ) is the (small) correction to the trial wave function
introduced by the imaginary-time propagation, and keep terms
only of O(δ�(τ )). Then we have

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉mixed + (〈O(τ )〉mixed − 〈O〉T ), (56)

where 〈O〉T is the variational estimate. Thus, if �T is a
good approximation to the exact wave function obtained
through imaginary-time propagation (as measured by the
relative smallness of the difference 〈O(τ )〉mixed − 〈O〉T )
when compared with 〈O(τ )〉mixed, then the mixed estimate
introduces only a small systematic uncertainty. Typically we
aim for the difference between the mixed and variational
estimates to be no larger than ∼5% of the mixed estimate.
There are other ways to avoid the use of mixed estimates,
such as computing the observable in the midpoint of the
path [64], but this requires a propagation time twice as long
as in the mixed-estimate case. Note that in the case of the
energy expectation value, 〈H 〉, the Hamiltonian and the
imaginary-time propagator commute. In this case,

〈H (τ )〉mixed = 〈�T |e−HτH |�T 〉
〈�T |e−Hτ |�T 〉

= 〈�T |e−Hτ/2He−Hτ/2|�T 〉
〈�T |e−Hτ/2e−Hτ/2|�T 〉

= 〈�(τ )|H |�(τ )〉
〈�(τ )|�(τ )〉 , (57)

such that limτ→∞〈H (τ )〉mixed = E0. In short, for the Hamil-
tonian, the mixed estimate is identical to the normal estimate.

When performing the propagation, one has to employ
another approximation. Nucleons are fermions and their many-
body wave functions contain nodal surfaces. As a consequence,
a configuration that crosses a nodal surface introduces a
sign change in the matrix elements in Eq. (54). At large τ ,
these sign changes contribute to a decreasing denominator,
causing large statistical fluctuations (large variance). This is
the famous fermion sign problem. One way to circumvent
this problem is the so-called constrained path algorithm; for
a detailed description, see Ref. [63]. In short, the idea is to
discard configurations that in future propagations would only
contribute to the variance. If one knew the exact wave function,

then the overlap of these discarded configurations with the
ground-state wave function would be zero 〈�discarded|�0〉=0.
However, since we do not in general know the exact
ground-state wave function, the constraint is imposed on
the overlap with the trial wave function so that the average
of the overlaps 〈�discarded|�T 〉 over the random walk is
approximately zero.This approximation was inspired by the
fixed-node approximation used in condensed matter systems.

For scalar wave functions (no spin or isospin dependence)
the fixed-node approximation provides both a way to tame
the sign problem, and results in an upper bound to the
ground-state energy. However, because of the spin and isospin
dependence of the nuclear case, the constrained-path algorithm
no longer supplies a strict upper bound, as has been discussed
and demonstrated in Ref. [63]. To overcome this additional
difficulty, in cases where the constrained-path algorithm is
used, we take a number nu of unconstrained steps after
convergence of the constrained-path calculation. We take nu as
large as possible. Typically, nu ∼ 20 before the fermion sign
problem overwhelms the signal. This “transient estimation”
results in significantly improved estimates, introducing an
error, for example, in 6Li of just ∼0.5%; see Ref. [63]. Figure 9
gives an example of a constrained-path calculation of the
ground-state energy of 4He and the subsequent transient esti-
mation. Note that the constrained-path propagation overbinds
the system, demonstrating that for some trial wave functions
the constrained-path estimate is not an upper bound.

IV. ENERGIES AND OTHER RESULTS FOR A = 3,4

The light nuclei with A = 3,4 are a minimal testing ground
for any nuclear Hamiltonian: The reasonable reproduction of
binding energies and radii in these nuclei is a basic yardstick
against which our local chiral interactions can be measured.

In this section, we present the main results for light nuclei
that we have obtained with our local chiral EFT NN and 3N
interactions at N2LO [29]. We emphasize the order-by-order
convergence of observables in the A = 3,4 nuclei and present
a detailed breakdown of the contributions to the energies
from various components of the NN and 3N interactions.
We also show several one-body distributions and the related
longitudinal charge form factor.

