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Estimates and power counting in uniform nuclear matter with softened interactions
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Modern softened nucleon-nucleon interactions are well suited for perturbative many-body calculations, but
a many-body power counting scheme is lacking. Estimates of diagrammatic contributions at finite density are
important ingredients in such a scheme. Here we show how to make quantitative estimates of the particle-particle
and hole-hole channel in uniform nuclear matter for soft interactions. We also use estimates to assess the role of
normal-ordered three-body forces for a pure contact interaction.
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I. INTRODUCTION

Diagrammatic power counting assigns an expansion order
to individual Feynman (or other) diagrams according to their
expected relative contribution. For diagrams at finite density,
such assignments depend critically on the nature of the
potential, which in turn leads to different types of expansion.
The original work on the Brueckner-Bethe-Goldstone (BBG)
method for the nuclear many-body problem included a form
of power counting based on estimates of the relative sizes of
Goldstone diagram contributions to the energy per particle in
uniform matter. These estimates motivated the hole-line ex-
pansion in terms of resummed G matrices [1–4], but assumed
a nucleon-nucleon (NN ) potential with a strongly repulsive
core. Modern interactions based on chiral effective field theory
(χEFT) [5–9] and/or renormalization group (RG) evolution are
much softer and lead to dramatically different contributions of
individual diagrams, which enables a many-body perturbation
theory (MBPT) expansion. This difference is also relevant for
nonperturbative many-body methods that use basis expansions
(for recent theoretical developments on calculations in uniform
matter, see, e.g., Refs. [10–18]). In this paper we make progress
toward a robust and systematic power counting for softened
interactions in uniform matter by showing how to estimate
individual terms in the particle-particle (pp) and hole-hole
(hh) ladders.

In estimating diagrams for uniform matter in MBPT, we em-
phasize the role of the finite density geometric phase space and
make approximations such that the momentum integrations
for a given diagram factorize. These approximations simplify
calculations but yield good quantitative estimates of different
terms in MBPT and their scaling behavior in the ladder. Note
that we do not require high-precision values of terms in MBPT,
but instead seek to capture general quantitative behavior so as
to motivate a systematic power counting and allow for credible
error estimates.

Throughout this paper we use the Argonne v18 (AV18)
interaction [19] in the 1S0 and 3S1-3D1 partial waves softened
to various degrees with the similarity renormalization group
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(SRG) [20]. AV18 is chosen as a representative hard NN
potential for which the power counting in the pp ladder
drastically changes under RG transformations. For coordinate-
space potentials such as AV18, hardness is associated with
large matrix elements at small relative distance, i.e., the
repulsive core, and the intermediate-range tensor force. In
momentum representation, interactions are deemed hard if
they strongly couple states of high and low momentum.
The decoupling of these states via the SRG is achieved by
a series of unitary transformations characterized by a flow
parameter λ. Here we make the common choice of the relative
kinetic energy in the SRG generator such that as λ decreases
toward zero, the potential flows to band diagonal form [20].
An alternative would be to use a block-diagonal generator
[21], which reproduces the low-momentum structure of Vlow k

potentials and can be treated with similar estimates.
The evolution to smaller λ for different initial NN

interactions that are phase equivalent and share the same
long-distance (pion) physics drives the partial wave matrix
elements toward a universal form, up to the momentum scale
at which the phase shifts agree [22,23]. This includes the
matrix elements that determine the diagrammatic contributions
at least as high as nuclear matter saturation density. Thus, even
though we use AV18 as the initial potential, our quantitative
results for lower values of λ will be the same for other initial
potentials such as those based on χEFT, and so our conclusions
should be quite general.

Previous work has established how the nonperturbative
nature of NN interactions is modified by the softening with
λ combined with the effects of finite density [10,11,20,24].
Forces such as AV18 are nonperturbative in free space for
several reasons: a strong short-range repulsive core, iterated
tensor components, and the fine-tuning that produces weakly
bound or just unbound states. The latter requires some form
of nonperturbative resummation independent of the details
of the potential (see, e.g., Ref. [25]). For potentials with
nonperturbative repulsive cores, Pauli blocking in uniform
matter does not change the need for resummation because
the repulsive cores ensure that contributions well above the
Fermi surface dominate. This means that the BBG method for
uniform matter started with the sum of pp ladder diagrams
to all orders. On the other hand, Pauli blocking is effective
in detuning the bound or near-bound states at densities well
below nuclear saturation density.
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One method of explicitly verifying when resummation
is needed and assessing perturbativeness in general is the
Weinberg eigenvalue approach [26], which in free space
examines eigenvalues of the Born series for the Lippmann-
Schwinger equation and has been extended to finite density.
The analysis of Weinberg eigenvalues in uniform systems
has indicated that softened interactions become perturbative
with increasing density, at least in the particle-particle channel
[10,11]. A related set of eigenvalues at finite density arises in
our estimation method and provides similar diagnostics, with
a direct connection to the evaluation of diagrams. We note that
MBPT convergence of soft interactions has been demonstrated
in finite nuclei when using a Hartree-Fock reference state [27]
and in uniform neutron matter using various nonperturbative
many-body methods [7,13–15,28]. For symmetric nuclear
matter including three-body forces, MBPT is somewhat less
perturbative [14], but further investigation is needed.

Although the nuclear matter power counting analysis of
BBG was focused on NN interactions, 3N forces have been
established as playing an essential role in nuclear matter
saturation with modern potentials [10,11,29]. Hence, assessing
the contributions of 3N forces is a crucial task in creating
a consistent and systematic many-body power counting. For
simplicity, here we limit ourselves to estimates for the size of
normal-ordered three-body (effective two-body) contributions
compared to residual three-body terms using a pure three-body
contact as shows up at N2LO in χEFT.

The paper is organized as follows. In Sec. II we examine and
estimate various diagrams for two-body interactions. In Sec. III
we briefly show why the conclusions in Sec. II do not apply
to the unitary gas. In Sec. IV we discuss three-body forces
and give estimates for normal-ordered and residual terms. Our
findings are summarized in Sec. V. Diagrammatic rules and
useful formulas are given in the Appendixes.

II. SOFTENED N N INTERACTIONS

In this section we discuss estimates for NN interactions
in uniform matter, with estimates for 3N forces consid-
ered in Sec. IV. We first briefly review MBPT (see, e.g.,
Refs. [4,30,31]), discuss different quantities appearing in
Goldstone diagrams, and then apply our averaging techniques
to the pp channel.

A. Review of MBPT

When performing perturbation theory for a given Hamilto-
nian H , one splits H into two parts: an exactly solvable part
H0 and a remaining piece HI such that,

H = H0 + HI , H0|�0〉 = E0|�0〉, (1)

where H0 defines a reference state |�0〉. For our purposes, we
identify HI as the NN potential and adopt a spin-saturated,
isospin-symmetric reference state of noninteracting fermions
filled up to Fermi momentum kF,

HI = VNN, |�0〉 =
A∏

i=1

a
†
i |0〉, (2)

vs.

FIG. 1. Second- and third-order Goldstone diagrams, for which
we consider their relative size. Particles are upward-going arrows,
holes are downward-going arrows, and dashed lines are two-body
potential insertions.

where the a† operators obey anticommutation relations and
the lowest A orbitals in the Fermi sea are filled. Although
commonly used to speed convergence in nuclear matter
calculations with hard interactions, in this paper we have not
included a one-body potential in our H0 and HI terms. The
linked cluster expansion [32], allows for the energy of an
interacting system to be expressed as an expansion around the
reference state,

E = E0 + 〈�0|HI

∞∑
n=0

(
1

E0 − H0
HI

)n

|�0〉connected, (3)

where HI in Eq. (3) is now understood to create particles
and holes with respect to the reference state. Expressions
for individual contributions in the series of Eq. (3) have a
simple diagrammatic representation in Goldstone diagrams.1

The subscript connected in Eq. (3) ensures that the reference
state |�0〉 does not contribute as an intermediate state, and
means that disconnected diagrams do not contribute to the
energy. For our purposes, we want to consider the relative
importance of different diagrams, for example the relative sizes
of the two diagrams in Fig. 1. A list of rules for translating
Goldstone diagrams into mathematical expressions is given in
Appendix A.

