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Weinberg eigenvalues for chiral nucleon-nucleon interactions
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We perform a comprehensive Weinberg eigenvalue analysis of a representative set of modern nucleon-nucleon
interactions derived within chiral effective field theory. Our set contains local, semilocal, and nonlocal potentials,
developed by Gezerlis et al. [Phys. Rev. Lett. 111, 032501 (2013)], Epelbaum et al. [Phys. Rev. Lett. 115, 122301
(2015)] and Entem et al. [Phys. Rev. C 96, 024004 (2017)] as well as Carlsson et al. [Phys. Rev. X 6, 011019
(2016)], respectively. The attractive eigenvalues show a very similar behavior for all investigated interactions,
whereas the magnitudes of the repulsive eigenvalues sensitively depend on the details of the regularization scheme
of the short- and long-range parts of the interactions. We demonstrate that a direct comparison of numerical
cutoff values of different interactions is in general misleading due to the different analytic form of regulators; for
example, a cutoff value of R = 0.8 fm for the semilocal interactions corresponds to about R = 1.2 fm for the
local interactions. Our detailed comparison of Weinberg eigenvalues provides various insights into idiosyncrasies
of chiral potentials for different orders and partial waves. This shows that Weinberg eigenvalues could be used
as a helpful monitoring scheme when constructing new interactions.

DOI: 10.1103/PhysRevC.96.054002

I. INTRODUCTION

Chiral effective field theory (EFT) has become the standard
method to generate microscopic nuclear Hamiltonians for few-
and many-body calculations. The dominant implementation is
based on nucleon and pion degrees of freedom (i.e., without
explicit delta resonances) and an organization dictated by
the EFT power counting known as Weinberg counting. This
specifies a diagrammatic expansion for inter-nucleon poten-
tials, which has been described in detail in several reviews
(e.g., see Refs. [1,2]). But while the diagrammatic content
is prescribed, a potential requires specifying an ultraviolet
regularization scheme with an associated scale parameter or
possibly different parameters in separate many-body sectors.
Such a scheme includes additional freedom in choosing the
functional form of the regulator function. Thus, there is an
infinite variety of candidate potentials to describe low-energy
nuclear phenomena.

Up to a few years ago, a particular chiral EFT nucleon-
nucleon (NN) potential, specified over a decade ago in
Ref. [3] and supplemented with the leading three-nucleon (3N)
interaction, was used in almost all many-body calculations
(however, with different choices for 3N regulators and fits).
Improvements in many-body methods and the advance of
high-performance computing has enabled application to a wide
variety of nuclear systems (e.g., see Refs. [4–7]). While there
have been notable phenomenological successes, the improved
precision and reach of these calculations have manifested
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deficiencies in the Hamiltonian. As a result, various groups
have revisited the construction and fitting of chiral potentials to
better realize the EFT advantages of systematic order-by-order
improvement with quantifiable errors.

Several different families (schemes) of nuclear interactions
using Weinberg counting have been introduced, with a variety
of parameter estimation methods used to fit the low-energy
constants to nuclear data. These can be classified according to
the regulator implementation (see Sec. II) as local, semilocal,
or nonlocal, with broad freedom to choose the functional form
of the regulator within each category. The NN interaction
has been pushed to fifth order in Weinberg counting (“next-
to-next-to-next-to-next-to-leading order” or N4LO) [8–10],
although for consistency with 3N interactions various other
lower order NN interactions are available and have been
applied. In principle, these interactions should all be capable
of describing the same phenomena, but in practice the detailed
differences can be important. While effects of the regulator
(so-called regulator artifacts) at a given order in the expansion
are supposed to be removed systematically at higher orders,
actual calculations show significant influence of artifacts on the
EFT convergence pattern. In this work, we apply the eigenvalue
analysis methods developed by Weinberg [11] (see also
Refs. [12–14]) to compare several sets of chiral NN potentials.

The Weinberg eigenvalue analysis is a versatile diagnostic
tool to quantify the perturbativeness of nuclear interactions
and provide insight into the physics of individual partial-wave
channels. Originally, Weinberg developed this method in
the early 1960s while working to understand bound states
in nonrelativistic quantum mechanics (as a warm-up to
understanding composite particles in quantum field theory)
and how to introduce quasiparticles to cure nonconvergent
Born series [11,15]. More recent applications of the Weinberg
analysis [16–21] provide quantitative insights into how
renormalization-group (RG) techniques act in softening
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TABLE I. Short- and long-range regulators for the local, semilocal, and nonlocal potentials of Refs. [9,10,22–25] with r̃ ≡ r/R0 and
p̃ ≡ p/� in the second and third columns, where α = (π�(3/4)R3

0)
−1

is a normalization constant and ν is the order in the chiral expansion. For
the EMN potentials, the regulator exponent n2 = 2 is applied to the pion exchanges and n2 = 4 for one-pion exchange beyond next-to-leading
order (NLO). The highest available chiral order and the cutoff ranges are given in the fifth column, while the determination of the πN low-energy
constants (LECs)/2π regularization and the fitting protocol are given in the second-to-last and the last columns, respectively. SFR and DR
denote spectral-function and dimensional regularization, whereas PWA stands for partial-wave analysis.

