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Coarse graining the Bethe–Goldstone equation: Nucleon–nucleon high-momentum components
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The δ-shell representation of the nuclear force allows a simplified treatment of nuclear correlations. We show
how this applies to the Bethe–Goldstone equation as an integral equation in coordinate space with a few mesh
points, which is solved by inversion of a five-dimensional square matrix in the single channel cases and a 10 × 10
matrix for the tensor-coupled channels. This allows us to readily obtain the high-momentum distribution, for all
partial waves, of a back-to-back correlated nucleon pair in nuclear matter. We find that the probability of finding
a high-momentum correlated neutron–proton pair is about 18 times that of a proton–proton one, as a result of the
strong tensor force, thus confirming in an independent way previous results and measurements.
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I. INTRODUCTION

Nuclear correlations have been a topic of discussion in
nuclear matter and finite nuclei calculations for a long time.
The starting point is the fundamental nucleon–nucleon (NN )
interaction, which has been determined from the available
NN -scattering data. Most local interactions which have
been proposed so far retain in common a short-distance
repulsion, a feature discovered by Jastrow in 1950 when
he analyzed proton–proton (pp) scattering at intermediate
laboratory (Lab.) energies [1,2]. Its main natural consequence
is the presence of short-distance correlations, which invalidates
perturbation theory based on a mean-field approach. There
have been proposed many ways to conveniently address these
short-distance features. Historically the Bethe–Goldstone
(BG) equation [3] was the first proposal with consequences
for the nuclear wave functions [4,5] (see, e.g., Ref. [6] for a
modern review).

When two nucleons in a nuclear medium approach each
other the relative wave function is less sensitive to the particular
long-range details of the nucleus where they are embedded.
Hence one expects the medium effects at short distances to be
mainly driven on average by the Pauli principle, forbidding the
two nucleons to scatter below some typical Fermi momentum.
The effect of the interaction will produce a slight but rapid—
high-momentum—vibration in the relative wave function at
short distances. This distortion of the unperturbed wave
function at mid- and short ranges induces naturally an universal
behavior at high momenta [7–9].

From the theoretical point of view, the short-range nucleon–
nucleon correlations (SRC) are ubiquitous, appearing in
different contexts ranging from fundamental to applied nuclear
physics: properties of nuclear matter [10–12], high-momentum
components in the nuclear wave function [13–17], nuclear
astrophysics [18], calculations of symmetry energy and pairing

*ruizsig@ugr.es
†navarroperez1@llnl.gov
‡amaro@ugr.es
§earriola@ugr.es

gaps in nuclear and neutron matter [19–21], equation of
state of nuclear matter [22,23], models of relativistic heavy-
ion collisions [24], calculations of nuclear matrix elements
for neutrino-less double beta decay [25,26], and description
of (e,e′), (e,e′N ), and (e,e′NN ) reactions [27–31], just to
highlight some of them.

From the experimental side, the insight into the mass and
isospin dependence of SRC is field of active research [32–41].
For example, by measuring the ratio of neutron–proton (np)
and proton–proton (pp) pairs in a relative high-momentum
state, a value of np/pp = 18 ± 5 was reported in Ref. [32],
providing strong evidence of the crucial impact of the tensor
force in the SRC. This suggest a nontrivial dependence of SRC
on the N–Z asymmetry, with repercussions on the nuclear
equation of state for high densities, which is essential for the
understanding of neutron stars [42,43].

In order to justify our approach to SRC to be detailed below
it is important to remind some relevant features. The standard
approach for ab initio calculations since the benchmarking
analysis of the Nijmegen group has been based on a two-step
process. In a first step, a partial wave analysis to NN -scattering
data was carried out [44] and a selection of consistent data
was implemented on the basis of statistical significance. The
Nijmegen NN database had 4313 pp + np selected scattering
data for TLAB � 350 MeV improving on previous approaches
[45,46] due to the incorporation of small but crucial long-
distance effects, such as charge-dependent one-pion-exchange
(CD-OPE), vacuum polarization, and Coulomb, relativistic,
and magnetic moments interactions. Unfortunately, the energy
dependence of the potential is hard to implement in nuclear
structure calculations. Therefore, in a second step an energy-
independent potential often tailored to a particular solution
method of the nuclear many-body problem was constructed
and fitted to the database. In this way, a set of high-quality
statistically equivalent potentials have been designed [47–50].
This may introduce a bias and hence a source of systematic
error in the design of the starting nuclear force, and in particular
into its short-distance structure. Thus, it would be desirable that
the potential represents as closely as possible the scattering
data used for its construction.
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In the present work we deepen our investigation into the
basic theoretical understanding of SRC by employing the
coarse-grained Granada potential (GR) in our analysis. In
common with the Nijmegen analysis, this potential contains
all long-distance effects such as CD-OPE, Coulomb, vacuum
polarization, and relativistic and magnetic moments effects
above a separation distance of rc = 3 fm and a sum of
equidistant Dirac δ shells below that distance. The complete
potential has been used to generate the Granada-2013 database,
a 3σ self-consistent selection of 6173-NN -scattering data of
the about 8000 collected between 1950 and 2013 at about
pion production threshold, TLAB � 350 MeV with a reduced
χ2/ν ∼ 1.04 [51–53]. This representation of the NN interac-
tion is very convenient not only because it samples directly
the interaction at the physically significant resolution �r ∼
1/pc.m. ∼ 0.6 fm (where c.m. is center of mass) associated
with a maximum fitting momentum pc.m. �

√
MNmπ but also

because it implies a great simplification of the nuclear problem
in terms of few grid points in coordinate space located at δ
shells whose strengths correspond to the fitting parameters.
This way, we short-circuit the two-step process mentioned
above. The bias induced by different representations using
different potential tails or short range representations has been
illustrated with six different statistically equivalent Granada
potentials fitting the same database [54].

Of course, this simplification is not for free, as new
computational methods need to be developed to handle this
successful but unconventional δ-shell representation of the
nuclear force. As a rewarding consequence, it allows a deeper
understanding of the role of the short and mid-range part of
the NN interaction in the SRC. The present study of the
coarse-grained Bethe–Goldstone equation was initiated in our
recent work [55] for the 1S0 partial wave. Here we extended
it to all the partial waves and analyze the consequences.
We study the problem from an integral equation point of
view in coordinate space. This approach has clear advantages
compared to the integrodifferential formulation of our previous
work [55]. In particular, the boundary conditions for the
scattering problem in the nuclear medium are automatically
incorporated into the integral equation. In addition, we shall
show that the implementation of coupled channels is rather
straightforward.