A. Energies of light nuclei at LO, NLO, and N2LO

At LO, the NN interaction consists simply of the one-pion
exchange potential and two contact interactions with LECs
fit to NN scattering phase shifts. With only the basic pion
physics present and little freedom to fit the phase shifts,
essentially only the large scattering length plus OPE physics
can be reproduced, and the resulting potential is excessively
attractive in low partial waves. This can be seen in Fig. 10,
where at LO, the ground-state energies of A = 3,4 nuclei
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FIG. 9. Energy of 4He as a function of imaginary time in
constrained-path GFMC calculations. Past τ ∼ 0.5 MeV−1 we show
the transient estimation. The inset shows the details of the transient
estimation and the region used to extract the ground-state energy
and uncertainty (light blue band). Note that each point represents
an average over a given (varying) imaginary-time interval. The
imaginary-time intervals averaged over are shorter at the beginning
and end of the propagation in order to show more detail in these
intervals.

are significantly lower than experiment. In fact, the LO NN
interaction overbinds by as much as ∼50% (∼30%) for A = 4
(A = 3). At NLO, the NN interaction is too repulsive and leads
to underbinding. However, the deviation from experiment
decreases to ∼25% (∼15%) for A = 4 (A = 3). Finally, at
N2LO, the 3N interaction with two free LECs enters. We fit
cD and cE directly to the binding energy of 4He (see Sec. II C)
and, since the binding energies of the A = 3 systems are
highly correlated with the binding energy of 4He (i.e., the

Tjon line [65,66]), the A = 3 binding energies are also well
reproduced.

The uncertainties in Fig. 10 contain contributions from the
GFMC statistical uncertainties as well as from an estimate
for the theoretical uncertainty coming from the truncation of
the chiral expansion (as discussed in Sec. II). The theoretical
uncertainties display at least three desirable features: (1) They
encompass, order by order, the cutoff variation in the energy,
(2) order by order, the experimental energy is within the
uncertainty bands, and (3) as the chiral order increases, the
uncertainty coming from the truncation of the chiral expansion
decreases rapidly. Thus, at N3LO, we can expect that while
the energies of these systems will not change dramatically, the
uncertainties will continue to reduce.

In addition to Fig. 10, we show more details of various
contributions to the A = 3,4 energies in GFMC calculations
in Table II, where the softer nature of the interaction with R0 =
1.2 fm is evident from the lower kinetic energies compared to
the case with R0 = 1.0 fm. Note, however, that the kinetic
energy by itself is not an observable.

The trend represented in Fig. 10 is also present in the radii
of the system: See Fig. 11 and Table III. Here we compute the
so-called point-proton radii of A = 3,4 systems:

〈
r2

pt

〉 ≡ 〈�0| 1

Z

A∑
i=1

(
1 + τz,i

2

)
r2
i |�0〉, (58)

where (1 + τz)/2 is a projection operator onto protons and
Z is the number of protons. However, the measured charge
radius includes effects from the charge densities of the finite-
sized nucleons themselves. The relationship between the point-
proton radius and the observable charge radius rc is given by

〈
r2

c

〉 = 〈
r2

pt

〉 + 〈
r2
p

〉 + N

Z

〈
r2
n

〉 + 3

4

(h̄c)2

m2
p

, (59)

where
√

〈r2
p〉 = 0.8751(61) fm is the root-mean-square (rms)

charge radius of the proton [67], N is the number of neutrons,
〈r2

n〉 = −0.1161(22) fm2 is the mean-square charge radius of
the neutron [67], and mp is the proton mass. The last term
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FIG. 10. Energies as calculated using the GFMC method at LO, NLO, and N2LO for A = 3,4 nuclei. The uncertainties include an estimate
for the uncertainty coming from the truncation of the chiral expansion. In blue (red) are the energies with the cutoff R0 = 1.0 fm (R0 = 1.2 fm).
The horizontal lines are the experimental values.
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TABLE II. Kinetic and potential energy contributions to the GFMC energy at LO, NLO, and N2LO for both cutoffs and for a particular choice
of 3N D and E operators [Eqs. (A2b) and (A3a)]. For R0 = 1.0 fm, cD = 0.0, cE = −0.63, while for R0 = 1.2 fm, cD = 3.5, cE = 0.085 [29].
For comparison, we also show results for the Argonne v18 NN interaction supplemented with the UIX 3N interaction. V3N stands for the sum
of all 3N contributions. All energies are in MeV.