Regulator functions
Regulator Chiral order/ πN/ Fitting protocol

Short Long exponent(s) cutoff range 2π regularization
(contact) (pion exchanges)

Local

GT+ [22,23] αe−r̃n
1 − e−r̃n

n = 4 Up to N2LO Fixed values Nijmegen PWA [30]
R0 = 0.9−1.2 fm from Ref. [29]

SFR

Semilocal

EKM [9,24] e−p̃n1 e−p̃′n1
(
1 − e−r̃2)n2 n1 = 2 Up to N4LO Fixed values [24] Nijmegen PWA [30]

n2 = 6 R0 = 0.8−1.2 fm DR
� ≈ 493−329 MeV

Nonlocal

sim [25] e−p̃2n
e−p̃′2n

e−p̃2n
e−p̃′2n

n = 3 Up to N2LO Fitting parameter Fits to NN, πN, and
� = 450−600 MeV in simultaneous fit few-body systems 2,3H,3He

SFR

EMN [10] e−p̃2n1 e−p̃′2n1 e−p̃2n2 e−p̃′2n2 n1 > ν/2 Up to N4LO Fixed values NN data from 1955–2016 [32]
n2 = 2 (4) � = 450 − 550 MeV from Ref. [31]

SFR

different components of nuclear interactions and how the
effects of potentials are modified at finite density.

By perturbativeness we mean the order-by-order conver-
gence pattern in a perturbative many-body expansion (which
needs to be distinguished from an order-by-order convergence
in the chiral EFT expansion). For NN scattering in free
space, this expansion is the Born series. For many-body
systems such as infinite matter and finite nuclei, this expansion
is many-body perturbation theory (MBPT). While we are
particularly interested in whether MBPT converges and at
a practical rate (e.g., at low-enough order to be tractable),
the characterization of perturbativeness is of more general
concern. For nonperturbative many-body methods using a
basis expansion, the computational resources for convergence
depend strongly on perturbativeness. It is also relevant for iden-
tifying or justifying reference states such as Hartree-Fock and
for motivating microscopic nuclear density functional theory.

The plan of the paper is as follows. In Sec. II we characterize
three classes of regularization schemes used in recently
formulated chiral NN interactions and critically compare
regulator parameters. In Sec. III we review the relevant
features of the Weinberg eigenvalue analysis, illustrating their
general behavior in the complex plane, and document the use
of the eigenvalues to approximate phase shifts for modern
interactions. Eigenvalues at different orders and in different
partial-wave channels are given for the various chiral NN
potentials in Sec. IV, highlighting differences from regulators
and features at different orders, which also depend on the
different types of regularization schemes. Section V contains
our summary and outlook.

II. NN INTERACTIONS AND REGULARIZATION

During recent years there has been significant progress in
developing new nuclear forces within chiral EFT (see, e.g.,
Refs. [9,10,22–25] including also explicit delta resonances
in Refs. [26–28]). The development of novel advanced
fitting frameworks, the exploration of new regularization
schemes, and the derivation of more systematic ways to
estimate theoretical uncertainties has resulted in new families
of interactions that allow nuclei and nuclear matter to be
systematically studied within ab initio frameworks at different
orders in the chiral expansion.

In this section, we briefly summarize properties of these
new interactions to prepare for diagnosing them using the
Weinberg eigenvalue analysis. In particular, we focus on three
sets of potentials, commonly referred to as local, nonlocal, and
semilocal, which are characterized by different regularization
schemes to separate the long-distance from the short-distance
physics. To be specific, we consider the local potentials of
Refs. [22,23] by Gezerlis, Tews et al. (GT+), the semilocal
potentials of Refs. [9,24] by Epelbaum, Krebs, and Meißner
(EKM), the nonlocal potentials of Ref. [25] by Carlsson
et al. (sim), and the nonlocal potentials of Ref. [10] by
Entem, Machleidt, and Nosyk (EMN). Table I summarizes
properties of these potentials including the specific form of
the employed regulators as well as the available orders in the
chiral expansion, the pion-nucleon (πN) low-energy constants
(LECs), the 2π regularization, and the fitting protocols. For
more detailed information, we refer to the given references.

Local interactions use regulators that only depend on the
momentum transfer q = p′ − p in momentum space or on the
relative distance r in coordinate space, respectively. Here p and
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p′ denote the relative momenta of the initial and final two-body
states. The derivation of local interactions in Refs. [22,23]
opened new ways for applying nuclear interaction derived
within chiral EFT in quantum Monte Carlo (QMC) calcula-
tions [33–36]. The benefits of locally regularizing long-range
physics such as the pion-exchange interactions are discussed
in Ref. [24]. These include the conservation of the analytical
structure of the T -matrix close to the pion threshold and the fact
that no spectral function regularization (SFR) is needed in this
regularization approach (see also Ref. [23]), with dimensional
regularization (DR) applied in Ref. [24]. However, for the
short-range couplings the local regularization leads to a mixing
of different partial-wave channels due to the dependence of q
on the angle cos θpp′ . As a consequence, S-wave short-range
contact interactions generally induce nonvanishing contribu-
tions in higher partial waves after regularization [23], whereas
for nonlocal regulators, which only depend on the magnitude
of the relative momenta p and p′, such short-range interactions
remain restricted to only S waves. This leads in particular to
technical simplifications since different partial-wave channels
can be fitted independently.