In this first exploring work we avoid the problem related
with inelasticities, which are expected to become important
at relative momenta above the � production threshold. The
high-quality NN interactions traditionally used to deal with
SRC, as is also the case of the coarse-grained potential used
in this paper, have been fitted to NN elastic scattering about
pion emission. This imposes limits for the maximum value
of the high-momentum components and the meaning of the
predictions for high-momentum components above 2–3 kF

with a real potential should be taken with care. In a recent
paper coarse graining has been shown to work nicely up
to scattering LAB energies of 3 GeV [56], in this case
including inelasticity effects. However, the analysis of the
Bethe–Goldstone equation including inelasticities through a
complex potential will be postponed for a future work.

The outline of the paper is as follows: In Sec. II we
review the partial-wave (PW) integral equations formalism

of the scattering problem before introducing in Sec. III the BG
equation in coordinate space. We particularize to the case of
a coarse-grained potential with δ shells, where the equations
can be discretized and solved by inversion of low-dimension
matrices. Next we proceed to momentum space and get
the expressions for the high-momentum components of the
BG solution for a correlated pair in the PW expansion. In
Sec. IV we apply the formalism to the coarse-grained Granada
potential, obtained in a recent partial-wave analysis of a large,
consistent database of NN -scattering data with χ2/ν ∼ 1
[51,52]. The BG equation in nuclear matter is solved for
the first partial waves up to the 3F2 and the solutions are
analyzed both in coordinate and momentum space, which
allows us to obtain the high-momentum distribution of np
and pp correlated pairs. Finally we draw our conclusions in
Sec. V and discuss future applications of this approach.

II. THE INTEGRAL SCATTERING EQUATION

Before introducing the BG equation, it is instructive to
review the particular case of the scattering equation in the
vacuum in the partial waves representation (see also the
Appendices of Ref. [57] for more details). The Schroedinger
equation for the reduced relative wave function of a pair of
nucleons interacting through a two-body potential can be
written for coupled channels (and therefore for total spin
S = 1),

u′′
k,l(r) −

[
l(l + 1)

r2
− k2

]
uk,l(r) =

∑
l′

Ul,l′ (r)uk,l′(r), (1)

where l is the orbital angular-momentum quantum number,
Ul,l′ (r), is the, in general, nondiagonal reduced potential and
the sum has to be carried out over all partial waves coupled by
the interaction.

These equations are subjected to the usual scattering
asymptotic boundary conditions and can equivalently be
written as a system of integral equations,

uk,l(r) = ĵl(kr) +
∫ ∞

0
dr ′ Gk,l(r,r

′)
∑

l′
Ul,l′ (r

′) uk,l′(r
′),

(2)

where ĵl(x) = xjl(x) is a reduced spherical Bessel function
of the first kind and Gk,l(r,r ′) is the Green’s function
satisfying{

∂2

∂r2
−

[
l(l + 1)

r2
− k2

]}
Gk,l(r,r

′) = δ(r − r ′). (3)

The normalization chosen in Eq. (2) implies that the reduced
wave function uk,l(r) is dimensionless. This normalization for
the relative wave functions is consistent with that employed in
our previous work [55] for the uncoupled 1S0 channel.

An analytic expression for the Green’s function Gk,l(r,r ′)
can be written as

Gk,l(r,r
′) = u(r)v(r ′)θ (r − r ′) + u(r ′)v(r)θ (r ′ − r). (4)
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Inserting this into Eq. (3), it follows that u(r) and v(r) are solu-
tions of the homogeneous equation with unit Wronskian, i.e.,{

∂2

∂r2
−

[
l(l + 1)

r2
− k2

]}
u(r) = 0, (5){

∂2

∂r2
−

[
l(l + 1)

r2
− k2

]}
v(r) = 0, (6)

u′(r)v(r) − u(r)v′(r) = 1. (7)

We choose one of the two solutions to be proportional to the
regular solution, ĵl(kr). Then the other linearly independent
solution with the desired Wronskian has to be proportional
to ŷl(kr) = kr yl(kr)—the reduced spherical Bessel function
of the second kind. Therefore the Green’s function of the
ordinary differential equation with the proper normalization
can be written as

Gk,l(r,r
′) = 1

k
ĵl(kr<) ŷl(kr>), (8)

where r< = min{r,r ′} and r> = max{r,r ′}.
Alternatively, one can also write the following integral

representation for the Green’s function:

Gk,l(r,r
′) = 2

π
−
∫ ∞

0
dq

ĵl(qr)ĵl(qr ′)
k2 − q2

, (9)

which can be proven to fulfill Eq. (3) by direct substitution
and using the ordinary differential equation satisfied by the
spherical Bessel functions jl(qr). To furnish the proof one has
to apply the integral representation of the Dirac δ function

δ(r − r ′) = 2

π

∫ ∞

0
dq ĵl(qr) ĵl(qr ′). (10)

Notice in Eq. (9) the symbol −∫ , denoting the Cauchy principal
value of the integral, needed because of the simple pole at
q = k in the integrand.

III. GENERAL FORMALISM OF THE
BETHE–GOLDSTONE EQUATION

The BG equation is also known as the in-medium scattering
equation. It describes the quantum-mechanical state of two
particles (fermions) interacting through a potential V when
they are immersed in a medium. The medium prevents
them from being scattered into filled levels below the Fermi
momentum kF , thus fulfilling the Pauli exclusion principle.

In operator form the BG equation reads

G(E) = V + V
Q

E − H0
G(E), (11)

where G(E) is the G matrix, H0 is the unperturbed Hamiltonian
of the problem, E is the energy of the correlated pair, and Q
is the Pauli-blocking operator, which projects out of the Fermi
sphere.

In the case of nuclear matter, the unperturbed Hamiltonian
H0 corresponds to the kinetic energy and its eigenfunctions
are the single-particle plane-wave solutions with definite
momentum, |p1p2〉.

If we take matrix elements between pairs of plane-wave
states in Eq. (11), and factor out the center of mass (c.m.), then

we obtain

〈k′|G(E)|k〉 = 〈k′|V |k〉 +
∫

d3q
(2π )3

〈k′|V |q〉 Q(q,P)

E − q2/(2μ)
,

×〈q|G(E)|k〉, (12)

where k is the relative momentum of the pair and μ = MN

2 is
the reduced mass of the NN pair. The Pauli-blocking operator
Q(q,P) = θ (|P/2 + q| − kF ) θ (|P/2 − q| − kF ) depends on
the total momentum of the pair, P, and it breaks the rotational
invariance of the BG equation, with an explicit dependence
on the angle between the total momentum, P, and the relative
momentum, q. This is known to generate a mixing among all
partial waves [58]. Since the early days, Brueckner proposed
the so-called averaging procedure [59]. An exact treatment
of the Pauli operator was discussed in Refs. [60,61], bringing
about non-negligible and attractive contributions to the binding
energy. Recently, a three-dimensional approach was proposed
to deal with the problem [62] and the implications for in-
medium nucleon-nucleon cross sections were analyzed [63].