R0 (fm) K VNN V3N VC,c1 VC,c3 VC,c4 VD2 VEτ

1.0 60.2(2) −74.0(2)
LO

1.2 55.5(1) −67.8(1)
1.0 46.3(2) −54.4(2)

NLO3H 1.2 36.9(2) −45.0(2)
1.0 42.7(2) −50.6(2) −1.32(2) −0.08(1) −1.22(2) −0.53(7) 0.0 0.51(1)

N2LO
1.2 37.6(1) −45.9(1) −0.87(1) −0.06(1) −0.27(1) −0.35(3) −0.09(1) −0.10(1)

AV18+UIX 51.4(2) −59.4(2) −1.23(1)

1.0 60.0(1) −73.0(1)
LO

1.2 55.0(1) −67.4(1)
1.0 43.9(3) −51.5(3)

NLO3He 1.2 36.4(2) −44.3(2)
1.0 41.3(3) −50.5(2) −1.27(2) −0.08(1) −1.16(2) −0.53(9) 0.0 0.49(1)

N2LO
1.2 36.8(1) −45.1(1) −0.83(1) −0.05(1) −0.26(1) −0.34(3) −0.08(1) −0.09(1)

AV18+UIX 50.4(1) −58.4(1) −1.20(1)

1.0 142.0(2) −193.4(2)
LO

1.2 132.1(2) −183.5(2)
1.0 90.2(3) −115.9(3)

NLO4He 1.2 73.0(3) −99.4(2)
1.0 90.9(2) −116.1(2) −7.46(4) −0.41(1) −6.74(5) −2.6(2) 0.0 2.34(2)

N2LO
1.2 79.9(2) −106.3(2) −5.56(4) −0.30(1) −1.78(3) −1.7(2) −1.24(4) −0.51(1)

AV18+UIX 115.8(1) −140.4(1) −6.73(2)

of Eq. (59) is the so-called Darwin-Foldy correction to the
proton charge radius [68]. For larger A, there are also spin-orbit
corrections to the charge radius [69]. The experimental charge
radii are from Ref. [70] (4He and 3He) and Ref. [71] (3H).

The correlation between the energies and radii of the nuclei
are evident in Fig. 11 and Table III. At LO, as the nuclei are
significantly overbound, the point-proton radii are significantly

smaller than the values extracted from experiment. At NLO,
with the nuclei underbound, the point-proton radii are too
large. At N2LO, with reasonable reproduction of the nuclear
binding energies for the A = 3,4 systems, the calculated
point-proton radii are in good agreement within both the
experimental and theoretical uncertainties. Note that the
relatively large uncertainty quoted in the point-proton radius
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FIG. 11. Point-proton radii as calculated using the GFMC method at LO, NLO, and N2LO for A = 3,4 nuclei. The uncertainties include
an estimate for the uncertainty coming from the truncation of the chiral expansion. In blue (red) are the energies with the cutoff R0 = 1.0 fm
(R0 = 1.2 fm). The horizontal bands are the experimental values with uncertainties.
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TABLE III. Point-proton radii as calculated in Eq. (59) at
LO, NLO, and N2LO for both cutoffs for the A = 3,4 nuclei.
The theoretical uncertainties are from both the GFMC statistical
uncertainties as well as the theoretical uncertainty coming from
the truncation of the chiral expansion as described in Sec. II.
Experimental values are from Refs. [67,68,70,71] with uncertainties
calculated using standard propagation of uncertainty methods. All
radii are in fm.

3H 3He 4He

R0 1.0 fm 1.2 fm 1.0 fm 1.2 fm 1.0 fm 1.2 fm

LO 1.27(35) 1.27(37) 1.36(56) 1.36(52) 1.02(55) 1.00(53)
NLO 1.62(10) 1.64(13) 1.92(16) 1.88(18) 1.57(15) 1.53(18)
N2LO 1.55(4) 1.55(6) 1.77(5) 1.77(6) 1.43(5) 1.42(7)

Exp 1.59(10) 1.78(2) 1.46(1)

for 3H extracted from experiment is due to the relatively large
uncertainty in the charge radius for this nucleus: Compare
rc(3He) = 1.973(14) fm with rc(3H) = 1.755(86) fm. The
experimental uncertainty is roughly a factor of six larger for
3H than for 3He.