The semilocal EKM interactions [9,24] combine the
conceptual advantages of locally regularized long-range in-
teractions with technical benefits of nonlocal short-range
interactions. In practice, the regularization of the long-range
parts is formulated in coordinate space and is characterized
by a cutoff scale R0, whereas the short-range regularization is
performed in momentum space which involves a cutoff scale
�. Physically, it is a natural assumption that these two scales
should be related. In Ref. [24], a mapping between the two
scales was motivated by considering the Fourier transforms of
Gaussians, which leads to the relation

�(R0) = 2

R0
. (1)

In Ref. [23], a cutoff mapping between momentum and
coordinate space was suggested by relating the integral over
the Fourier-transformed short-range regulator function (see
Table I),

flocal(q
2,R0) =

∫
dr αe−(r/R0)4

e−iq·r, (2)

with the integral over a sharp momentum cutoff:∫
dq flocal(q

2,R0) =
∫

dq θ (� − |q|). (3)

Obviously, there is no universal way to relate the coordi-
nate and momentum space cutoff scales. By comparing the
numerical values for � resulting from relations (1) and (3)
we obtain quite different numbers: for R0 = 0.8 fm we obtain
� = 493 and 614 MeV, respectively, whereas for R0 = 1.2 fm
we obtain � = 329 and 409 MeV. In Fig. 1 we show a contour
plot of the semilocal regulator with REKM

0 = 0.8 fm, i.e.,
� = 493 MeV in the S waves, and the Fourier transform
of the local short-range regulator with RGT+

0 = 1.2 fm in
the S, P , and D waves. We find good agreement in the
S waves for this chosen cutoff combination, with a least-
squares minimization indicating best agreement for R0 =
0.85 fm for the semilocal potential. However, we observe in
general a quite different behavior for the semilocal versus

FIG. 1. Contour plot for the short-range regulator of the GT+
and EKM potentials. (a) The nonlocal EKM regulator, which is
independent of the angular momentum, is plotted for � = 493 MeV,
while the local regulator, which depends on the partial wave, is shown
in the (b) S, (c) P , and (d) D waves for the cutoff R0 = 1.2 fm.
We find good agreement in the S waves for the cutoff combination
RGT+

0 = 1.2 fm and REKM
0 = 0.8 fm, assuming Eq. (1). A least-squares

minimization shows that the regulators in the S waves are most
comparable for REKM

0 = 0.85 fm.

the angular-dependent local regulator in momentum space,
where the latter does not cutoff contributions with p = p′.
Furthermore, the q2-dependent contacts at NLO and beyond
with p �= p′ are cut off much slower by the local regulator.
This shows that the comparison of the numerical values of R0
alone can be quite misleading due to the different regulator
forms for different interactions.

We can confirm this observation also for the long-range part
of the regulators. In Table II we show the distance r∗, where
flong(r∗,R0) = 1/2 for the cutoff range R0 = 0.8−1.2 fm.
Similarly to the short-range part of the regulators, we find
good agreement for RGT+

0 = 1.2 fm and REKM
0 = 0.8 fm.

Figure 2 confirms this result and shows that the regulator
functions agree well over the entire range of distances.
Therefore, it is natural to expect that the Weinberg eigenvalue
analysis will provide similar results for the long-range part

TABLE II. Distance r∗ where the long-range regulator function
takes the value flong(r∗,R0) = 1/2 for the GT+ (middle column)
and EKM (right column) regulator functions; see Table I. Results are
shown for a cutoff range of R0 = 0.8−1.2 fm. We find best agreement
for the cutoff combination RGT+

0 = 1.2 fm and REKM
0 = 0.8 fm.

R0 (fm) r∗
GT+ (fm) r∗

EKM (fm)

0.8 0.73 1.19
0.9 0.82 1.34
1.0 0.91 1.49
1.1 1.00 1.64
1.2 1.10 1.79
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FIG. 2. Plot of the long-range regulator functions for the GT+
(dashed) and EKM (solid) potentials with cutoffs R0 = 0.8−1.2 fm
(see Table I). The regulators corresponding to RGT+

0 = 1.2 fm (dashed
black line) and REKM

0 = 0.8 fm (solid light blue line) lead to the best
agreement.

for this cutoff combination of these two interactions, which
we focus on in Sec. IV.

III. WEINBERG EIGENVALUE ANALYSIS

The Weinberg eigenvalue analysis is a powerful tool to
quantify the perturbativeness of nuclear interactions. Pertur-
bativeness is of great importance for most of the many-body
frameworks presently used in nuclear physics. On the one
hand, the tractability of MBPT directly relies on the rapid
convergence of the perturbation series through suppression of
higher-order corrections, because otherwise the number of dia-
grams increases too fast with successive orders. To date, MBPT
has been applied to the calculation of the equation of state of
infinite nuclear matter up to third order (see, e.g., Refs. [37–
43]) and recently to fourth order [44]. In addition, MBPT has
been applied to the derivation of valence-space Hamiltonians
for open-shell nuclei (see, e.g., Refs. [5,45]) and recently to the
calculation of ground-state energies of closed-shell nuclei [46].

On the other hand, perturbativeness also plays a key role
for inherently nonperturbative many-body frameworks that
are based on basis expansions such as the no-core-shell
model [47], coupled-cluster theory [4], in-medium similarity
renormalization group [7], and the self-consistent Green’s
function method [48,49]. For these frameworks, strongly
nonperturbative interactions typically require a prohibitively
large number of basis states and prevent a reliable extraction
of converged results. In recent years, RG methods have been
developed in order to improve the perturbativeness of nuclear
interactions. However, such RG transformations can generally
only be performed approximately and thus lead to additional
uncertainties in many-body calculations [50,51].