In the independent pair approximation [64] the BG equation
provides a well-defined way to compute the effective two-body
operator, the G matrix, which is appropriate to be used in
perturbation theory instead of the bare NN interaction. In
this work we solve the BG equation in the simplest case,
i.e., for total momentum P = 0, corresponding to a pair of
back-to-back nucleons interacting in the medium. In this case
the influence of SRC in the nuclear dynamics is expected to
be the largest. The general case of the P �= 0 will be discussed
in future work.

A. Bethe–Goldstone equation in integral form

The advantage of the integral representation of the scatter-
ing problem sketched in Sec. II is that the BG equation for
a back-to-back correlated pair is straightforwardly obtained.
In fact we just replace the lower limit in the Green’s function
integral representation, Eq. (9), by the Fermi momentum kF ,

Gk,l(r,r
′) → G̃k,l(r,r

′) = 2

π

∫ ∞

kF

dq
ĵl(qr)ĵl(qr ′)

k2 − q2
. (13)

This kernel integral could be computed analytically in terms
of the integral cosine and sine functions, Ci(x) and Si(x), but
the expressions are a bit cumbersome for practical work. On
the other hand, this integral is poorly converging numerically,
although it can be handled with quadrature rules of Levin’s
type [65,66]. A convenient, alternative approach requires
transforming the above integral as follows:

G̃k,l(r,r
′)

= 2

π
−
∫ ∞

0
dq

ĵl(qr)ĵl(qr ′)
k2 − q2

− 2

π
−
∫ kF

0
dq

ĵl(qr)ĵl(qr ′)
k2 − q2

= 1

k
ĵl(kr<)ŷl(kr>) − 2

π
−
∫ kF

0
dq

ĵl(qr)ĵl(qr ′)
k2 − q2

. (14)

Note that in the first line of the above equation both integrals
contain the Cauchy principal value so that the singularity at the
pole q = k cancels exactly. Thus, we are left with an integral
with bounded limits, 0 and kF . The Cauchy principal value can
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be implemented by splitting the whole integral into different
intervals, below and above the pole at q = k, and integrating
symmetrically around this pole with a finite ε width and finally
ensuring numerical convergence while taking the limit ε →
0. We have checked that both procedures yield numerically
compatible results.

The analogous equation to Eq. (2) for the BG problem in
the coupled-channels case amounts to replace the free Green’s
function by the medium one, G → G̃, thus giving

ũk,l(r) = ĵl(kr) +
∫ ∞

0
dr ′ G̃k,l(r,r

′)
∑

l′
Ul,l′ (r

′) ũk,l′(r
′),

(15)

where the symbol ũk,l(r) stands for the reduced relative wave
function of a correlated nucleon pair.

For example, if we write Eq. (15) for the 3S1–3D1 coupled-
channels case (the deuteron-like configuration) we have to
solve the system of two integral equations

ũk,0(r) = ĵ0(kr) +
∫ ∞

0
dr ′ G̃k,0(r,r ′)[U0,0(r ′) ũk,0(r ′)

+U0,2(r ′) ũk,2(r ′)], (16)

ũk,2(r) = ĵ2(kr) +
∫ ∞

0
dr ′ G̃k,2(r,r ′)[U2,0(r ′) ũk,0(r ′)

+U2,2(r ′) ũk,2(r ′)], (17)

with analogous expressions for the other coupled partial waves.

B. The coarse-grained Bethe–Goldstone equation

In this section we specify a particular high-quality repre-
sentation of the NN potential. For the purposes of this work,
we consider the coarse-grained δ-shell Granada potential of
Refs. [51,52]. We remind that the parameters of this δ-shell
potential were fitted to reproduce a statistically significant
selection of 6713 np- and pp-scattering data for TLAB �
350 MeV with χ2/ν = 1.04 and providing the most accurate
description of NN scattering to date.1 In a first approximation
we will discard all long-distance effects, such as CD-OPE or
Coulomb, which in the Granada potential start at 3 fm. These
are crucial for the scattering data analysis but will have little
influence on the SRC.2

In the δ-shell representation, the reduced NN potential is
written as a sum of Dirac δs sampled at discrete points

Ul,l′ (r) = 2μVl,l′ (r) =
Nδ∑
i=1

(λi)
SJ
l,l′ δ(r − ri), (18)

where the strengths (λi)SJ
l,l′ depend on the total spin (S) and

total angular momentum (J ) of each (coupled or not) partial

1We have recently improved the description in Ref. [67] χ 2/ν =
1.025 by fitting also the pion-nucleon coupling constants. We will
not consider this new fit in this work.

2In fact, in the 1S0 channel both effects are comparable
since VC(rc) = e2/rc ∼ 0.5 MeV and VOPE(rc) = −f 2e−mπ rc /rc ∼
−0.5 MeV for f 2 = 0.0763(1) [67].

wave 2S+1LJ . For subsequent discussions in this paper we label
the reduced wave function, ũk,l(r), also with the SJ quantum
numbers that unambiguously identify the partial wave. In this
work we use the values of the parameters (λi)SJ

l,l′ quoted in
Table I of Ref. [51], with Nδ = 5, and ri = �r i = 0.6i fm.

With the coarse-grained potential of Eq. (18), the integra-
tions in Eq. (15) can be immediately performed, resulting in

ũ SJ
k,l (r) = ĵl(kr) +

Nδ∑
i=1

G̃k,l(r,ri)
∑

l′
(λi)

SJ
l,l′ ũ

SJ
k,l′ (ri). (19)

To solve the BG equation in this representation we write the
above equation for the grid points, r = rj (j = 1,2, . . . ,Nδ),
obtaining a linear system of Nδ equations where the unknowns
correspond to the reduced wave functions at the grid points,
ũ SJ

k,l (ri),

ũ SJ
k,l (rj ) = ĵl(krj ) +

Nδ∑
i=1

G̃k,l(rj ,ri)
∑

l′
(λi)

SJ
l,l′ ũ

SJ
k,l′ (ri). (20)

In this way we have reduced the BG problem from an integral
equation (15) to a linear system of algebraic equations (20).
This linear system can be easily solved by standard matrix
inversion methods. Once we know the solutions at the grid
points, ũ SJ

k,l (ri), we can determine the wave function at any
other point, r , by using Eq. (19). Note that the very nature
of the potential does imply a wave function with “spikes” in
between the grid points, with no physical consequences, as it
will be shown below.