Goldstone diagrams differ from Feynman diagrams in
that they are time ordered, thus each Feynman diagram
corresponds to multiple Goldstone diagrams. Our use of
Goldstone diagrams is historically motivated by their original
use in BBG theory due to the asymmetry in the power counting
of particle and hole lines. We do not assess here whether
Feynman diagrams might be a more efficient approach for
sufficiently softened interactions.

B. Averaging and approximations

In this section, we define relevant quantities appearing in
Goldstone diagrams as well as their averaged counterparts.
Pauli blocking operators for intermediate particle and hole
states are defined as, respectively,

Q+(P/2,k; kF) ≡ n(P/2 + k) n(P/2 − k), (4a)

Q−(P/2,k; kF) ≡ n(P/2 + k) n(P/2 − k), (4b)

1We employ antisymmetrized Goldstone diagrams throughout,
where each dashed line represents an antisymmetrized matrix
element, see Ref. [30].

054005-2



ESTIMATES AND POWER COUNTING IN UNIFORM . . . PHYSICAL REVIEW C 96, 054005 (2017)

using the distribution functions defined in Appendix A. Pauli
blockers can be angle averaged,

Q±(P,k; kF) = 1

4π

∫
d�k Q±(P/2,k; kF), (5)

and are then given by,

Q+ =

⎧⎪⎨⎪⎩
0 for k <

√
k2

F − P 2/4

1 for k > kF + P/2
A otherwise

,

Q− =

⎧⎪⎨⎪⎩
0 for k >

√
k2

F − P 2/4

1 for k < kF − P/2
−A otherwise

, (6a)

where

A ≡ k2 + P 2/4 − k2
F

kP
. (6b)

For potentials with no angular dependence (s wave), the above
procedure is exact. We also make use of the hole phase space
found after integrating over the total momentum P ,

�

(
k

kF
,kF

)
≡

∫
dP P 2 Q−(P,k; kF),

�(x,kF) = 4k3
F

3
(2 − 3x + x3)�(1 − x). (7)

The mean square average of a quantity in our system, say the
total two-body momentum, is defined in the usual way,

〈P 2〉 =
∫

d3p1 d3p2 (p1 + p2)2 n(p1)n(p2)∫
d3p1 d3p2 n(p1)n(p2)

. (8)

This results in the root mean square (RMS) total momentum
Pav and RMS hole relative momentum kav,

Pav =
√

6

5
kF, kav =

√
3

10
kF. (9)

C. Particle-particle channel

In this section, we explicitly calculate different terms in
the pp ladder and show how to extract quantitative estimates.
In the following, we restrict ourselves to s-wave channels as
their net contribution dominates the energy density of nuclear
matter over the net contribution of other channels. The energy
per particle of the nth rung in the pp ladder, excluding n = 1
(Hartree-Fock), is given by,

E(n)
pp

N
=

(
1

2

)n( 2

π

)n

2n

(
m

h̄2

)n−1 (−1)n−1

ρ

∫
d3P

(2π )3

×
∫

dk1 k2
1 · · ·

∫
dkn k2

n (2T + 1)(2J + 1)

× Q−(P,k1; kF) Q+(P,k2; kF) · · ·Q+(P,kn; kF)(
k2

2 − k2
1

) · · · (k2
n − k2

1

)
× 〈k1|V |k2〉 · · · 〈kn|V |k1〉, (10)

where the 1/2 are symmetry factors, the 2/π comes from the
partial wave basis expansion, the 2 from antisymmetry of the
potential, the m/h̄2 from the energy denominators, the (−1)
from flipping the energy denominator arguments, the (2T + 1)
and (2J + 1) from the Tz and Jz sums, all Pauli operators are
angle averaged, and 〈ka|V |kb〉 are momentum space potential
matrix elements in a given partial wave including coupled
channels (see Appendix B for details). Also note that in
Eq. (10) we have chosen a free single-particle energy spectrum
for simplicity (cf. the more general single-particle spectrum in
Appendix A). This assumption could be relaxed with a simple
effective mass approximation changing all energy diagrams by
a constant factor of (m∗/m)n−1.

We assume that the energy integrand in Eq. (10) is
dominated by phase-space regions where the particle relative
momentum k′ is sufficiently larger than the total momentum P
and the hole relative momentum k such that k′ will primarily
drive the behavior of energy denominators and particle Pauli
blockers. This motivates the approximations

1

k′2 − k2
≈ 1

k′2 − k2
av

, Q+(P,k′; kF) ≈ Q+(Pav,k
′; kF),

(11)

where we have used the RMS values in Eq. (9). To facilitate
calculations, we also render the expression in Eq. (10) on a
discrete mesh for the momentum integrations,

E(n)
pp

N
= 2

π

(
2m

πh̄2

)n−1 (−1)n−1

2π2ρ

∑
ki

k2
1 w1 · · · k2

n wn

× (2T + 1)(2J + 1) �

(
k1

kF
,kF

)

× Q−(P,k1; kF) Q+(P,k2; kF) · · · Q+(P,kn; kF)(
k2

2 − k2
1

) · · · (k2
n − k2

1

)
× 〈k1|V |k2〉 · · · 〈kn|V |k1〉, (12)

where wi refers to the relevant weight for a momentum sum.
The two approximations in Eq. (11) allow for the mo-

mentum integrations in our ladder to factorize, connected
only by potential matrix elements. Reorganizing Eq. (12)
yields,

E(n)
pp

N
≈ 2

π

(
2m

πh̄2

)n−1 (−1)n−1

2π2ρ

∑
ki

(2T + 1)(2J + 1)

× �

(
k1

kF
,kF

)
k2

1 w1

× 〈k1|V |k2〉
√

Q+(Pav,k2; kF) k2
2 w2

k2
2 − k2

av

× Kn−2

√
Q+(Pav,kn; kF) k2

n wn

k2
n − k2

av

〈kn|V |k1〉, (13a)
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FIG. 2. (a) The absolute value of the second-order energy per particle in nuclear matter is plotted as a function of density ρ for the 1S0

partial wave using the AV18 potential. Both exact (solid) and estimates (dashed) are shown for four different SRG λ scales. (b) Same as (a) but
for third-order in the pp channel. (c) Same as (a) but for fourth order in the pp channel.

where K is a kernel for particle-particle scattering,

K ≡
√

Q+(Pav,ka; kF)k2
a wa

k2
a − k2

av

×〈ka|V |kb〉
√

Q+(Pav,kb; kF) k2
b wb

k2
b − k2

av

. (13b)

Factorization via our two approximations ensures that
adding more rungs to the ladder corresponds to additional
powers of the pp kernel K without affecting the outer parts
of the integrand in Eq. (13a). The particle phase space for the
interior parts of the ladder has thus been completely decoupled
from the hole phase space.

The kernel K in Eq. (13b) is real and symmetric like the
potential and so can be diagonalized in an eigendecomposition,

Kn = LDnL−1, (14)

where D is a diagonal matrix holding the kernel eigenvalues
and L is a matrix of the kernel eigenvectors. Because D is a
diagonal matrix, in this decomposition successive rungs of the
ladder correspond to simple powers of the kernel eigenvalues.
As such, Eq. (14) allows for high orders in the ladder to be
computed with little additional computational cost.