B. More details on distributions

In addition to energies and radii, we have also calculated
one-body distributions. The one-body point distributions are

0.0 1.0 2.0 3.0
r (fm)

0.00
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0.15

0.20

0.25

ρ
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p
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FIG. 12. The one-body proton distribution for 4He at N2LO with
and without 3N interactions for the two different cutoffs we consider.
The darker (lighter) points include (exclude) 3N interactions. The
corresponding point-proton radii are shown in a color-coded fashion
to the right. The uncertainties quoted for the point-proton radii include
only the GFMC statistical uncertainties. See Table III for more details
on the point-proton radii including uncertainties from the truncation
of the chiral expansion.
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FIG. 13. The one-body proton and neutron distributions for 3He
at N2LO for the two different cutoffs we consider. The corresponding
point-proton radii are shown in a color-coded fashion to the right.
The uncertainties quoted for the point-proton radii include only
the GFMC statistical uncertainties. See Table III for more details
on the point-proton radii including uncertainties from the truncation
of the chiral expansion.

defined as

ρ1,N (r) ≡ 1

4πr2
〈�0|

A∑
i=1

1 ± τz,i

2
δ(r − |ri − Rcm|)|�0〉,

(60)

with N = p (taking the positive sign in the projector 1+τz

2 )
giving the point-proton distribution and N = n (taking the
negative sign in the projector 1−τz

2 ) giving the point-neutron
distribution. When folded with the spatial proton charge distri-
bution, the point proton distribution is promoted to the charge
distribution, which is the Fourier transform of the charge
form factor measured in electron scattering experiments.
The short-distance behavior of the presented point-nucleon
distributions are not as well constrained, because the high
momentum-exchange charge form factor is challenging to
measure and to calculate accurately. Nevertheless, the charge
radius (or point-proton radius) as an integrated quantity is well
constrained by experiment, and our results reproduce within
uncertainties the point-proton radii extracted from experiment.

In Fig. 12, we show the point-proton distribution in 4He
for both cutoffs R0 = 1.0,1.2 fm at N2LO with and without
the 3N interaction. The corresponding point-proton radius is
shown in a color-coded way on the right-hand side of the figure.
Though it is not consistent from the EFT point of view to show
the N2LO results without the 3N interaction, it is nevertheless
instructive to see the effects of the 3N interaction in this way.
One can see that its effect is to increase the density of protons
at intermediate distances from the center of mass (r ∼ 1.0 fm)
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FIG. 14. The 4He longitudinal charge form factor at N2LO for
both cutoffs and for the AV18 + UIX interactions. The uncertainty
bands include the statistical GFMC uncertainties added in quadrature
(for the N2LO results) to the uncertainty from the truncation of
the chiral expansion as described in the text. The data are from an
unpublished compilation by Sick [73] based on Refs. [74–78].

while decreasing their density at short distances, yielding a
peak at about r ∼ 0.6 fm. The effect of this shift is to bring
the overall point-proton radius into better agreement with the
number extracted from the experimental charge radius.

In Fig. 13 we show the one-body point-proton and neutron
distributions for 3He at N2LO for both cutoffs. At short
distances from the center of mass, the distributions for the
cutoff R0 = 1.2 fm demonstrate a softer character: There is
a higher probability of finding either a neutron or a proton at
short distances from the center of mass than is the case for
the distributions calculated with the R0 = 1.0 fm cutoff. As is
the case for 4He, only the large-r part of the distributions
can be well constrained, and in this region, both cutoffs
agree. We also show the corresponding point-proton radii
with statistical GFMC uncertainties only, to demonstrate that
integrated quantities such as the charge radius are essentially
cutoff independent for these light systems at this order of the
chiral expansion. Finally, in Fig. 13, one can see that the proton
distribution is qualitatively twice the neutron distribution,
but there are quantitative differences due to the presence of
isospin-symmetry-breaking terms in the Hamiltonian.

The point-proton and point-neutron distributions we calcu-
late are related to the experimentally observable electric charge
form factor. In particular, the longitudinal electric charge form
factor is given by

FL(q) = 1

Z

G
p
E

(
Q2

el

)
ρ̃p(q) + Gn

E

(
Q2

el

)
ρ̃n(q)√

1 + Q2
el/

(
4m2

N

) , (61)

where ρ̃ are the Fourier transforms of the point-nucleon
distributions defined in Eq. (60), G

n,p
E are the single nucleon

electric charge form factors for the neutron n and proton p and

Q2
el is the four-momentum squared:

Q2
el = q2 − ω2

el (62)

with

ωel =
√

q2 + m2
A − mA. (63)

Above, mN and mA are the average nucleon mass and the
mass of the target nucleus, respectively. For the single-nucleon
charge form factors G

n,p
E , we use the parametrizations of

Kelly [72], which enforce the correct asymptotic behavior as
Q2

el → 0 and Q2
el → ∞.