C. N N high-momentum components

In the last section we have solved the BG equation in
coordinate space through a partial wave expansion of the
relative wave function for total momentum of the nucleon
pair P = 0. This provides the spatial wave function of a
correlated two-nucleon pair in back-to-back configuration for
initial relative momentum of the pair equal to k. The BG
equation naturally introduces high-momentum components
with p > kF in this solution. In this section we will compute
these components by Fourier transform.

The spins of the nucleon pair can be coupled to total
spin S = 0,1. We start with the well-known expression for
a spinless plane wave (Rayleigh expansion),

eik·x = 4π
∑
l,m

iljl(kr)Y ∗
l,m(k̂)Yl,m(x̂), with r = |x|.

(21)

Its generalization to the spin-S case is

eik·xχ
SMs

= 4π
∑
l,m

iljl(kr)Y ∗
l,m(k̂)

×
∑
J,M

〈lmSMs |JM〉YlSJM (x̂), (22)

where χ
SMs

is an eigenspinor with spin quantum numbers
(S,Ms), and the functions YlSJM (x̂) are the couplings of the
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the spherical harmonics with the spinors χ
SMs

to total angular
momentum J ,

YlSJM (p̂) =
∑
m′,M ′

s

〈lm′SM ′
s |JM〉Yl,m′(p̂) χ

SM′
s
. (23)

The boundary conditions of the BG equation imply that,
asymptotically, the BG wave function converges to the free
plane wave. Therefore we perform a partial wave expansion
similar to Eq. (22),

�BG
k,SMs

(x) = 4π
∑

lmJM

il
ũ SJ

k,l (r)

kr
Y ∗

l,m(k̂)

×〈lmSMs |JM〉YlSJM (x̂). (24)

The normalization for the reduced wave function chosen
in Eqs. (15) and (19) automatically ensures that Eq. (24)
approaches to Eq. (22) when r → ∞. The labels (k,SMs)
on the BG wave function indicate that, asymptotically, this
correlated relative wave function converges to a free plane
wave with the nucleons spins coupled to total spin S and
third-component Ms .

To describe the high-momentum components of the corre-
lated NN pair, we calculate the Fourier transform of Eq. (24)


BG
k,SMs

(p) =
∫

d3x
(2π )3

e−ip·x �BG
k,SMs

(x). (25)

By expanding the complex exponential with the complex
conjugate of Eq. (21), and after substitution of Eq. (24) into
(25), one can integrate over the angular variables of d3x with
the aid of the identity∫

d�x̂ Y ∗
l′,m′ (x̂)YlSJM (x̂) = δl,l′

∑
M ′

s

〈lm′SM ′
s |JM〉χ

SM′
s
.

(26)

The Kronecker δ, δl,l′ , allows to perform one of the partial
sums implicit in Eq. (25), producing as final result


BG
k,SMs

(p) =
∑
lm

∑
JM

φk,lSJ (p)Y ∗
l,m(k̂)〈lmSMs |JM〉

×YlSJM (p̂), (27)

where

φk,lSJ (p) ≡ 2

π

∫ ∞

0
dr r2 jl(pr)

ũ SJ
k,l (r)

(kr)
, (28)

is the “radial” wave function in momentum space for the partial
wave 2S+1LJ . This “radial” function is proportional to the
probability amplitude of finding a correlated two-nucleon pair,
with initial relative momentum k, having relative momentum
p in each partial wave.

To perform the integral in expression (28) we note that
the reduced wave function, ũ SJ

k,l (r), fulfills equation (19).
Therefore, on substituting Eq. (19) into Eq. (28) and by using
the analogous expression to Eq. (10) in momentum space, we

obtain

φk,lSJ (p) = 2

π

{
π

2p k
δ(p − k) + 1

k

Nδ∑
i=1

∑
l′

(λi)
SJ
l,l′ ũ SJ

k,l′ (ri)

×
∫ ∞

0
dr r jl(pr) G̃k,l(r,ri)

}
. (29)

Finally, substituting Eq. (13) into the above expression (29),
permuting the order of the integrations between r and q
variables, and using again the orthogonality relation, Eq. (10),
of the spherical Bessel functions, we obtain the result

φk,lSJ (p) = 1

p k
δ(p − k) + 2

π k

θ (p − kF )

k2 − p2

×
Nδ∑
i=1

ri jl(pri)
∑

l′
(λi)

SJ
l,l′ ũ SJ

k,l′ (ri), (30)

where the first term corresponds to the low-momentum
component of the correlated two-nucleon state, while the
second term explicitly incorporates the condition p > kF

through the step function. Therefore, it is the high-momentum
component of the correlated two-nucleon system. An
expression similar to Eq. (30) was provided in Eq. (44) of
Ref. [55] for the high-momentum components of the 1S0

partial wave, except for an overall normalization factor. Its
origin has to be traced back to the different normalizations
used in the partial-wave expansions of the BG wave function.
Here we have developed the general proof for all partial waves
using a different representation of the BG equation.

Equation (30) is the main formula of this work. The
high-momentum components of the partial wave functions
contain a common factor k2–p2 in the denominator, modulated
by a linear combination of spherical Bessel functions evaluated
at the points pri . This simple, analytical dependence represents
an important, universal feature of the SRC. The information
of the NN interaction is encoded here in the quantities∑

l′(λi)SJ
l,l′ ũ

SJ
k,l′ (ri). Another feature of the SRC is that the NN

potential parameters always appear multiplied by the BG wave
function evaluated at the grid points.

In the next section we will present numerical results for
the BG partial wave functions and for the high-momentum
distribution. This distribution is proportional to the probability
density for an initial pair with relative momentum k and total
spin |S,Ms〉 of being found after the interaction in a state
of relative momentum p in any direction. This is obtained
by taking the squared modulus of the BG wave function

BG

k,SMs
(p), given by Eq. (27), and integrating over all the

directions of p̂,∫
d�p̂

∣∣
BG
k,SMs

(p)
∣∣2 =

∑
l

∑
m,m′

∑
J,M

|φk,lSJ (p)|2 Yl,m′ (k̂)

×Y ∗
l,m(k̂)〈lm′SMs |JM〉〈lmSMs |JM〉,

(31)
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where we have exploited the orthonormal properties of the
spin spherical harmonics∫

d�p̂ Y∗
l′S ′J ′M ′ (p̂)YlSJM (p̂) = δl′,l δS ′,S δJ ′,J δM ′,M . (32)

Notice that Eq. (31) still depends on the angles of k̂. No
further simplification is possible in expression (31) unless we
average it over all the possible directions of k̂. This average
provides the probability density of a correlated nucleon pair
with initial relative momentum k (in any direction) and total
spin |S,Ms〉 to be found after the interaction in a state of
relative motion with momentum p (in any direction) as well.
Using the orthogonality property of the spherical harmonics,
we can perform the angular integration, obtaining

1

4π

∫
d�k̂

∫
d�p̂

∣∣
BG
k,SMs

(p)
∣∣2

= 1

4π

∑
l,J

|φk,lSJ (p)|2
∑
m,M

〈lmSMs |JM〉〈lmSMs |JM〉,

(33)

= 1

4π

1

2S + 1

∑
l,J

(2J + 1)|φk,lSJ (p)|2, (34)

where we have used the symmetry property of the Clebsch–
Gordan coefficients

〈lmSMs |JM〉 = (−1)l−m

√
2J + 1

2S + 1
〈lmJ − M|S − Ms〉.