In Fig. 2 we show the absolute value of the second-order
energy per particle and third- and fourth-order terms in the
pp ladder for nuclear matter for the 1S0 partial wave using
the AV18 potential.2 The energy terms are calculated for the
potential evolved to four different SRG λ scales. Here λ = ∞
refers to the unevolved AV18 potential whereas the evolution
proceeds further for lower λ. Figure 3 then shows the same
quantities in the pp ladder but for the 3S1-3D1 partial wave

2When using AV18 we assume full isospin symmetry and use the
np force.

using the AV18 potential. Both exact calculations from Eq. (12)
and estimates using Eq. (13a) are shown. In keeping with
previous results [10,11], the trend is for the relative importance
of higher orders in MBPT to decreases as λ lowers. In all six
plots, our estimates do a good job of reproducing the exact
results, suggesting our approximations are well motivated and
capture the relevant physics. As discussed before Eq. (11),
the approximations in the pp channel are motivated by the
particle relative momentum being larger in magnitude than
the center-of-mass and hole relative momentum. As the SRG
scale decreases in value, these approximations worsen though
the absolute errors induced are still small. In Table I, we list
the absolute errors induced by our approximations for λ = 4.0
and 2.0 fm−1 near saturation density ρ ≈ 0.16 fm−3. To avoid
repetition, we give calculations, estimates, and discussion of
the hh ladder in Appendix C.

In addition, Eq. (14) allows for a clean and rigorous defini-
tion of potential perturbativeness; adding a rung to the ladder
introduces an extra power of the kernel eigenvalue matrix
D and numerical prefactors. The dimensionless3 expansion
parameter η for the pp ladder is then simply,

η ≡ 2m

πh̄2 |εmax|, (15)

where εmax is the largest eigenvalue of the kernel K and we
take the absolute magnitude. The potential is perturbative
in the pp ladder if η < 1 and nonperturbative otherwise. In
Fig. 4, we plot η against density for different values of the
SRG scale λ in the 1S0 and 3S1-3D1 partial waves. Note
that in the low-density limit, irrespective of the SRG scale,
the potential is nonperturbative in both waves, reflecting the
fine tuning in the two channels. For the unevolved potential

3η can be seen to be dimensionless by noting that an extra rung
also introduces an extra weight into Eq. (13a) for the interior particle
momentum.
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FIG. 3. (a) The absolute value of the second-order energy per particle in nuclear matter is plotted as a function of density ρ for the 3S1-3D1

partial wave using the AV18 potential. Both exact (solid) and estimates (dashed) are shown for four different SRG λ scales. (b) Same as (a) but
for third order in the pp channel. (c) Same as (a) but for fourth order in the pp channel.

λ = ∞, the potential is nonperturbative near saturation density
ρ ≈ 0.16 fm−3. However, as the flow parameter lowers, the
potential below the scale λ becomes effectively decoupled
from the potential above. As a result, the particle phase space
becomes increasingly constrained and η decreases, see Fig. 5.
By the time λ = 4.0 fm−1, η is less than 1 and the pp channel
is perturbative at saturation density for these waves.

Our analysis here is closely related to the use of Weinberg
eigenvalues that arise in studying the convergence of the
scattering Born series [33]. The Born expansion can be
rendered as a geometric series with convergence being dictated
by the eigenvalues of the operators,

G0V |ξ 〉 = ξ |ξ 〉, (16)

where G0 is the noninteracting propagator. If the eigenvalues
of the system are of order 1 or greater, then the Born series does
not converge. The formulation of the pp kernel in Eq. (13b)
looks similar to the above though with a more symmetric form,√

G0 V
√

G0 |̃ξ〉 = ξ̃ |̃ξ〉. (17)

Multiplying the left-hand side of the above by
√

G0 and
defining

√
G0 |̃ξ〉 ≡ |ξ 〉 brings it into the form of Eq. (16).

TABLE I. List of the absolute differences between the exact and
estimate calculations for the energy per particle of diagrams in the pp
ladder for AV18. All quantities below are in MeV, are evaluated near
the saturation point ρ = 0.163 fm−3, and are rounded to the nearest
decimal.

Second order Third order Fourth order

1S0 λ = 4.0 fm−1 0.088 0.031 6.8E-3
1S0 λ = 2.0 fm−1 0.11 0.010 8.6E-4
3S1-3D1 λ = 4.0 fm−1 0.17 0.048 0.27
3S1-3D1 λ = 2.0 fm−1 0.43 0.085 0.028

Setting kav = 0 in Eq. (13b) and working with a Vlow k potential
in the 1S0 partial wave, our expansion parameter exactly tracks
the largest Weinberg eigenvalue in Ref. [34] (see Fig. 1). The
finite density results for η given here use kav 
= 0 and so will
differ in general from Weinberg eigenvalues in Ref. [34].

III. UNITARY FERMI GAS

An interesting nonperturbative extreme of a Fermi system
is the unitary limit, where the scattering length a of the system
is taken to infinity and the interparticle separation k−1

F is taken
to be much larger than the effective range of the potential r
[35],

Unitary limit: lim
a→∞ and kFr � 1. (18)

For NN scattering, this limit serves as an approximate
description for the 1S0 and 3S1-3D1 partial waves, as both of
these channels have unnaturally large scattering lengths. Note
that the low-density values of η in Fig. 4 are very close to or
above 1, reflecting the lack of perturbative convergence. In this
section we demonstrate that our averaging and factorization
procedure explicitly reproduces the nonperturbativeness of the
unitary gas. For simplicity we assume our potential V is a pure
contact with no momentum or spin dependence,

V = C0. (19)

For such a simple potential, the T -matrix scattering amplitude
is a summable geometric series given by [36],

T (E) = C0

1 − I (E)
, (20)

where I (E) is a generic loop integral in the bubble chain,

I (E) ≡
∫

d3k
(2π )3

C0

E − h̄2k2/m
. (21)
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FIG. 4. (a) The expansion parameter η in Eq. (15) is plotted as a function of density ρ for the 1S0 partial wave using the AV18 potential.
Four different SRG λ scales are shown. (b) The same as (a) but for the 3S1-3D1 partial wave.

In the unitary limit, the T matrix has a pole at zero energy,
I (0) = 1. Imposing a sharp momentum cutoff � on this
generic loop integral, the value for C0 can be found,

1 = 1

2π2
C0

∫ �

0
dk k2 1

0 − h̄2k2/m
⇒ C0 = −2π2h̄2

�m
.