We review here briefly the most important aspects of the
Weinberg eigenvalue analysis and refer to Ref. [11] for more
detailed discussions. To motivate the concept, we consider
for simplicity the Lippmann-Schwinger equation for the free-
space T -matrix in the center-of-mass frame,

T (W ) = V + V G0(W )T (W ) (4a)

=
∞∑

n=0

V (G0(W )V )n , (4b)

with the free propagator G0(W ) = (W − H0)−1, the kinetic
energy H0 = p2/m, where m is the averaged nucleon mass,
and W is the complex energy.

Iteration of the Born series (4b) may converge to a self-
consistent solution. Due to nonperturbative sources, however,
the convergence is by no means guaranteed; e.g., bound
states are poles of the T -matrix, which render the expansion
naturally divergent. To study convergence and the efficiency
of perturbation theory, Weinberg analyzed the eigenvalues of
the operator G0(W )V ,

G0(W )V |�ν(W )〉 = ην(W ) |�ν(W )〉 . (5)

The so-called Weinberg eigenvalues ην(W ) are defined in the
complex energy plane cut along the positive real axis and form
a discrete set for any value of W . In the following, we take
W = E + iε for positive energies.

Making use of the eigenvalue relation (5), the Born series
expansion (4b) is a geometric series which converges if and
only if all eigenvalues lie within the unit circle in the complex
plane, i.e., |ην(W )| < 1. The largest eigenvalue sets the rate of
convergence, if at all, where overall smaller magnitudes imply
faster convergence. When |ην(W )| > 1, the precise magni-
tudes of the Weinberg eigenvalues still have a dramatic impact
on the convergence in a nonperturbative many-body method.

We summarize here several definitions as well as selected
properties of ην(W ) relevant for this paper. Rewriting
the eigenvalue relation (5) as a modified Schrödinger
equation [11],(

H0 + V

ην(W )

)
|�ν(W )〉 = W |�ν(W )〉 , (6)

allows intuitively a physical interpretation: the eigenvalue
is effectively an energy-depending coupling η−1

ν (W ) which
rescales the interaction. Following the original discussion
by Weinberg, real bound states of the potential having
W = E < 0 (e.g., for the deuteron, E = −2.223 MeV)
correspond to ην(E) = 1. The modified Schrödinger equation
corresponds to the physical one in this case. More generally,
even though the original potential does not support a bound
state with binding energy E < 0, a scaled interaction η−1

ν (E)V
would have a bound state at E.

A purely attractive potential has only positive eigenvalues
for E < 0. However, a purely repulsive potential cannot have
a bound-state solution of the Schrödinger equation, which
naively seems to imply that the modified Schrödinger equation
(6) has no solutions. However, (6) may have a solution for
a sign-flipped interaction η−1

ν (E)V in which the Weinberg
eigenvalue is negative. Therefore, it is convention that a
positive (negative) eigenvalue is referred to as an attractive
(repulsive) eigenvalue.
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FIG. 3. Repulsive Weinberg eigenvalues for the N2LO NN
potentials GT+ (1.2 fm), EKM (0.8 fm), and sim (450 MeV)
(Trel = 290 MeV) as trajectories of energy in the complex plane,
starting on the negative real axes and evolving counterclockwise. We
show results for energies E = 0, 25, 66, 100, 150, 200, 250, and
300 MeV as circles in the 1S0 (left panel) and 3S1–3D1 channels
(right panel).

In the case of positive energies (E > 0) for W = E + iε
with ε → 0, the modified Schrödinger equation has complex
energy eigenvalues, leading to complex Weinberg eigenvalues.
Thus, we obtain complex (real) eigenvalues for positive
(negative) energies E. The same definition of attractive and
repulsive as before applies to the imaginary part of the
eigenvalues for positive energies, which is motivated by
analytic continuation from the solution along the negative real
axis. In general, both attractive and repulsive eigenvalues occur
for a nuclear potential.

We illustrate the behavior of repulsive and attractive Wein-
berg eigenvalues in the complex plane for positive energies
E = 0−300 MeV in Figs. 3 and 4, respectively, in the 1S0
and 3S1–3D1 channels for a set of three different potentials
by taking the limit ε → 0 of ην(E + iε). The trajectories start
on the real axis and evolve counterclockwise with increasing
energy. Nearly (or shallow) bound states are represented by
attractive eigenvalues with magnitudes close to unity for
E = 0. The deuteron binding energy can be determined by
the intersection of the trajectory in the 3S1–3D1 channel and
the unit circle when lowering the energy E < 0. Since the
attractive eigenvalues are typically dominated by (nearly or
shallow) bound states in the two S-wave channels, we discuss
in the present paper mainly repulsive eigenvalues.

We also briefly give some details of the calculation. In
practice, it is convenient to solve the eigenvalue relation (5)
in a partial-wave representation because G0V (W ) is block
diagonal in the partial-wave quantum numbers (LS)JT ,

⎛
⎜⎜⎜⎜⎜⎝

1S0
3S1

3D1
1P1 . . .

1S0 � 0 0 0 . . .
3S1 0 � � 0 . . .
3D1 0 � � 0 . . .
1P1 0 0 0 �
...