(35)

It is worth noting that the sum over (l,J ) quantum numbers
in expression (34) is not truly independent, as it only runs over
the pairs of values compatible with the coupling of angular
momenta [l ⊗ S]J , and with the antisymmetry of the whole
wave function for a system of two identical nucleons, as in pp
or nn configurations.

It should also be remarked that expression (34) does not
depend at all on the spin third-component quantum number
Ms . Therefore, if we sum Eq. (34) over all possible Ms values,
the factor (2S + 1) in the denominator of the right-hand side
of Eq. (34) cancels out.

To get rid of the low-momentum component (the piece
with the δ function) in Eq. (30), when applying Eq. (34) we
restrict the relative momentum p to be greater than the Fermi
momentum kF . With this restriction we avoid bothering about
the treatment of the square of a δ function distribution, because
the initial relative momentum k is always below kF (k < kF ).

Using the results discussed above one can compute the BG
wave function corresponding to a nucleon pair with initial
relative momentum k and spin components m1,m2. This is
obtained as an expansion in terms of BG wave functions of
coupled pairs


̃BG
k,m1m2

(p) =
∑
S,Ms

〈
1

2
m1

1

2
m2|SMs

〉

BG

k,SMs
(p). (36)

Note that the probability averaged over spins verifies

1

4

∑
m1,m2

∣∣
̃BG
k,m1m2

(p)
∣∣2 = 1

4

∑
S,Ms

∣∣
BG
k,SMs

(p)
∣∣2

, (37)

where the factor 1
4 reflects the two possible spin states for each

nucleon.

IV. NUMERICAL RESULTS

In this section we provide results for the solution of the
BG equation of a nucleon pair in nuclear matter. All the
calculations have been done for a Fermi momentum of kF =
250 MeV. Unless otherwise specified, we will show results for
a fixed value k = 140 MeV/c of the relative momentum of the
pair. The reason to choose this specific value for the relative
momentum of the nucleon pair is twofold: First, it represents an
intermediate value for the allowed relative momenta between
0 and kF ; and, second, it is also one of the values considered in
our previous work [55], where we only treated the 1S0 partial
wave. In this way, it will provide a more direct comparison
with the results already obtained in Ref. [55], at least for the
1S0 channel.

Finally, it is worth warning the reader that the GR potential
is determined by the strengths at the grid points (λi)SJ

l,l′ for all
the partial waves appearing in Table I of Ref. [51].

A. BG solutions on the grid points

In the case of total spin S = 0 we solve the linear system
(20). The unknowns are the values of the wave function at the
grid points ũ SJ

k,l (ri) for J = l, and l = 0,1,2,3. Note that our
grid consist simply in the five points ri = 0.6,1.2,1.8,2.4, and
3 fm. Thus the solution of the BG in this case only requires us
to invert a 5 × 5 real matrix. In the case S = 1, the l = J partial
waves are uncoupled so they also require us to invert a 5 ×
5 matrix. However, the l = J − 1 and l = J + 1 multipoles
are coupled and this implies to solve a system of 10 linear
equations.

Thus the GR potential allows us to solve the BG equation
at minor computational cost. The only difficulties are to
perform numerically the one-dimensional integral in Eq. (14)
to compute the Green’s function and to invert at most a
10 × 10 matrix for each pair of coupled multipoles. Note
that this extreme simplification appears only because we have
coarse-grained the potential with a few grid points. Using
instead a more general local NN potential would require
to use a very fine grain, with Nδ > 100 points, increasing
the dimensionality of the matrices to invert. To solve the BG
equation with more than 100 grid points would require highly
intensive computation, thus losing the practical advantages of
the GR potential.

In Fig. 1 we show the correlated reduced wave functions
ũ SJ

k,l (ri) on the grid points (dots on the plot) used in the matrix
inversion and for each one of the uncoupled channels appearing
in Table I of Ref. [51].
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FIG. 1. BG wave functions ũ SJ
k,l (r) for the uncoupled NN partial waves. We also display the free solution ĵl(kr) in dashed style and

the defect wave function �ũSJ
k,l (r) ≡ ũ SJ

k,l (r) − ĵl(kr) as dotted lines. The calculations have been done for a relative momentum of the pair
k = 140 MeV.

B. BG wave functions in coordinate space

As discussed above, knowledge of the wave function at
the grid points allows us to reconstruct the full wave function

using the BG equation. In Fig. 1 the correlated wave function is
compared with the free solution ĵl(kr). We also show the defect
wave function, defined as the difference between correlated
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FIG. 2. Correlation function fcorr(r) ≡ ũ SJ
k,l (r)

ĵl (kr)
for each uncoupled NN partial wave. The calculations have been done for k = 140 MeV.

and uncorrelated waves,

�ũSJ
k,l (r) ≡ ũ SJ

k,l (r) − ĵl(kr). (38)

As we see the effect of the interaction is to modify the
relative wave function of the pair for short to intermediate
distances. For large distances the wave function becomes equal

to the free one without any phase shift. The SRC effects are
more prominent for the low-L partial waves, S, P , and D
especially. The interaction effect is largest for the S wave
and decreases with the relative angular momentum. For l = 3
the defect wave function is very small and cannot be seen
in the scale of the figure. When the angular momentum
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FIG. 3. BG wave functions ũ SJ
k,l (r) for the coupled NN partial waves 3S1–3D1 and 3P2–3F2. We also display the free solution ĵl(kr) in

dashed style, and the defect wave function �ũSJ
k,l (r) as dotted lines. The calculations have been done for a relative momentum of the pair

k = 140 MeV.

increases the nucleons are far apart and the SRC effects go
away. This is due to the centrifugal barrier, which is more
repulsive for peripheral partial waves and prevents the two
nucleons to approach each other at short distances, where the
short-range potential is noticeable. Besides, direct inspection
of Table I of Ref. [51] reveals that for growing angular
momentum the inner δ shells (below the centrifugal barrier)
are vanishing.