(22)

Working with relative and center-of-mass momentum vari-
ables in a single-particle basis, the energy per particle for the
nth rung in the pp ladder using our two approximations in
Eq. (11) is written as,

E(n)
pp

N
∝

(
1

2

)n(
m

h̄2

)n−1

(−1)n−1

(
4π

8π3

)n n∏
i

Trσiτi

× [(1 − P12)n]
∫

dki Kn−2, (23)

particles: |P/2 ± k| > kF and |k| < λ

holes: |P/2 ± k| < kF

P/2

k

λ

kF

FIG. 5. Diagram of two Fermi spheres illustrating the hole and
particle phase space available for two-body interactions. λ here serves
as a scale for which the phase space above is effectively decoupled
from the phase space below. This is in contrast to other methods (e.g.,
Vlow k) where the � is an actual cutoff in the model space.

where we have only included factors that scale with additional
rungs in the ladder. The factor 1/2 comes from the symmetry of
equivalent lines, m/h̄2 from energy denominators, (−1) from
flipping the terms in the energy denominators, 4π/8π3 from
angular integrations, and K is again the pp kernel in Eq. (13b)
in the continuum limit. The nth term of the spin-isospin trace
factors can be written by noting that (1 − P12)2 = 2(1 − P12)
such that,

Trσiτi
[(1 − P12)n] = 12 × 2n−1, (24)

with 2n−1 canceling the (1/2)n scaling from the symmetry
factors. Furthermore as the unitary limit also implies that
λ ∝ r−1 meaning that λ � kF, the energy denominators and
particle Pauli blockers can be expanded in a series where to
leading order,

Q+ → 1 and
1

k2
a − k2

av

→ 1

k2
a

,

resulting in √
Q+(ka,Pav) k2

a

k2
a − k2

av

→ 1, (25)

such that the kernel K is equivalent to the potential, K =
V . Therefore, counting factors that contribute with adding an
additional rung to the ladder results in the expansion parameter
being

η = m

h̄2 (−1)
4π

8π3
C0

∫ �

0
dk = 1 (26)

and the system is nonperturbative as expected. The above line
of argument can also be used when the potential is treated
as separable [37], a good approximation for low-momentum
potentials.

This analysis is also consistent with the Weinberg eigen-
values of the system in free space. For positive Weinberg
eigenvalues associated with bound or near bound states, the
values are of order 1 indicating the nonconvergence of the
Born series. As this is relevant physics that does not depend on
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resolution, these eigenvalues do not flow with the RG scale in
free space, see Fig. 3 in Ref. [10]. Setting kav = 0 and Q+ = 1
in Eq. (13b) for the 1S0 and 3S1-3D1 partial waves yields η ∼ 1
or greater for the different SRG scales as expected from the
large NN scattering lengths. Likewise, setting k2

av = Bdm/h̄2

in Eq. (13b), where Bd is the deuteron binding energy,
explicitly reproduces the deuteron pole (η = 1) when the
repulsive Weinberg eigenvalue is less than 1, see Fig. 4 in
Ref. [10].

IV. THREE-BODY FORCES

In this section, we discuss estimates for a 3N contact in
uniform matter and the complementary normal-ordered NN
force.

A. Three-body contact and normal ordering

The preceding discussion only estimated contributions from
two-body interactions. However, Hamiltonians from χEFT

will have three-body and higher operators, with three-body
forces first appearing at N2LO in the �-less chiral expansion
[38,39]. Matrix elements for a three-body operator V3N in the
single-particle basis are

〈1′2′3′|V3NA123|123〉, (27)

where A123 is the antisymmetrizer and we use the shorthand
|1〉 = |p1σ1τ1〉. For simplicity, here we only consider the pure
3N contact term VE ,

VE = cE

2f 4
π �χ

∑
i 
=j

τi · τj , (28)

and set the constant to unity, cE = 1.
Like two-body forces, three-body forces must also be

regulated when solving for three-body LECs via Faddeev
equations. A common choice is a nonlocal regulator of the
form [39],

f (p1,p2,p3) ≡ exp

[
−

(
p2

1 + p2
2 + p2

3 − p1 · p2 − p2 · p3 − p1 · p3

3�2
3N

)n
]
, (29)

with n some integer (we choose n = 2 hereafter) and �3N the
3N cutoff. This regulator has the particular advantage in that it
is invariant under permutation symmetry, which can be easily
seen by applying Pij to Eq. (29) for any i and j . Both the
incoming and outgoing momenta are regulated such that the
potential V3N is,

V3N

reg.−→ f (p′
1,p

′
2,p

′
3) V3N f (p1,p2,p3). (30)

Equation (29) can also be rewritten in two different ways [40]:

f (k,j ) = exp

[
−

(
k2 + 3j 2/4

�2
3N

)2
]
, (31a)

f (P,p3,k) = exp

[
−

(
P 2/4 + 3k2 + p2

3 − P · p3

3�2
3N

)2
]
, (31b)

where k = 1
2 (p1 − p2) and j = 1

3 (2p3 − p1 − p2) are Jacobi
momenta and P = p1 + p2 is the center-of-mass momentum
in the 1,2 subsystem.

It is common to reorganize the vacuum three-body forces
where, in the language of second quantization, the three-
body creation and annihilation operators are normal ordered
with respect to a reference state [20,41,42]. A common
approximation in many ab initio approaches [43–46] is the
so-called normal-ordered two-body (NO2B) approximation
where after normal ordering, only two- and lower-body forces
are kept for reasons of computational efficiency. The resulting
two-body term is given by, for our state |�0〉,

〈1′2′|V 3N|12〉 = Trσ3 Trτ3

∫
d3p′

3

(2π )3

d3p3

(2π )3
(2π )3

× δ3(p3 − p′
3) n(p3)

× 〈1′2′3′|V3N (1 − P13 − P23)|123〉. (32)

Note that Eq. (32) is not yet antisymmetrized with respect
to particles 1 and 2. Applying Eq. (32) to the 3N contact in
Eq. (28) yields,

V E = − 6 cE

f 4
π �χ

ρf (P,k,k′), (33)

where ρf is the integration over the averaged single-particle
momentum with the uncorrelated Fermi-Dirac distribution
function and the regulators,

ρf (P,k,k′) =
∫

d3p3

(2π )3
n(p3)f (P,p3,k)f (P,p3,k

′), (34)

and we have used the fact that the total momentum is
conserved. Note that in averaging over the presence of the
third particle, we implicitly defined a preferred frame, namely
the rest frame of the noninteracting Fermi sea. This results
in the effective force V E gaining explicit dependence on the
center-of-mass momentum P for the two scattering particles.

B. Normal-ordered terms at second order

In this section we compute the second-order energy
contributions of the effective two-body potential from normal
ordering, also called the density-dependent (DD) term, and the
remaining three-body piece, also called the residual (RE) term.
In general, the energy contributions from these diagrams will
be scale and scheme dependent and therefore the validity of
the NO2B approximation depends on a choice of regularization
and cutoff.

In the single-particle basis, the second-order energy per
particle of the DD two-body term and RE three-body term are
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given by, respectively,

EDD
2

N
= 1

4ρ

(
4∏

i=1

Trσi
Trτi

∫
d3pi

(2π )3

)
〈12|V EP12|34〉〈34|V EP12|12〉

p2
1 + p2

2 − p2
3 − p2

4

× n(p1)n(p2)n(p3)n(p4) (2π )3δ3(p1 + p2 − p3 − p4), (35a)

ERE
2

N
= 1

36ρ

(
6∏

i=1

Trσi
Trτi

∫
d3pi

(2π )3

)
〈123|VEA123|456〉〈456|VEA123|123〉

p2
1 + p2

2 + p2
3 − p2

4 − p2
5 − p2

6

× n(p1)n(p2)n(p3)n(p4)n(p5)n(p6) (2π )3δ3(p1 + p2 + p3 − p4 − p5 − p6). (35b)

Goldstone diagrams for these two expressions are given in Fig. 6. Converting to relative and center-of-mass coordinates, noting
that the spin-isospin traces factorize to give numerical prefactors,4 and simplifying we find,

EDD
2

N
=

(
6 ce

f 4
π �χ

)2 6

ρ

∫
dk dk′ d3P

32π7
k2 k′2 ρ2

f (P,k,k′)

k2 − k′2 Q+(P,k′; kF) Q−(P,k; kF) (36)

for the density-dependent term, where the angular integrals over k̂ and k̂′ have been done exactly, and

ERE
2

N
=

(
ce

2f 4
π �χ

)2 4

ρ

∫
d3k d3k′ d3j d3j′d3W

(2π )15

f (k,j )2f (k′,j ′)2

k2 + 3
4j 2 − k′2 − 3

4j ′2

× n(W/3 + j) n(W/3 + j′) Q−(W/3 − j/2,k; kF) Q+(W/3 − j′/2,k′; kF) (37)

for the residual where W = p1 + p2 + p3 is the center-of-mass momentum of the three-particle system. As in the NN sector,
the Pauli operators involving the Jacobi momenta can be angle-averaged giving,

ERE
2

N
=

(
ce

2f 4
π �χ

)2 4

ρ

∫
dk dk′ dj dj ′ dW

32π10
k2 k′2 j 2 j ′2 W 2 f (k,j )2f (k′,j ′)2

k2 + 3
4j 2 − k′2 − 3

4j ′2 Q+(W,j ′,k′) Q−(W,j,k), (38)

where the derivation and functional forms of the three-body hole Q−(W,j,k) and particle Q+(W,j ′,k′) angle-averaged operators
are given in Appendix D. For three-body potentials without angular dependence like our three-body contact, this procedure
is exact. The accuracy of applying the angle-average approximation to three-body potentials with pion exchange is an open
question.