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠ , (7)

FIG. 4. Attractive Weinberg eigenvalues for the N2LO NN
potentials GT+ (1.2 fm), EKM (0.8 fm), and sim (450 MeV)
(Trel = 290 MeV), as trajectories of energy in the complex plane,
starting on the positive real axes and evolving counterclockwise. We
show results for energies E = 0, 25, 66, 100, 150, 200, 250, and
300 MeV as circles in the 1S0 (left panel) and 3S1–3D1 channels
(right panel). The (nearly and shallow) bound states close to E = 0
are indicated by eigenvalues slightly smaller or larger than 1 in the
uncoupled or coupled channel, respectively.

where L denotes the angular momentum, S the two-body spin,
J the total angular momentum, and T the two-body isospin.
This allows one to separately diagonalize blocks of given S,
J , and T [the � in Eq. (7)],

2

π

∑
L,L′

∫
dk′ k′2mV JT

LL′S(k,k′)
k2

0 − k′2 + iε
〈k′(L′S)JT |�ν(W )〉

= ην(W )
∑
L

〈k(LS)JT |�ν(W )〉 , (8)

where different L values may be coupled due to the potential
(k2

0 + iε = mW ). For coupled channels, we have L,L′ =
|J ± 1|, whereas in uncoupled channels L = L′. The main
discussion of this paper is based on the free propagator and
on the neutron-proton (np) channel but isospin-symmetry
breaking is usually small. Hence, we have dropped the index
MT = 0 for simplicity.

In the case of negative energies (i.e., purely imaginary k0),
poles do not occur and we can take ε = 0. Technically, we
then solve the eigenvalue problem on a well-suited Gaussian
quadrature momentum grid to ensure numerical convergence.
After performing the standard substitution

∫
dp → ∑Np

i=1, the
left-hand side of the eigenvalue problem (8) can be written
as a matrix. The basis vectors have a size of Np (2Np) in an
uncoupled (coupled) channel.

For the positive energies, however, one has to carefully take
into account the pole in Eq. (8) at k = k0. In that case, we make
use of the Sokhotski-Plemelj theorem for a real, continuous
function f (k),

f (k)

k − (k0 ± iε)
= P f (k)

k − k0
± iπδ(k − k0)f (k), (9)
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with the Cauchy principal valueP , and integrate explicitly over
the singularity. Following Ref. [52], we convert the principal-
value integral into a standard integral by adding

−g(k0)P
∫ ∞

0

dk

k2 − k2
0

= 0 (10)

to Eq. (8) in order to make the integral well behaved, i.e.,

P
∫ ∞

0
dk

g(k)

k2 − k2
0

=
∫ ∞

0
dk

g(k) − g(k0)

k2 − k2
0

, (11)

where we define f (k) = g(k)/(k + k0). To evaluate numeri-
cally the integral on the right-hand side of Eq. (11), it is crucial
to split the integral at some sufficiently large pmax > k0 such
that f (k) is known to vanish for all p > pmax. Because of the
regularization of the potential, it is usually straightforward to
find a suitable value for pmax. The advantage of this procedure
is that the remaining integral of the form∫ ∞

pmax

dk

k2 − k2
0

= 1

k0
artanh

(
k0

pmax

)
(12)

no longer has a pole because of pmax > k0, and can be evaluated
analytically. We have carefully checked the numerical stability
of this method, in particular the subtraction in Eq. (11). The
subtracted pole as well as the additional constant term in Eq. (9)
are taken care of by enlarging the basis vector by one for each L
component, so the matrix to be diagonalized is of rank Np + 1
(2Np + 2) for an uncoupled (coupled) channel.

Finally, we review an intriguing feature of the Weinberg
analysis. Weinberg showed in Sec. VI of Ref. [11] that the
eigenvalues and phase shifts in an uncoupled channel (LS)JT
are related by

δJT
LS (E) =

∞∑
ν=1

δν(E), (13)

with the so-called elemental phase shifts defined as

δν(E) ≡ − arg (1 − ην(E + iε)), (14)

where the ην are solutions to Eq. (8) for the uncoupled channel.
For coupled channels, Eq. (13) leads to the sum of the partial
phase shifts, δJT

L−1S + δJT
L+1S , which is independent of a partic-

ular phase-shift convention. Repulsive (attractive) eigenvalues
lead to elemental phase shifts in [−π,0] ([0,π ]) resulting,
as expected for purely repulsive (attractive) interactions, in
negative (positive) phase shifts.

Weinberg already observed that Eq. (13) usually converges
rapidly, taking into account only a few terms. Consequently,
there can only be a few eigenvalues with significant mag-
nitudes. We find a similar convergence pattern also for our
representative set of modern chiral potentials. In Fig. 5, we
show the residuals

�δJT
LS (E) =

nmax∑
ν=1

δν(E) − δJT
LS (E), (15)

evaluated for several truncations nmax. The results in Fig. 5
are shown for the 500 MeV EMN potential at N4LO in
the 1S0 channel; however, the other potentials and channels
discussed in this paper behave similarly. The reference phase

FIG. 5. Convergence pattern of 1S0 phase shifts calculated using
the largest Weinberg eigenvalues and different truncations n ≤ nmax

in expansion (13). The results are based on the 500 MeV EMN
potential at N4LO, but the other potentials and channels show a
similar behavior, and the phase shifts are plotted as a function
of Elab = 2E. Note that for nmax = 1, we restrict the sum to the
largest attractive (instead of the overall largest) eigenvalue to avoid
a discontinuity that happens because the trajectories of attractive and
repulsive eigenvalues are crossing each other.

shifts δJT
LS (E) result from the on-shell T matrix as obtained

in a nonperturbative calculation by inverting Eq. (4a). The
converged phase shifts are very well reproduced for nmax ∼
5−10.