The results for the 1S0 (np) partial wave can be compared
to those corresponding to Fig. 3(d) of Ref. [55]. They are
similar but not equal because the δ-shell parameters used in
Ref. [55] are not the same as here. Indeed, in Ref. [55], the
strengths of the δ shells in this partial wave were adjusted to
reproduce the same phase shifts as the AV18 potential [48] up
to a certain energy. The strengths used in the present work were
simultaneously fitted in a PWA to NN -scattering data [51–53].
In addition, here we consider five δ shells, while Fig. 3(d) of
Ref. [55] was done with seven δ shells.

C. Correlation functions

In Fig. 2 we plot the results for the correlation function,
defined as the ratio between the BG and the free wave
functions,

fcorr(r) ≡ ũ SJ
k,l (r)

ĵl(kr)
, (39)

for each one of the uncoupled NN partial waves shown in
Fig. 1, with the same choice for the relative momentum k =
140 MeV. The correlation function approaches unity, after
a few oscillations, at long distances (r � 3 fm) where the

effects of the short-range NN potential are becoming more
and more negligible. The significant deviation from unity for
the correlation function occurs at short distances, where the
NN potential is present.

An important feature that can be observed from Fig. 2 is
that the correlation function is quite constant for the shortest
distances, below the range of the first nonvanishing delta-shell
strength (λi)SJ

l,l , which occurs at different distances for each
partial wave, as can be seen from the values quoted in Table
I of Ref. [51]. Additionally, the sign of the first nonvanishing
strength λi in each partial wave determines if the correlation
function is larger or smaller than unity at the shortest distances,
thus reflecting the attractive or repulsive nature of the potential
in each channel, and the probability for the two correlated
nucleons of being closer or farther relative to the uncorrelated
situation. The first nonvanishing δ-shell strengths are positive
in the S, P , and F channels of Fig. 2, while they are negative
in the D partial waves. The correlation function is especially
large at short distances for the 3D2 channel as compared to the
1D2 case, due to the much stronger attractive character of the
first λ at 1.2 fm in the 3D2 partial wave (cf. Table I of Ref. [51]).

Finally, if one compares the first panel of Fig. 2, correspond-
ing to the 1S0 (np) channel, with Fig. 4(b) of the analysis made
in Ref. [55], one can observe that the tails of the correlation
function for distances larger than 2 fm are extremely similar.
However, the detailed structure of the inner region (below 2
fm) strongly depends on the strengths of the δ shells, which are
different in both analyses. Notice that the correlation function
below 0.5 fm in Fig. 4(b) of Ref. [55] is much more suppressed
than here, indicating a harder core in the GR7 potential used
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FIG. 4. Correlation function fcorr(r) for the coupled NN partial waves 3S1–3D1 and 3P2–3F2. The calculations have been done for
k = 140 MeV.

there. That hardness in the potential produces appreciable
differences in the description of the very high momentum
components in the NN wave function [55].

D. Coupled channels

In Fig. 3 we show the analogous results to Fig. 1 for the
coupled 3S1–3D1 and 3P2–3F2 partial waves. The correspond-
ing strengths for the δ shells are taken from Table I in Ref. [51],
where the nondiagonal strengths (λi)SJ

l,l′ with l �= l′ are labeled
by εJ . These results have been obtained by solving Eqs. (19)
and (20) for relative momentum k = 140 MeV.

By comparing these coupled partial waves with their
uncoupled counterparts (Fig. 1) we can observe that the
short-distance distortion of the wave function is larger for
coupled than for uncoupled channels, especially for the case
L = J + 1, i.e., the 3D1 and 3F2 waves. Notice that the effect
of SRC is less important for the L = J − 1 waves, 3S1 and 3P2,
which are much more similar to their uncoupled counterparts
(the 1S0 and the P waves shown in Fig. 1). This very large effect
of SRC in the coupled waves is produced to a large extent by
the mixing of the l = J − 1,J + 1 partial waves by the tensor
force operator appearing in the NN interaction. This makes
sense, first, because we have seen in the uncoupled waves
that the SRC effects are more important for low-L. Since the
tensor force is also present in the uncoupled waves through
its diagonal part, we conclude that the strong correlations
seen in the 3D1 channel must be due to its mixing with
the 3S1 channel via the nondiagonal matrix elements of the
Hamiltonian.

The same kind of conclusions can be drawn from observing
the results of Fig. 4 for the correlation functions of the coupled
waves. The 3S1 correlation function is similar in magnitude to
the 1S0 one. The 3P2 correlation function is larger than one for
short distances, reflecting an attractive force at short distances,
similar in magnitude to the repulsion seen in the uncoupled
P-waves. The correlation functions of the coupled waves 3D1

and 3F2 show the largest distortion of the wave function at
short distances. The SRC effect is especially large in the 3D1

wave. Notice that fcorr(r) ≈ 14 for distances below 1.2 fm. For
the 3F2 channel we have fcorr(r) ≈ −2. The huge SRC effect
seen in the coupled waves 3D1 and 3F2 is in contrast to the
much softer effect found for the D and F uncoupled partial
waves seen in Fig. 2.

In order to understand the importance of the mixing
between coupled partial waves, we switch off the nondiagonal
δ-shell strengths, (λi)SJ

l,l′ = 0 for l �= l′. With this trick, the BG
equations in Eq. (20) get effectively uncoupled, and all partial
waves can be solved separately. Note that with this trick we
are artificially “amputating” the NN potential by neglecting
the nondiagonal part of the tensor force but leaving intact its
diagonal part. So, the diagonal part of the tensor force is still
present in this calculation.

The results for the “uncoupled” 3S1 and 3D1 waves are
shown in Fig. 5, where we plot the reduced wave function
and the correlation function. By comparing this figure with
the coupled case of Fig. 3 we observe that the distortion in
the wave function due to the SRC almost disappears in the
3D1 partial wave and gets much quenched in the 3S1 channel.
This is more clear evidence on the importance of mixing and,
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FIG. 5. Upper figures: BG wave functions ũ SJ
k,l (r) for the NN partial waves 3S1–3D1 treating them as fully uncoupled by switching off the

nondiagonal strengths, (λi)SJ
l,l′ with l �= l′. Lines have the same meaning as in Figs. 1 and 3. Lower figures: Correlation function fcorr(r) for the

same partial waves assuming no mixing between them. The calculations have been done for a relative momentum of the pair k = 140 MeV.

therefore, of the tensor force in the modification of the wave
function at short distances (SRCs). The same conclusion can
be drawn from the correlation function shown in the lower
panel of Fig. 5: When the partial waves get uncoupled, the
correlation functions at short distances are much closer to 1
than in the coupled case, where the full interaction is used.