In making estimates for the DD diagram we assume, as in the NN case, that the particle relative momentum is sufficiently
larger than the total and hole relative momentum, k′ � P,k. This leads to the same approximations employed in Eq. (11). Also
we set the total momentum to zero (P = 0) in the function ρf as P ∼ kF and its effect in the exponential of ρf will be small. This
approximation has been investigated previously and shown to be quite accurate, see, e.g., Refs. [18,40,42]. These approximations
then yield,

EDD
2

N
≈

(
6 ce

f 4
π �χ

)2 6

ρ

∫
dk dk′

8π6
k2 k′2 ρ2

f (0,k,k′)

k2
av − k′2 Q+(Pav,k

′; kF) �

(
k

kF
,kF

)
. (39)

For the RE diagram, we assume the integrand is dominated by regions where the particle Jacobi momenta is sufficiently larger
than the total and the hole Jacobi momenta, k′,j ′ � W,j,k. Analogously to the NN sector, the hole Jacobi momenta in the
energy denominator and the total momentum W in the particle Pauli blocker are replaced with their RMS averages,

ERE
2

N
≈

(
ce

2f 4
π �χ

)2 4

ρ

∫
dk dk′ dj dj ′ dW

32π10
k2 k′2 j 2 j ′2 W 2 f (k,j )2f (k′,j ′)2

k2
av + 3

4j 2
av − k′2 − 3

4j ′2 Q+(Wav,j
′,k′) Q−(W,j,k), (40)

where the RMS values for j and W are,

jav =
√

2

5
kF, Wav =

√
9

5
kF. (41)

As a result of the approximations applied in Eq. (40), the
integrations over the hole and particle phase space factorize.
The hole and particle phase space in Eq. (39) also nearly

4The factors are 24 for the density-dependent diagram and 144 for
the residual diagram.

factorize with slight residual coupling in the ρf function of
Eq. (34) via integrating the two exponentials in Eq. (31b)
over the single-particle hole state. Figure 7 shows plots of
the exact and estimated values of the second-order energy
per particle at two commonly used 3N cutoffs. For both
cutoffs, the estimates do an excellent job of reproducing
the exact values with absolute errors in the DD diagram
of 0.05 and 0.02 MeV for �3N = 2.0 and 2.5 fm−1, re-
spectively, near saturation. These results confirm that our
approximations are well motivated and capturing the relevant
physics.
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FIG. 6. Goldstone diagrams of the second-order energy for VE

and V E .

A figure of merit for the validity of the NO2B approxima-
tion is the dimensionless ratio,

R ≡ ERE
2

EDD
2

, (42)

where the ratio terms can either be exact values or our
estimates. Figure 7 shows this ratio as a function of the
dimensionless quantity kF/�3N both in the exact case and for
our estimates. The exact ratio is very well reproduced by our
estimates withR ∼ 1 at around a value of kF/�3N ∼ 0.33. The
behavior of the ratio R can be understood by noting that at low
kF/�3N , a good deal of phase space exists between the Fermi
surface and the cutoff. As the RE diagram has three particles
and three holes compared to the DD’s two particles and four
holes, the extra particle phase space increases the comparative
importance of the residual term. As kF/�3N is raised, the
particle phase space becomes constrained5 decreasing the
residual energy. For comparison, dimensional regularization
with minimal subtraction as done in Ref. [47] gives R ≈ 1/2
at all densities. Note that Fig. 7 only shows this ratio for
the regulator choice in Eq. (29); local regulators with similar

5In an analogous way to Fig. 5 but with three Fermi spheres.

cutoffs in nuclear matter give much larger residual terms
[14] cf. Ref. [48]. Although 3N potentials with momentum
dependence will modify the ratio plot in Fig. 7, it serves as
a quantitative starting point for the relative importance of the
DD and RE terms. Furthermore, the accuracy of our estimates
support a phase-space approach for the 3N diagrams as well
as extensions to higher orders in MBPT.

V. CONCLUSION

Chiral potentials with soft cutoffs and renormalization
group approaches have resulted in nuclear potentials much
more amenable to perturbative approaches, but a systematic
power counting is lacking. In this paper, we revisited power
counting in nuclear matter with the AV18 potential softened
using the SRG. Utilizing physically motivated approximations
based on phase space, we factorized momentum integrals
appearing in individual terms of the pp and hh ladders. These
approximations yield high-fidelity estimates of the energy
per particle in nuclear matter for different diagrams as well
as expansion parameters for each channel. We then briefly
showed why our analysis does not imply perturbativeness in
the unitary limit. For 3N forces, a pure contact at second order
in MBPT was also considered along with the validity of the
NO2B approximation.

Our NN estimates were applied solely for the AV18
potential in the 1S0 and 3S1-3D1 partial waves. For the two SRG
scales λ = 4.0 and 2.0 fm−1, the absolute difference between
an exact calculation and our estimates near saturation is, at
worst, a few tenths of an MeV per particle going up to fourth
order. These channels were also found to be perturbative in
the pp ladder starting around the SRG scale λ = 4.0 fm−1.
For both the unevolved potential and all considered SRG
scales, the hh channel was found to be perturbative. Starting
around λ = 2.0 fm−1, terms in the hh ladder were found
to be comparable in importance to terms in the pp ladder
near saturation density. This reinforces previous suggestions

FIG. 7. (a) The second-order energy per particle in nuclear matter is plotted as a function of density for the density-dependent (DD) and
residual (RE) diagrams of the 3N contact VE at two different cutoffs �3N . Both exact (solid) and estimates (dashed) are shown for each diagram
and cutoff. (b) The dimensionless ratio in Eq. (42) is plotted as a function of the Fermi momentum over the 3N cutoff.
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[10,11] that performing perturbation theory in the potential
itself may be sufficient for softened interactions. Although
we have confined our NN discussion to AV18 to illustrate
the efficacy of our estimate formalism and the onset of
perturbativeness for a more traditional hard-core potential,
the same analysis can be applied to potentials from χEFT.
Because of the flow to universal potentials that is well realized
by λ = 2.0 fm−1, the numerical results from χEFT for this λ
and below will be the same as for AV18.

In the 3N sector, we also examined the simplest interaction
at second order in MBPT, a spin-independent contact term.
This interaction was normal ordered with respect to our
finite-density reference state to produce an effective two-
body force. Both the two-body and residual three-body force
were calculated at second order and compared to estimates.
The estimates were found to closely reproduce the energy
per particle in nuclear matter as well as the ratio of the
two second-order terms. The NO2B approximation was then
shown, for our simple interaction, to break down in the vicinity
of kF/�3N ∼ 0.33.