IV. RESULTS

In this section, we apply the Weinberg eigenvalue analysis
to the recent local, semilocal, and nonlocal chiral poten-
tials in different partial waves. We investigate and compare
characteristic features of each potential order by order and
exploit the regulator comparison of Sec. II for the local and
semilocal potentials. The repulsive eigenvalues manifest the
differences between the various potentials, so we focus our
analysis on them, but also illustrate the common trends of
attractive eigenvalues. At the end we revisit the question of
whether distinct but phase-equivalent initial potentials flow to
the same low-momentum form under the similarity RG.

We start with the 1S0 and coupled 3S1–3D1 channels, as they
are most important for low-energy physics, and then extend the
discussion to higher partial waves. In Figs. 6 and 7, we show the
magnitude of the S-wave repulsive eigenvalues as a function of
energy from leading order (LO) up to highest order available,
respectively, for the local GT+, semilocal EKM, and nonlocal
EMN potentials in each row with various cutoffs. The dotted
black line denotes where the Born series expansion diverges,
corresponding to the unit circle in Figs. 3 and 4. For the GT+
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FIG. 6. Magnitude of the repulsive Weinberg eigenvalues for the GT+ (first row), EKM (middle row), and EMN potentials (bottom row)
as a function of energy E = 0, 25, 66, 100, 150, 200, 250, and 300 MeV in the 1S0 channel up to the highest chiral order available, respectively.
We show results for coordinate-space cutoffs R0 = 0.9−1.2 fm for the GT+ and EKM potentials, as well as for momentum-space cutoffs
� = 450 − 550 MeV for the EMN potential.

FIG. 7. Same as Fig. 6 but for the 3S1–3D1 channel. Notice that the Weinberg eigenvalues are above the scale for the NLO NN potential
GT+ (0.9 fm), as we use the same plot range for all panels for better comparison.
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potential we use the SFR cutoff �̃ = 1000 MeV. From these
figures, we observe the following:

(i) In the 1S0 channel, all three LO potentials are purely
attractive and so the repulsive eigenvalues are zero.
In contrast, the corresponding eigenvalues in the
3S1–3D1 channel are nonzero and show significant
differences, with the EKM potentials softer than GT+
and EMN.

(ii) At NLO we find nonvanishing repulsive eigenvalues,
large in magnitude for the GT+ potential and even
larger for the EMN potential in the 1S0 channel. In the
3S1–3D1 channel we observe magnitudes up to 8 for
the GT+ 0.9 fm potential and up to 2.5 for the EMN
550 MeV potential, while eigenvalues are below 1 for
the EKM potential in both channels.

(iii) Going from NLO to N2LO leads to reduced eigen-
values uniformly, with EMN in particular going from
nonperturbative for the larger � values to perturbative.

(iv) The eigenvalues for the EKM and EMN potentials
in the 1S0 channel jump upwards at N3LO and stay
equally large in magnitude at N4LO. In the 3S1–3D1

channel, the eigenvalues for the EKM potential again
increase at N3LO and N4LO, whereas for the EMN po-
tential we observe essentially no change in magnitude
but an increased spread in � for higher energies. En-
hanced repulsive eigenvalues at N3LO were discussed
in Ref. [17] due to the sub-sub-leading two-pion
exchange as a new nonperturbative source entering at
N3LO. It is interesting to note that these jumps in the
eigenvalues are also manifested in the form of large
energy changes of the triton binding energy [10,53]
based on these two-body interactions [54].

All potentials at all orders get softened for larger coordinate-
space cutoffs or smaller momentum-space cutoffs, respec-
tively, resulting in less repulsion and therefore smaller re-
pulsive eigenvalues. In general, the larger eigenvalues of the
local GT+ potential indicate that it is less perturbative than the
semilocal or nonlocal potentials. This observation is consistent
with past studies of local versus nonlocal one-boson-exchange
potentials [55]. However, as discussed in Sec. II, a direct
comparison of the local GT+ and semilocal EKM potentials
with the same regulator parameter R0 is misleading because
of the differing forms of the regulator functions. We identified
comparable cutoff values, but good agreement for eigenvalues
of the corresponding full potentials is only seen at LO. In
Fig. 8 we compare the full and contactless potentials to shed
light on the deviations. In this context, contactless means all
contacts up to the given chiral order are set to zero. We find fair
agreement for eigenvalues of the contactless potentials in both
channels, even at NLO and N2LO. Thus we conclude that the
different inclusion of the momentum-dependent short-range
couplings (for local, and semilocal or nonlocal) at NLO and
beyond lead to the differences in eigenvalues.

We also examined the S-wave repulsive eigenvalues for
selected nonlocal N2LO sim potentials, which are shown in
Fig. 9. They are similar to the EKM and EMN results in the
1S0 channel, while in the 3S1–3D1 channel the eigenvalues

FIG. 8. Magnitude of the repulsive Weinberg eigenvalues for the
GT+ and EKM potential for the fixed cutoff combination derived in
Sec. II, at LO, NLO, and N2LO. We show results for the full potential
(solid circles) in contrast to the potential without contacts (open
circles) in the 1S0 (upper panel) and 3S1–3D1 channels (lower panel).
The eigenvalues for the contactless potential are in fair agreement
for the cutoff combination RGT+

0 = 1.2 fm and REKM
0 = 0.8 fm at all

orders and in both channels.

show a spread in � as for the N2LO EMN potential. In
addition, the pattern of energy dependence is different except
for the softest cutoff.