Although not shown in this work, similar effects to
those shown in Fig. 5 are observed in the J = 2 coupled
channel if we switch off the nondiagonal δ-shell strengths
and the linear system becomes uncoupled. The effects are
relatively more significant in the 3F2 wave, because it
corresponds to the member of the coupled pair of partial waves
with L = J + 1, as we already mentioned when discussing
Fig. 3.

E. N N high-momentum components

In Fig. 6 we show the high-momentum components of
the NN correlated wave function, given by the modulus
squared of Eq. (30) for p > kF . Figure 6(a) corresponds to
the uncoupled channels already shown in Fig. 1 (except for
the 1P1 wave, which is very similar to 3P1 and not shown),
while in Fig. 6(b) we show the coupled partial waves depicted
in Fig. 3.

Generally, in the uncoupled sector, the partial waves with
higher probability of having high-momentum components are
those of Fig. 1 that present the largest distortions (or defect
wave functions) at short distances. Note that, for instance, for
the 1D2 and 1F3 waves, the distortion effects are really small

in Fig. 1, thus resulting in almost negligible contributions in
the high-momentum tail of Fig. 6.

In the coupled sector, corresponding to Fig. 6(b), the
most important high-momentum contributions are those of the
3S1–3D1 coupled channels, which already showed the most
prominent distortions at short distances in Fig. 3. Note the
typical diffractive nodes appearing in the 1S0 and 3S1 partial
waves for p ≈ 400 MeV. The minimum of the 3S1 wave will
be highly suppressed by the addition of the relatively large
momentum distribution of the 3D1 wave. The minimum of the
S wave momentum distribution is well known from previous
studies [15,68] to appear for zero total momentum of the
nucleon pair, as in the present work. In these other studies, this
minimum was observed in the momentum distribution of pp
pairs because these are predominantly found in a relative 1S0

state (the 3S1 is forbidden for pp pairs due to the Pauli principle
restriction that the global wave function of the pair has to
be antisymmetric). Notice that, although we have not shown
here results for the 1S0–pp channel, their δ-shell strengths
are very similar to those of the 1S0–np channel, and therefore
the corresponding momentum distribution of the pair is very
similar to that presented in Fig. 6(a) for the 1S0–np state.

In order to understand in more depth the origin of the node in
the 3S1 partial wave and the effect of the mixing in the coupled
3S1–3D1 channel, we show the results of Fig. 7. To properly
apprehend the meaning of the different pieces contributing
to the total high-momentum distribution of the 3S1 and 3D1

coupled partial waves, it is convenient to explicitly split the
sum over l′ in Eq. (30) in its diagonal part (with l′ = l) and its
off-diagonal part (with l′ �= l), for each one of these coupled
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FIG. 6. NN high-momentum components |φk,lSJ (p)|2 in the correlated wave function, calculated for relative momentum of the nucleon pair
k = 140 MeV. Panel (a) corresponds to the uncoupled NN partial waves, while panel (b) corresponds to the coupled ones. The high-momentum
plotting region is restricted to p > kF .

partial waves, thus obtaining:

φk,3S1
(p > kF ) = 2

π k

1

k2 − p2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nδ∑
i=1

{
ri j0(pri)(λi)SS ũk,3S1

(ri)
}

︸ ︷︷ ︸
SS

+
Nδ∑
i=1

{
ri j0(pri)(λi)SD ũk,3D1

(ri)
}

︸ ︷︷ ︸
SD

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = SS + SD, (40)
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FIG. 7. (a) NN high-momentum components in the correlated wave function for the 3S1 partial wave. (b) Same high-momentum components
for the 3D1 partial wave. Both calculations have been done for a relative momentum of the nucleon pair k = 140 MeV. The high-momentum
plotting region is restricted to p > kF .

and

φk,3D1
(p > kF ) = 2

π k

1

k2 − p2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Nδ∑
i=1

{
ri j2(pri)(λi)DS ũk,3S1

(ri)
}

︸ ︷︷ ︸
DS

+
Nδ∑
i=1

{
ri j2(pri)(λi)DD ũk,3D1

(ri)
}

︸ ︷︷ ︸
DD

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = DS + DD, (41)
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FIG. 8. Comparison of NN high-momentum distributions for np and pp pairs with different total spins, S = 0,1. In panel (a) we show
the singlet (S = 0) high-momentum distribution, while in panel (b) we show the triplet (S = 1) case. The contributions of different partial
waves are accumulatively added in each spin channel. The calculations have been performed for relative momentum of the nucleon pair
k = 140 MeV.

where the SS term is the contribution of the 3S1 wave to
the high-momentum distribution of the 3S1 wave (diagonal
term), while the SD term is the contribution of the 3D1 wave
to the high-momentum distribution of the 3S1 partial wave
(mixing term). The DS and DD terms have an analogous

meaning for the 3D1 high-momentum distribution. Note
that, although the δ-shell strengths are symmetric (λi)SD =
(λi)DS , the SD and DS terms of Eqs. (40) and (41) are
not equal. Now taking the module squared of Eqs. (40)
and (41), three contributions come out for each partial
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FIG. 9. (a) Comparison of total NN high-momentum distributions for np and pp pairs regardless of the total spin S. It is also displayed
the curve corresponding to pp high-momentum components multiplied by the factor 18, as measured in Ref. [32]. (b) Ratio of the np over pp

high-momentum distribution. The central value and extremal given by 18 ± 5, as measured in Ref. [32], are also displayed as horizontal dotted
lines. The calculations have been performed for relative momentum of the nucleon pair k = 140 MeV.

wave

∣∣φk,3S1
(p > kF )

∣∣2 = |SS + SD|2

= |SS|2 + |SD|2 + 2 Re[SS∗ × SD], (42)

and a similar expression for the 3D1 case. These three separated
contributions are plotted in Fig. 7. What can be observed in
this figure is that the mixing terms (SD and DS) are generally
the most important pieces contributing to the high-momentum
distribution of the pair in this coupled channel. In fact, in the
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3S1 wave the SD piece is dominant in the range below 400 MeV,
while in the 3D1 wave the DS-piece dominates in almost the
full range of high momenta. From these results we conclude
that the largest contribution to the high-momentum distribution
tail of a nucleon pair in the deuteron channel comes from the
mixing produced by the nondiagonal part of the NN interac-
tion mixing the S and D waves, that is, by the tensor force
again. If we set to zero this mixing (by setting SD = DS = 0),
this large tail is considerably reduced in magnitude, because
only the SS and DD terms survive, as can be seen in Fig. 7.

Notice that the interferences SS–SD and DS–DD can be
negative for some ranges in the p variable. In fact, they are
for sure at the nodes of the total (solid red line) curve, because
the other contributions are always positive by construction. To
represent all the components in the same logarithmic scale, we
have plotted the absolute value of the interferences.