Our analysis does not directly extend to the particle-hole
channel, as the results in Appendix B do not apply and the
partial waves do not factorize. Assessing the ultimate size
of particle-hole contributions will be crucial to a systematic
power counting for softened interactions. Other topics to be
studied include explorations of power counting with novel
SRG generators [49], one-body potentials, chiral effective
field theory potentials, and around different reference states.
SRG evolution of 3N forces is also relevant though we expect
induced 3N forces to be short ranged rendering our analysis
in Sec. IV directly applicable. We also want to understand
the impact of more complicated energy spectra as well as the
scaling of higher many-body forces. Work on these fronts is
ongoing.
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APPENDIX A: RULES FOR GOLDSTONE DIAGRAMS

Here we list the rules for Goldstone diagrams with no one-
body potentials, see, e.g., [4,30].

(i) Integrate and/or sum over all internal momenta and
spin-isospin degrees of freedom.

(ii) Upward (downward) arrows designate particle (hole)
states. The momentum magnitudes of these states
satisfy the distribution functions,

n(phole), n(ppart.) ≡ 1 − n(ppart.), (A1)

for holes and particles respectively where n(p) is the
usual Fermi-Dirac distribution at zero temperature,

n(p) ≡ �(kF − |p|). (A2)

(iii) Lines that close on themselves are counted as holes.
(iv) A potential interaction corresponds to a dashed line

or vertex. Each is of the form:

〈ab|VNN (1 − P12)|cd〉, 〈abc|V3NA123|def 〉, . . . ,

(A3)

where the labels on the right enter and the lines on
the left leave the interaction. Note that all interactions
are antisymmetrized such that one diagram describes
both direct and exchange terms.

(v) Between successive vertices, there exist an energy
denominator of the form,

Q

E0 − H0
= Q∑

Eh − ∑
Ep

, (A4)

where Q is a Pauli blocking operator that enforces
the requirements of rule (ii). Ep, Eh are the energies
of particles and holes respectively. Note that Ep, Eh

are not only free kinetic energies but also include
self-energy terms.

(vi) An overall minus sign of the form,

(−1)h+l , (A5)

where h is the number of hole lines and l is the number
of closed loops.

(vii) Include a factor of 1
n! for each set of n equivalent lines.

Lines are equivalent if they begin and end at the same
interaction and go in the same direction.

APPENDIX B: POTENTIALS AND LADDERS
FOR N N INTERACTIONS

1. Partial-wave basis

A given two-body energy contribution in MBPT has the
generic form of,∑

αβ...χω

〈α|VNN |β〉 . . . 〈χ |VNN |ω〉, (B1)

where α, β, . . ., χ , ω are our basis states with a complete set
of quantum numbers and VNN is our antisymmetrized NN
potential. As our goal is to evaluate energy contributions, all
quantum numbers are summed (integrated) over. A two-body
NN state |α〉 expressed in a single-particle basis in momentum
representation is given by a product state,

|α〉 = |p1p2〉 ⊗ |σ1σ1z; σ2σ2z〉 ⊗ |τ1τ1z; τ2τ2z〉, (B2)

where pi is the single-particle momentum of nucleon i, σi and
σiz are the spin of nucleon i and the spin projection along the
quantization axis, and τi and τiz is the isospin of nucleon i and
the isospin projection along the quantization axis. However,
in order to use our SRG evolved potentials, it is necessary to
work instead with elements in a partial wave basis.

First, the single-particle momentums pi are converted to
relative momentum k and center-of-mass momentum P,

k = p1 − p2

2
, P = p1 + p2. (B3)
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The spins of the two nucleons can also be coupled to the total
spin S and total spin projection Sz of the NN state via,

|σ1σ1z; σ2σ2z〉 =
∑
SSz

CSSz
σ1σ1zσ2σ2z

|SSz〉,

where CSSz
σ1σ1zσ2σ2z

= 〈SSz|σ1σ1z; σ2σ2z〉, (B4)

and the C terms are Clebsch-Gordan (CG) coefficients with
the usual restrictions on the sums |σ1 − σ2| � S � |σ1 + σ2|
and −S � Sz � S. The individual isospins are coupled to total
isospin T and isospin projection Tz in an identical way. Next,
using the decomposition of a wave vector,

|k〉 = 4π
∑
lm

il|klm〉Y ∗
lm(k̂), (B5)

where k is the magnitude, l is the orbital angular momentum,
m is the orbital angular momentum projection, and Y ∗

lm are

spherical harmonics, the basis can then be recoupled to total
angular momentum J and projection Jz,

|lmSSz〉 =
∑
JJz

CJJz

lmSSz
|JJz〉. (B6)

Our single-particle states are then expressed as,

|12〉 = 4π
∑
lSJT

∑
mSz

∑
JzTz

|kP(lS)JJzT Tz〉il Y ∗
lm(k̂), (B7)

where we use the shorthand |1〉 = |p1σ1σ1zτ1τ1z〉.
In this basis, we enforce various symmetries of our

interaction VNN , namely translational, Galilean, and rotational
invariance, conservation of total spin, and isospin invariance
and charge independence. After also incorporating the Pauli
principle, matrix elements of VNN satisfy

〈k′P′(l′S ′)J ′J ′
zT

′T ′
z |VNN |kP(lS)JJzT Tz〉 = 〈k′(l′S ′)J ′T ′|VNN |k(lS)JT 〉(1 − (−1)l+S+T )

× (2π )3δ3(P − P′) δS,S ′δJ,J ′δJz,J ′
z
δT ,T ′δTz,T ′

z
. (B8)

2. Particle-particle and hole-hole simplification

When angle averaging the Pauli blocking operators Q±, the special form of the pp and hh ladders ensures that different partial
waves in the ladder do not couple together unless the potential couples them explicitly. This occurs because each single-particle
label is uniquely matched with another one in a given bra and ket, i.e., for a given pp or hh diagram in the ladder, any two lines
that leave a potential together also enter a potential together. To see this, we look at a particular pair of single-particle labels
occurring in the interior of the ladder, ∑

στ

∫
d3p1

(2π )3

d3p2

(2π )3
|12〉〈12| Q(p1,p2), (B9)

where Q is either a hole or particle Pauli blocking operator and we have inserted the sums over the single-particle numbers.
Going to a partial wave basis and only keeping the relevant quantum numbers in the bra and ket for potential matrix elements we
get,

(4π )2
∑
στ

∫
d3k

(2π )3

d3P
(2π )3

∑
SS ′

∑
JJ ′

∑
ll′

∑
mm′

∑
T T ′

∑
TzT ′

z

∑
SzS ′

z

∑
JzJ ′

z

|k(lS)JT 〉〈k(l′S ′)J ′T ′| il−l′

×Q(P/2,k; kF) Yl′m′(k̂)Y ∗
lm(k̂) CSSz

σ1σ1zσ2σ2z
CS ′S ′

z
σ1σ1zσ2σ2zCJJz

lmSSz
CJ ′J ′

z

l′m′S ′S ′
z
CT Tz

τ1τ1zτ2τ2z
CT ′T ′

z
τ1τ1zτ2τ2z . (B10)

The sums over the single-particle spins and isospins with CG orthogonality fix T = T ′ and S = S ′ along with Tz = T ′
z and

Sz = S ′
z,

2

π

∫
d3k

d3P
(2π )3

∑
SSz

∑
JJ ′

∑
ll′

∑
mm′

∑
T Tz

∑
JzJ ′

z

|k(lS)JT 〉〈k(l′S)J ′T | Q(P/2,k; kF) il−l′Yl′m′ (k̂)Y ∗
lm(k̂) CJJz

lmSSz
CJ ′J ′

z

l′m′SSz
. (B11)