FIG. 9. Magnitude of the repulsive Weinberg eigenvalues for the
N2LO sim potential with Trel = 290 MeV and the cutoff range � =
450−600 MeV as function of energy E = 0, 25, 66, 100, 150, 200,
250, and 300 MeV in the 1S0 (left panel) and 3S1–3D1 channels (right
panel).
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FIG. 10. Magnitude of the repulsive Weinberg eigenvalues for the EMN potential up to N4LO as a function of energy E = 0, 25, 66, 100,
150, 200, 250, and 300 MeV in different higher partial waves. We show results for momentum-space cutoffs � = 450−550 MeV. Notice that
some eigenvalues are partially above the scale, as we apply the same plot range at all chiral orders and partial waves for better comparison.

FIG. 11. Magnitude of the repulsive Weinberg eigenvalues for the EKM potential up to N4LO as a function of energy E = 0, 25, 66, 100,
150, 200, 250, and 300 MeV in different higher partial waves. We show results for coordinate-space cutoffs R0 = 0.9−1.2 fm.

054002-9



HOPPE, DRISCHLER, FURNSTAHL, HEBELER, AND SCHWENK PHYSICAL REVIEW C 96, 054002 (2017)

FIG. 12. Magnitude of the attractive Weinberg eigenvalues for the GT+ (first row), EKM (middle row), and EMN potentials (bottom row),
as a function of energy E = 0, 25, 66, 100, 150, 200, 250, and 300 MeV in the 1S0 channel up to the highest chiral order available, respectively.
We show results for coordinate-space cutoffs R0 = 0.9−1.2 fm for the GT+ and EKM potential, as well as for momentum-space cutoffs
� = 450−550 MeV for the EMN potential.

Examples of repulsive eigenvalues in the higher partial
waves for the EMN and EKM potentials are shown in Figs. 10
and 11, respectively. In most channels there are not significant
differences. The increases going from N2LO to N3LO noted
for the S waves are present for the EKM P waves but
without the dramatic jumps. These are only seen for the EMN
potential in the 3D2 channel. The energy dependence of the
repulsive eigenvalues is generally similar even for different
regulators. However, as noted, the N2LO sim potential shows
quite different energy dependence in the 3S1–3D1 channel as
the cutoff increases.

The attractive eigenvalues in the 1S0 and 3S1–3D1 channel
are shown in Figs. 12 and 13, respectively, for the GT+, EKM,
and EMN potentials. We find only minor dependence on the
cutoff and nearly the same eigenvalues for all potentials at all
chiral orders. This behavior follows because the magnitude
of the attractive eigenvalues is determined by the shallow or
nearly bound state to be close to 1 at low energies. The energy
dependence for all potentials at all orders and in both channels
shows the same fall-off toward perturbative values.

These many observations illustrate how Weinberg eigenval-
ues may point to subtle issues, e.g., with the fitting procedure,
but following up in detail is beyond the scope of this paper.
Instead we give examples of more general conclusions from
consideration of the eigenvalue systematics:

(i) For the EKM potential, we traced the increased
eigenvalues at N3LO and N4LO to the new contacts at
N3LO. We observe eigenvalues equal to zero for the

potential without N3LO contacts in the 1S0 channel,
and significantly reduced eigenvalues (below 1) in
the 3S1–3D1 channel. We conclude that the main
contribution to the change in magnitude is from the
contacts at this order.

(ii) The repulsion needed to obtain correct phase shifts
at high energies is provided by contact terms, but
how this is realized differs between local and nonlocal
implementations. For local potentials, the repulsive
part is largely built up through the energy-independent
LEC, because the q2-dependent contacts at NLO and
beyond are suppressed by at least a factor r2 in
coordinate space. This LEC contributes equally at
lower energies, leading to enhanced eigenvalues at
NLO and beyond. The buildup of the short-range
repulsion is visible in Fig. 14 for the N2LO GT+
potential in coordinate space. In contrast, contact
terms for the semilocal and nonlocal potentials at
NLO and beyond also depend on k2, which allows
for momentum dependence, with large (small) re-
pulsion for higher (lower) energies. Here, k = (p +
p′)/2 is the momentum transfer in the exchange
channel.

(iii) We observed reduced eigenvalues when going from
NLO to N2LO. This could be due to the improved
description of the midrange part of the potential due to
the subleading two-pion exchange, entering at N2LO,
which requires less fitting into the contact parameters
at this order.
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FIG. 13. Same as Fig. 12 but for the 3S1–3D1 channel.

(iv) While one might have guessed that the enhanced
repulsive Weinberg eigenvalues are due to the low- to
high-momentum coupling of local regulators, this is
actually not the case. This has been verified by adding
an additional sharp cutoff of � = 4−5 fm−1, which
leaves the eigenvalues nearly unchanged, showing that
they are determined by the contributions below this
cutoff.