F. pp versus np high-momentum distributions

In Fig. 8 we compare the high-momentum distributions
(p > kF ) for np and pp correlated pairs coupled to a definite
spin, S = 0,1. The initial relative momentum of the back-
to-back pair is k = 140 MeV. These distributions have been
obtained by integrating |
BG

k,SMs
(p)|2 over the angles of the

initial and final momenta, k̂ and p̂, and summing over all the
Ms spin projections for a given spin S,

|ρk,S(p)|2 ≡
∑
Ms

∫
d�k̂

∫
d�p̂

∣∣
BG
k,SMs

(p)
∣∣2

=
∑
L,J

(2J + 1)|φk,LSJ (p)|2. (43)

This is proportional to the probability density for a correlated
pair with initial relative momentum k in any direction, and total
spin S with any projection Ms , to be found with high relative
momentum p > kF in any direction as well. Note that it is
given as the sum of the squared of the radial wave functions
for all the partial waves, multiplied by its multiplicity (2J + 1).

It can be observed from Fig. 8 that the high-momentum
distribution for an np pair is larger than for the pp case,
regardless of the spin. This is generally due to the fact that for
np pairs more partial waves contribute than for a pp pair with
a given total spin. For a pp pair with spin S = 0 only partial
waves with even L contribute, due to the global antisymmetry
of the wave function for two identical fermions. Conversely,
for a pp pair with spin S = 1, only partial waves with an odd
value of L contribute. However, for np pairs all partial waves
contribute because of the presence of two possible isospin
combinations, T = 0,1.

In general, pp high-momentum distributions for S = 0 and
for S = 1 are comparable in magnitude (except for the position
of their minima). However, this is not the case for the np
high-momentum distributions: the triplet (S = 1) distribution
is one order of magnitude larger than the singlet (S = 0). This
effect is mainly due to the tensor force, which is absent in the
singlet channel and is only present in the triplet one. The most
important contributions to the high-momentum distribution
for an np pair with S = 1 [Fig. 8(b)] are the coupled 3S1–3D1

partial waves. For a pp pair in the triplet channel only partial
waves with odd L are allowed, and this excludes the 3S1–3D1

contribution. There is, of course, the presence of the coupled
3P2–3F2 channel, but its contribution to the high-momentum
components is generally small.

These features encountered here for the two-nucleon high-
momentum distributions are in agreement with those found
in other studies of the high-momentum distributions of finite
nuclei and nuclear matter [15,32,69–71] for a wide variety
of nuclei. These results provide support for the approach we
have initiated in this work to solve the BG equation with a
coarse-grained potential.

In Fig. 9 we show the comparison between the high-
momentum distributions of np and pp correlated pairs, for ini-
tial momentum k = 140, regardless of the total spin of the pair.
This amounts to carrying out an additional sum in Eq. (43) over
the two possible total spins, S = 0,1. From the figure it appears
that the high-momentum components for correlated np pairs
are much larger than for pp pairs. This is a well-known feature
of SRC with wide experimental support. In fact in the recent
JLab experiment of Ref. [32], a factor 18 ± 5 was reported
between the np and pp high-momentum correlated pairs in the
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FIG. 10. (a) Comparison of high-momentum distributions for np

and pp pairs for three different values of the initial momentum k. (b)
The same as the panel (a) but with the pp distribution multiplied by
a factor 18.
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12C ground state. This factor is in respectable accord with the
results in Fig. 9. In fact when we multiply the pp distribution
by a factor 18, it is very similar to the np one. Moreover, if we
plot the ratio np/pp (lower panel of Fig. 9), then we find it to
be inside the same interval 18 ± 5 reported in Ref. [32].

Finally, in Fig. 10 we make the same np/pp comparison
for three different values of the initial momentum k = 40,140,
and 200 MeV. While the high-momentum distribution is found
to be dependent on k, the factor 18 between both distribution
is quite stable for the three values of k considered. Therefore,
although it is out of the scope of the present work, one expects
that the same factor be approximately valid also for the total
momentum distribution.

V. CONCLUSIONS

In this work we have obtained the high-momentum distribu-
tions for a correlated nucleon pair in nuclear matter by solving
the Bethe–Goldstone equation in coordinates representation
for the original coarse-grained NN potential used directly
to generate the Granada-2013 database, a 3σ self-consistent
selection of 6173-NN -scattering data from the about 8000
collected since 1950 until 2013 at about pion production
threshold, TLAB = 350 MeV with a reduced χ2/ν ∼ 1.04
[51–53]. This calculation has been done without introducing
a further smooth potential, as it has been usually the case in
the past with the so-called high-quality potentials descending
from the benchmarking Nijmegen analysis 25 years ago. This
way we avoid a source of systematic bias.

The method is based on solving the integral Bethe–
Goldstone equation for a nucleon pair with total momentum
of the pair P = 0 and relative momentum k. The application
of the method for a coarse-grained potential consisting on δ
shells located at some equally spaced concentration radii below
3 fm is very simple. It only consists on inverting a 5 × 5 linear
system of equations for the uncoupled partial waves and a 10 ×
10 matrix for the partial waves coupled by the tensor force.

The effects of the mixing due to the tensor force in some
partial waves are very important, especially for the 3S1–3D1

channel, which is only present in the neutron–proton high-
momentum distribution and makes it to be much larger than

its proton–proton counterpart. More specifically, we find that
the probability of finding a high-momentum correlated np pair
is about 18 times that of a pp pair, as a result of the strong
tensor force, thus confirming in an independent way previous
results and measurements. This important finding is coincident
with those of previous studies carried out for different nuclei
[15,32,69–71].

Future extensions of this work include the treatment of
the center of mass of the nucleon pair, which will allow us
to widen our calculations for P �= 0. While it has traditionally
been handled by the averaging method of Brueckner, we expect
it to be manageable by means of perturbative methods. A
more ambitious goal requires considering the mixing among
all partial waves induced by the Pauli-blocking operator. For
the coarse-grained potential considered in this work, this can be
accomplished in a partial expansion terminating at a maximum
total angular momentum Jmax. This requires inverting, at most,
a 5Jmax- or 10Jmax-dimensional matrices for uncoupled and
coupled channels, respectively.

We also plan to try perturbation theory right from the
beginning by adequately renormalizing the wave function in
the first iteration [note that Eq. (19) can be, in principle,
iteratively solved]. This was found to be possible for the
1S0 case in Ref. [55]. If it were found the same for the
other partial waves calculated in this work, the SRC could
be consistently incorporated in our super-scaling approach
with meson-exchange currents formalism [72,73] to calculate
multinucleon emission in neutrino and electron scattering.
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