Next we make the assumption that all Pauli blockers are angle averaged,

Q±(P/2,k; kF) → Q±(P,k; kF), (B12)

such that d�k dependence is only present in the spherical harmonics. Note that Eq. (B12) is automatic if we are considering
scattering in free space (Q+ → 1) or if our potential is pure s wave (l = 0). With no other angular dependence in the integrand,
the solid angle integration can then be done using spherical harmonics orthogonality,∫

d�k Yl′m′ (k̂)Y ∗
lm(k̂) = δll′ δmm′ . (B13)

This simplifies Eq. (B11) to

2

π

∫
dk k2

∫
d3P

(2π )3
Q(P,k; kF)

∑
SSz

∑
JJ ′

∑
lm

∑
T Tz

∑
JzJ ′

z

|k(lS)JT 〉〈k(lS)J ′T | CJJz

lmSSz
CJ ′J ′

z

lmSSz
, (B14)
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and CG orthogonality requires that J = J ′ along with Jz = J ′
z. Therefore, when considering pp or hh ladder diagrams with the

angle-averaging approximation for Pauli blockers, each partial wave not coupled by the potential factorizes,

2

π

∫
dk k2

∑
l

[ ∫
d3P

(2π )3

∑
SJT

∑
JzTz

]
|k(lS)JT 〉〈k(lS)JT | Q(P,k; kF), (B15)

where we have grouped some of the sums in brackets for clarity. The bracketed quantum numbers are diagonal across our NN
potential matrix elements and hence only one sum will contribute to any given Goldstone energy diagram.

APPENDIX C: HOLE-HOLE CHANNEL

The energy per particle of the nth rung in the hole-hole ladder assuming angle averaging for Pauli blockers is given by,

E
(n)
hh

N
=

(
1

2

)n( 2

π

)n

2n

(
m

h̄2

)n−1 (−1)n−1

ρ

∫
d3P

(2π )3

∫
dk1 k2

1 · · ·
∫

dkn k2
n (2T + 1)(2J + 1)

× Q+(P,k1; kF) Q−(P,k2; kF) · · · Q−(P,kn; kF)(
k2

1 − k2
2

) · · · (k2
1 − k2

n

) 〈k1|V |k2〉 · · · 〈kn|V |k1〉. (C1)

To estimate these diagrams, energy denominators and the particle Pauli blocker are approximated as in the pp case,
1

k2
p − k2

h

≈ 1

k2
p − k2

av

, Q+(P,k; kF) ≈ Q+(Pav,k; kF). (C2)

Note that this averaging of momentum magnitudes automatically allows for factorization of the interior hole ladder from the outer
particle lines. However, handling the multiple hole Pauli blockers Q−(P,k; kF) requires more care. Both the total momentum P
and the hole relative momentum k are of order kF, resulting in no obvious factorization for the product of multiple hole Pauli
blockers. We have not found a way to average Q− that consistently reproduces the energy of a given rung in the ladder. To
estimate the energy diagram of a given rung in the hh ladder, we explicitly keep the total momentum P integral and its dependence
in the hole Pauli blockers. All momentum integrals are represented discretely on a Gauss-Legendre mesh with weights w. The
total momentum is summed over the interval 0 to 2kF with total number of points pmax,

E
(n)
hh

N
≈ 2

π

(
2m

πh̄2

)n−1 (−1)n−1

2π2ρ

n∑
ki

(2T + 1)(2J + 1) Q+(k1,Pav) k2
1 w1

(
1

k2
1 − k2

av

)n−1

× 〈k1|V |k2〉
pmax∑

j

(
P 2

j wj

√
Q−(Pj ,k2; kF) k2

2 w2 Fn−2
j

√
Q−(Pj ,kn; kF) k2

n wn

)〈kn|V |k1〉, (C3a)

where the hh kernel F is given by,

Fj =
√

Q−(Pj ,ka; kF) k2
a wa 〈ka|V |kb〉

√
Q−(Pj ,kb; kF) k2

b wb. (C3b)

Each of the individual j pieces in the parentheses is decoupled
from each other and can be computed independently. As in the
pp case, the hh kernel can be diagonalized as F is real and
symmetric,

Fn
j = LjD

n
j L

−1
j , (C4)

where an additional hh rung for a given value of the
total momentum Pj corresponds to an additional power of
the eigenvalue matrix Dj . Once pmax is set, all rungs of
the hh ladder in Eq. (C3a) carry approximately the same
computational load.

We have found that the product of multiple-hole Pauli
blockers does not seem to show strong sensitivity to the total
momentum P . Even for a value of pmax = 3, good energy
reproductions are found up to fourth order. Exact values for
the third- and fourth-order energy per particle in nuclear matter
along with our estimates are plotted in Figs. 8 and 9 for the

1S0 and 3S1-3D1 partial waves, respectively. The energy per
particle for both waves shows much less sensitivity at moderate
densities to the chosen SRG scale, i.e., less than an order of
magnitude near saturation. Contrast this with the pp channel
in Figs. 2 and 3 where the energy per particle varies by many
orders of magnitude depending on λ. To compare the relative
importance of terms in the two ladders, in Fig. 10 we plot
the absolute value of the ratio of the third-order term in the
pp ladder to the third-order term in the hh ladder along with
the same for fourth order in the 1S0 partial wave. We plot
the same quantities in Fig. 11 for the 3S1-3D1 partial wave as
well. As expected, for the unevolved potential in both partial
waves, the pp channel dominates over hh both at third and
fourth order. However, as λ lowers, the importance of hh
ladder terms increases until around λ ≈ 2.0 fm−1 where they
are comparable or even larger than the matching pp terms.
Interestingly, this appears to happen around the same SRG
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FIG. 8. (a) The absolute value of the third-order energy per
particle in nuclear matter for the hh channel is plotted as a function
of density ρ for the 1S0 partial wave using the AV18 potential. Both
exact (solid) and estimates (dashed) are shown for four different SRG
λ scales. Estimates are done with pmax = 10. (b) Same as (a) but for
fourth order in the hh channel.

scale for both the 1S0 and 3S1-3D1 channels again suggesting
that phase space is the determining factor.

The hh channel also appears perturbative at all shown
densities for each SRG scale just in looking at the relative size
of the third- and fourth-order contributions. We can attempt to
make this statement more rigorous by extracting an expansion
parameter from Eq. (C3a) though this is more involved than for
the pp case. There are two complications here that are absent
in the pp channel:

(i) By keeping the center of momentum P as an explicit
variable, each value for Pj will create a different
eigenvalue matrix Dj . The sum over different j means
that the contributions from the different matrices do not
factorize when calculating E

(n+1)
hh /E

(n)
hh . To circumvent

this, we look at all the matrices Dj and take the largest
eigenvalue εmax among this set. This is motivated by
the observation that this maximal value will control
behavior in the ladder for high orders.

FIG. 9. (a) The absolute value of the third-order energy per
particle in nuclear matter for the hh channel is plotted as a function
of density ρ for the 3S1-3D1 partial wave using the AV18 potential.
Both exact (solid) and estimates (dashed) are shown for four different
SRG λ scales. Estimates are done with pmax = 10. (b) Same as (a)
but for fourth order in the hh channel.

FIG. 10. (a) The absolute value of the ratio of the third-order
pp to hh ladder term is plotted as a function of density ρ for the 1S0

partial wave using the AV18 potential. Both exact (solid) and estimate
(dashed) calculations are shown for four different SRG λ scales. (b)
The same as (a) but for fourth-order.