In general, even when comparing regulators for different
potentials can be quite cumbersome, the Weinberg eigenvalue
analysis as a diagnostic tool offers the possibility to study the
perturbativeness, indicate scheme dependence and possible

FIG. 14. Coordinate-space representation of the GT+ potential
at N2LO for the cutoff range R0 = 0.9−1.2 fm in the 1S0 (left), 3S1

(middle), and 3D1 (right) channels.

issues in the fitting procedure, as well as draw conclusions on
the regulator impact.

For a given family of potentials, defined with the same
regularization scheme and constructed with the same fitting
protocol, the repulsive Weinberg eigenvalues reflect the soft-
ening of the interaction with progressively smaller (larger)
regulator parameters in momentum (coordinate) space. This
softening can also be realized through an RG evolution,
e.g., via the similarity RG (SRG). In Fig. 15 we show the
eigenvalues at zero energy in the 1S0 and 3S1–3D1 channel
at N2LO for the EKM, EMN, and GT+ potentials, as well
as at N3LO for the EKM and EMN potentials as a function
of the SRG parameter λ. The eigenvalues at large λ, which
correspond to the unevolved (initial) potentials, exhibit the
dramatic jump in hardness from 1S0 to 3S1–3D1 for GT+,
and in both channels from N2LO to N3LO for EKM. The
jump is much smaller for EMN 1S0 and no change or even
a softening is observed for EMN 3S1–3D1. With evolution
to smaller λ, all potentials are monotonically softened, with
even the EKM N3LO and GT+ N2LO 3S1–3D1 eigenvalues
becoming perturbative for λ < 4 fm−1 and λ < 3.5 fm−1,
respectively.

The fine details of the eigenvalue flow mirror the flow of
the potential matrix elements. In Figs. 16 and 17 we show
the unevolved and SRG-evolved diagonal and off-diagonal
matrix elements in the 1S0 channel for the EMN, EKM,
and GT+ potentials at N2LO and EMN and EKM poten-
tials at N3LO, respectively, as functions of the momentum.
At N2LO, the relatively small degree of softening reflects
the suppression of off-diagonal matrix elements, and all
matrix elements are quantitatively close for λ = 2 fm−1.
At N3LO, both diagonal and off-diagonal matrix elements
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FIG. 15. Repulsive Weinberg eigenvalues for the N2LO EMN
(solid lines), EKM (dotted lines), and GT+ (dash-dotted lines) and
N3LO EMN (solid lines) and EKM (dotted lines) NN potentials at
E = 0 as a function of the SRG resolution scale λ in the 1S0 (upper
panels) and the 3S1–3D1 channels (lower panels). For small λ, the
eigenvalues are in good agreement and exhibit the universality for
potentials evolved to low resolution scales.

FIG. 16. Diagonal (upper row) and off-diagonal (lower row)
matrix elements V (p,p′ = p) and V (p,p′ = 0), respectively, of the
unevolved (left column) and SRG evolved to λ = 2.0 fm−1 (right
column) N2LO potentials of EMN (solid lines), EKM (dotted lines),
and GT+ (dash-dotted lines) in momentum space in the 1S0 channel.
For small λ the diagonal elements of all potentials are again in good
agreement.

FIG. 17. Same as Fig. 16 but for the EMN and EKM potentials
at N3LO.

exhibit a flow toward universal potentials for momenta
below λ.

V. SUMMARY AND OUTLOOK

In this paper we performed a comprehensive Weinberg
eigenvalue analysis of a representative set of modern NN
interactions derived within chiral EFT. Our results provide
insights into the perturbativeness and scheme dependencies of
these interactions.

We find that the attractive eigenvalues, determined by
the shallow or nearly bound states in the 1S0 and 3S1–3D1

channels, show a universal behavior for all investigated
potentials at all orders in the chiral expansion. In contrast,
the repulsive eigenvalues depend on specific details such as
the regularization scheme, in particular for the short-range
parts of the interaction. This means that the eigenvalues at
different orders in the chiral expansion for a given class of
interactions can behave quite differently. While the GT+
potentials develop large repulsive eigenvalues from LO to
NLO, the EKM potentials remain perturbative up to N2LO
and become nonperturbative only at N3LO and N4LO. We can
trace back this sudden increase at N3LO to the presence of
new short-range couplings at this order. In comparison, the
investigated nonlocal potentials EMN and sim tend to remain
more perturbative at all orders.

Moreover, we found that a direct comparison of coordinate-
space cutoff values for the GT+ and EKM interactions can
be quite misleading due to different functional forms of the
employed regulators. For example, we find that a cutoff of
RGT+

0 = 1.2 fm essentially corresponds to REKM
0 ≈ 0.8 fm.

This highlights that direct comparisons of regulator parameters
are not warranted; alternative ways to compare are given
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in Sec. II. Finally, we examined the flow to universality of
Weinberg eigenvalues and interaction matrix elements for the
GT+, EKM, and EMN potentials under SRG evolution.

In future work, our analysis can be directly extended to
study regulator artifacts at finite density via in-medium eigen-
values and to include 3N interactions to assess their impact
on perturbativeness. Furthermore, a comparison of potentials
containing delta resonances to delta-less potentials, which
are expected to have different order-by-order convergence
patterns, would be illuminating. The applications shown in
this paper, including the relation to phase shifts, suggest that
Weinberg eigenvalues can serve as a useful feedback in fitting
potentials by pointing to subtle issues in the fitting procedure
and offering a tool to assess alternative regulator choices.
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