In Fig. 14, we present the longitudinal electric charge form
factor for 4He compared with an unpublished compilation by
Sick [73] of the data from Refs. [74–78]. The figure is log
scaled as charge form factors are often plotted, but this scaling
artificially enhances the apparent size of the uncertainties.
However, the figure should be read as simply that at N2LO
the uncertainty in the location of the first minimum in the
4He charge form factor is roughly 0.6–0.8 fm−1. Note that
calculations are performed without two-body currents, and
thus the poorer comparison with data at higher q is somewhat
expected [8].

V. SUMMARY

In this paper, we presented additional details on and results
for QMC calculations of light nuclei with local chiral NN and
3N interactions. We discussed deuteron properties in detail,
employing a soft and a hard local chiral interaction. We found
that local chiral interactions give a reasonable description of
the deuteron binding energy, rms radius, asymptotic D/S ratio,
and quadrupole moment. Furthermore, local chiral interactions
reproduce the experimentally known first minimum of the
deuteron tensor polarization.

We then performed perturbative calculations for both
interactions in the deuteron, using the difference of the N2LO
and NLO interactions as a perturbation around the NLO result.
While both perturbative series seem to converge to the N2LO
result, we found the softer interaction to be more perturbative,
as expected.

We then presented additional details on our calculations
of radii and binding energies of the light A = 3,4 nuclei
3H, 3He, and 4He. For each binding energy and radius and
for both local chiral interactions, we observed an order-by-
order convergence toward the experimental value. Finally, we
discussed proton and neutron distributions for 3He and 4He.

Together with the results of Ref. [29], we have established
QMC methods with local chiral interactions as a versatile tool
to study properties of light nuclei and neutron matter.
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APPENDIX: COMPLETE COORDINATE-SPACE EXPRESSIONS FOR THE 3N INTERACTION AT N2LO

As noted in Sec. II C, the TPE parts of the 3N interaction VC can be compactly written in terms of the standard
coordinate-space pion propagator Xij (r) (defined in that section) and a modified coordinate-space pion propagator
Xij (r) ≡ Xij (r) − 4π

m2
π
δR3N

(r)σ i · σ j . We also define the function U (r) = 1 + 1/(mπr). Then, the complete TPE part of the
interaction can be written as

VC,c1 = g2
Am4

πc1

16π2F 4
π

∑
i<j<k

∑
cyc

U (rij )Y (rij )U (rkj )Y (rkj )τ i · τ kσ i · r̂ijσ k · r̂kj , (A1a)

VC,c3 = g2
Am4

πc3

1152π2F 4
π

∑
i<j<k

∑
cyc

{τ i · τ k,τ k · τ j }{Xik(rik),Xkj (rkj )}, (A1b)

VC,c4 = − g2
Am4

πc4

2304π2F 4
π

∑
i<j<k

∑
cyc

[τ i · τ k,τ k · τ j ][Xik(rik),Xkj (rkj )]. (A1c)

The remaining parts of the interaction are written as

VD1 = gAcDm2
π

96π�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ k

[
Xik(rkj )δR3N

(rij ) + Xik(rij )δR3N
(rkj ) − 8π

m2
π

σ i · σ kδR3N
(rij )δR3N

(rkj )

]
, (A2a)

VD2 = gAcDm2
π

96π�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ k

[
Xik(rik) − 4π

m2
π

σ i · σ kδR3N
(rik)

]
[δR3N

(rij ) + δR3N
(rkj )], (A2b)

VEτ = cE

�χF 4
π

∑
i<j<k

∑
cyc

τ i · τ kδR3N
(rkj )δR3N

(rij ), (A3a)

VE1 = cE

�χF 4
π

∑
i<j<k

∑
cyc

δR3N
(rkj )δR3N

(rij ), (A3b)

VEP = cE

�χF 4
π

∑
i<j<k

∑
cyc

P δR3N
(rkj )δR3N

(rij ). (A3c)

We remind the reader that the projection operator P is defined in Eq. (27). We note that some differences exist between these
expressions compared with those in Ref. [19]. Under the change

∑
π(ijk) → ∑

cyc, Eqs. (A1a) and (A3a) to (A3c) pick up an
additional factor of 2 and Eq. (A2a) picks up an additional term with i ↔ k. In addition, Eqs. (A1b) and (A1c) pick up factors
of 1

2 and 1
2i

, respectively, from the replacements τ i · τ j = 1
2 {τ i · τ k,τ k · τ j } and τ i · (τ j × τ k) = 1

2i
[τ i · τ k,τ k · τ j ].
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