(ii) The outer parts of the integrand in Eq. (C3a) now scale
with the number of rungs in the ladder due to the energy
denominators,

1

k2
1 − k2

av

. (C5)

Although the outer part of the integrand can be
diagonalized similarly to the hh kernel, there will
be mixing between the different eigenvalues of the
two matrices. Instead we create a worst-case value
for the expansion parameter by approximating the
momentum k1 by its smallest value k1,min allowed by
Pauli blocking,

k1,min =
√

k2
F − P 2

av/4 (C6)

such that Eq. (C5) is maximized.

Our expansion parameter η for the hh channel is then given
by,

η = 2m

πh̄2

|εmax|
k2

1,min − k2
av

. (C7)

FIG. 11. (a) The absolute value of the ratio of the third-order pp
to hh ladder term is plotted as a function of density ρ for the 3S1-3D1

partial wave using the AV18 potential. Both exact (solid) and estimate
(dashed) calculations are shown for four different SRG λ scales. (b)
The same as (a) but for fourth order.
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FIG. 12. (a) The expansion parameter η in Eq. (C7) is plotted
as a function of density ρ for the 1S0 partial wave using the AV18
potential. Four different SRG λ scales are shown. (b) The same as (a)
but for the 3S1-3D1 partial wave.

This value is plotted as a function of density in Fig. 12 for
the 1S0 and 3S1-3D1 partial waves. As can be seen, even for
our worst-case analysis, the hh channel is perturbative for all
four SRG scales all the way up to saturation. We speculate
that this can be primarily attributed to the smaller region
of hole-hole phase space available to the system, which is
unaffected by the running of the SRG. Perturbativeness for
the hh and pp channels depends on both the phase space and
the interaction changing. The former is mostly fixed for the
hh channel so it is the interaction that drives the dependence
of η on λ. As the SRG runs to lower λ, the low-momentum
part of the potential deepens. The larger eigenvalue from the
increased attractiveness of the potential at small momentum
is then reflected in an increase of η as can be seen in
Fig. 12.

APPENDIX D: ANGLE-AVERAGING 3N FERMI SPHERES

In this Appendix, we angle average the 3N Pauli blockers. We first consider the case of Pauli blocking for three holes and
then for three particles.

1. Three holes

First we do the integral over the solid angle k̂,

B ≡ 1

4π

∫
d�k Q−(W/3 − j/2,k; kF) with 0 � B � 1, (D1a)

B = k2
F − k2 − W 2/9 − j 2/4 + W · j/3

k
√

4W 2/9 + j 2 − 4W · j/3
. (D1b)

Solving for the bounds on B in terms of the angle term cos θWj , hereafter just called cos θ , gives,

cos θ = α3, cos θ = R+ or R−, (D2a)

α3(kF,W,j,k) ≡ 3

Wj

(
W 2/9 + j 2/4 − k2

F + k2
)
, (D2b)

R±(kF,W,j,k) ≡ 3

Wj

(
W 2/9 + j 2/4 ± 2kkF − k2

F − k2
)
, (D2c)

where α3 is for B = 0 and R+ and R− are the two roots for B = 1.
Now the angular integral over ĵ can be done,

Q−(W,k,j ) = 1

4π

∫
d�j Ih with Ih ≡ n(W/3 + j) × B, (D3)

where Q− is the fully angle-averaged term and the constraint on B in Ih is implicit. The integral over B is given by, substituting
χ = cos θ , ∫

Bdχ =
√

9j 2 − 12χjW + 4W 2
[
9j 2 − 12χjW + 4

(
27k2 − 27k2

F + W 2
)]

216Wkj
≡ β(χ ). (D4)

From the Fermi sphere term, n(W/3 + j), we get a constraint on the angle,

if cos θ � α1 then Ih = 1 × B otherwise Ih = 0, (D5a)

α1(kF,W,j ) ≡ 3

2Wj

(
k2

F − W 2/9 − j 2
)
. (D5b)
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Observing that α3 > R− from the B bounds above, we get the constraints that

if cos θ < α3 then Ih = 0, (D6a)

if cos θ > α1 then Ih = 0, (D6b)

if cos θ > R+ then Ih = 1, (D6c)

otherwise Ih = B. (D6d)

Note that keeping B non-negative and avoiding the branch point in the denominator requires that k < kF, which in turn implies
that R+ > α3. The two different possible orderings of the constraints are then: α3 < R+ < α1 and α3 < α1 < R+. From these
constraints, the piecewise values of Q− are then,

Q− = 1

2

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if α3 > 1 or α1 < −1 or α3 > α1,
tu + 1 if R+ < α1 and R+ < −1

β(1) − β(tl) if R+ < α1 and R+ > 1

β(tu) − β(tl) if α1 < R+
β(R+) − β(tl) + tu − R+ otherwise

, (D7a)

tu = min{α1,1}, tl = max{α3, − 1}. (D7b)

2. Three particles

Again, we first do the solid angle integral over k̂,

1

4π

∫
d�k Q+(W/3 − j/2,k; kF) = B with 0 � B � 1 where B ≡ −B, (D8)

and then the solid angle integral ĵ,

Q+(W,k,j ) = 1

4π

∫
d�j Ip where Ip ≡ n(W/3 + j) × B, (D9)

where now the constraint from the lone Fermi sphere flips the sign from the hh case,

if cos θ � α1(kF,W,j ) then Ip = 1 × B otherwise Ip = 0. (D10)

Now, note that the sign flip in B implies two different sets of constraints depending on the magnitudes of k and kF due to the
branch point. For k < kF, and looking at the bounds on B found above,

if cos θ < α1 then Ip = 0, (D11a)

if cos θ > α3 then Ip = 0, (D11b)

if cos θ < R− then Ip = 1, (D11c)

otherwise Ip = B, (D11d)

and gives the orderings α1 < R− < α3 and R− < α1 < α3. We also get the constraints for k > kF,

if cos θ < α1 then Ip = 0, (D12a)

if cos θ < R− then Ip = 1, (D12b)

if cos θ > R+ then Ip = 1, (D12c)

otherwise Ip = B. (D12d)

giving the orderings α1 < R− < R+, and R− < α1 < R+, and R− < R+ < α1. Using the following notations:

Q+ = Q1
+ + Q2

+ (D13a)

β(χ ) ≡ −β(χ ), Q1
+ ≡ 1

4π

∫
d�j Ip θ (kF − k), Q2

+ ≡ 1

4π

∫
d�j Ip θ (k − kF) (D13b)

Q2
+ = Q2,a

+ + Q2,b
+ , (D13c)

Q2,a
+ = Q2

+ θ (R− − α1), Q2,b
+ = Q2

+ θ (α1 − R−), (D13d)
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and working with the different possible orderings of the constraints, the angle-averaged terms are given by,

Q1
+ = 1

2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if α1 > 1 or α3 < −1 or α1 > α3

1 − pl if R− > α1 and R− > 1

β(pu) − β(−1) if R− > α1 and R− < −1

β(pu) − β(pl) if α1 > R−
β(pu) − β(R−) + R− − pl otherwise

, (D14a)

Q2,a
+ = 1

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if α1 > 1

1 − pl if R− > 1

β(1) − β(−1) if R− < −1 and R+ > 1

2 if R+ < −1

β(1) − β(R−) + R− − pl if R− < 1 and R+ > 1

β(R+) − β(−1) + 1 − R+ if R− < −1 and R+ < 1

β(R+) − β(R−) + 1 − R+ + R− − pl otherwise

, (D14b)

Q2,b
+ = 1

2

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if α1 > 1
1 − pl if α1 > R+
β(1) − β(pl) if R+ > α1 and R+ > 1
2 if R+ > α1 and R+ < −1
β(R+) − β(pl) + 1 − R+ otherwise

, (D14c)

pu = min{α3,1}, pl = max{α1, − 1}. (D14d)
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