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The γ p → pηη reaction in an effective Lagrangian model
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In this paper, we investigate the γp → pηη reaction within an effective Lagrangian approach and isobar
model. We consider the contributions from the intermediate N∗(1535), N∗(1650), N∗(1710), and N∗(1720)
isobars which finally decay to the Nη state. It is found that the excitation of the N∗(1535) dominates this reaction
close to threshold and ρ meson exchange plays the most important role for the excitation of nucleon resonances.
Therefore, this reaction offers a potentially good place to study the properties of nucleon resonances and their
couplings to the Nρ channel. Predictions for angular distributions and invariant mass spectra of final particles
are also presented for future comparison with data.
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I. INTRODUCTION

Studying the properties of nucleon resonance and the
underlying physics is a central task in hadronic physics.
Since nucleon resonances have extremely short lifetimes, in
practice the only possible way to study their properties is to
make use of the measurements of their decay products. In
recent years, such studies have been significantly promoted
by the new and accurate data on meson production induced
by photons off nucleons. It has been shown that intermediate
nucleon resonances play important roles in reactions such as
γp → pπ,pη,pω,K�,K�, etc. [1]. Detailed studies of these
reactions have remarkably improved our knowledge of the
reaction mechanisms and the properties of the intermediate
nucleon resonances [2].

Apart from the studies of the single meson production
processes, precise data on some multimeson production
processes, such as the γp → pπ0π0 and pπ0η reactions,
were also published and used to extract the properties of the
intermediate resonances in recent years [3–5]. Even though
multimeson production processes are more poorly known and
may involve more complicated reaction mechanisms, these
reactions are interesting because they offer information about
cascade decays of higher-mass resonances. Furthermore, some
of these reactions are potentially good places to study the
properties of nucleon resonances due to their unique reaction
mechanisms. For example, in Ref. [6] the authors showed
that the production of the N∗(1535), mainly excited by the η
exchange, dominates the reaction γp → φK� near threshold.
Therefore this reaction offers a good place to study the
properties of the N∗(1535) and its coupling to the K� channel.
Clearly, such studies are useful to improve our knowledge of
nucleon resonances.

In this work, we present studies of the reaction γp → pηη
within an effective Lagrangian approach and isobar model.
The purpose of this work is to make a theoretical attempt
to explore this reaction and present the predictions for the
observables, which can be checked by future experiments. In
the isobar model, the possible mechanisms of this reaction can
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be depicted by the Feynman diagrams shown in Fig. 1. Usually
the s-channel diagrams like Fig. 1(d) give the most important
contributions [7]. However, such contributions are assumed
to be insignificant in this reaction since there is no evidence
that some nucleon resonances have significant coupling to
the Nηη channel. The u-channel diagrams like Figs. 1(e)
and 1(f) are also expected to be unimportant.1 Therefore, we
will mainly consider the Feynman diagrams in Figs. 1(a)–1(c)
in the present work.

Although for now our knowledge of this reaction is still
scant, the studies of some relevant reactions, such as γp → pη
[11,12] and pp → ppη [13,14], can offer valuable clues
for our study. In those works, it has been shown that the
well-established nucleon resonances, such as the N∗(1535),
N∗(1650), N∗(1710), and N∗(1720), give the most important
contributions in their production regions. Therefore, it is
reasonable to assume that these four resonances may also
play important roles in the present reaction as intermediate
states and finally decay to the Nη channel. Within the
effective Lagrangian approach and isobar model, the resonance
production process can be depicted by the Feynman diagrams
shown in Fig. 1, where nucleon resonances are excited by
absorbing or emitting a meson. Since the photon and final
η have odd and even C parities respectively, scalar and
pseudoscalar meson exchanges are forbidden in this reaction
due to C parity conservation. On the other hand, the vector and
axial meson exchanges are allowed. Even though axial meson
exchanges are allowed by symmetry principles, their couplings
to the γ η channel seem to be weak, since no axial meson of

1In principle, nucleon resonances below the threshold can also
contribute. As a reasonableness check of neglecting these diagrams,
we calculate the Feynman diagrams in Figs. 1(d) and ig. 1(f)
considering the intermediate N∗(1535) contributions. Note that the
N∗N∗η and N∗N∗γ couplings are still not well constrained in
previous studies. To have a rough estimate, we adopt the N∗N∗η
coupling for the N∗(1535) resonance predicted in the chiral unitary
approach [8]. The results show that the intermediate N∗(1535)
contributions only play an insignificant role in this reaction. Note
that the intermediate nucleon contributions are not considered due to
the vanishingly small NNη coupling [9].
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FIG. 1. Feynman diagrams for the reaction γp → pηη.

mass less than 1.5 GeV has a significant decay branch ratio to
γ η channel [10]. At the same time, their couplings to nucleon
resonances are also poorly known and were usually ignored
in previous studies [13,14]. The same arguments also hold for
the mesons with higher spin, and their contributions are further
suppressed because of their relatively large mass. Therefore,
we ignore their contributions. The possibility that the final
η pair are from the decay of a meson resonance can also
be ignored, since there is no clear evidences for the existence
of such a state in the energies under study [10]. If the above
arguments are correct, it means that the vector meson exchange
plays the most important role for the excitation of nucleon
resonance in this reaction. Compared with the NN → NNη
reaction, where various meson exchanges are allowed, the
present reaction offers a relatively clean place to study the role
of vector mesons in the excitation of nucleon resonances. In
fact, there were some controversies related to the relative roles
of π and ρ exchanges for the excitation of the N∗(1535) in the
NN → NNη reaction [13,15]. It is thus interesting to expect
that future measurements on this reaction will offer a further
test of the N∗Nρ couplings and help us to better understand
the role of vector meson exchange in relevant reactions.

This paper is organized as follows. In Sec. II, the formalism
and ingredients used in the calculation are given. In Sec. III,
the results are presented and discussed. A short summary
is given in the concluding part. Given in the Appendix are
the formulas used to estimate the coupling constants in the
interaction Lagrangians.

II. THEORETICAL FORMALISM

In this work, we investigate the reaction γp → pηη within
an effective Lagrangian approach and isobar model. The

basic Feynman diagrams are depicted in Fig. 1, where panels
(a)–(c) are assumed to give the dominant contributions and
will be considered in the following part. As discussed in
the Introduction, the nucleon resonances are expected to be
excited mainly due to the exchange of vector mesons. For
the intermediate nucleon resonances, we consider the well-
established N∗(1535), N∗(1650), N∗(1710), and N∗(1720)
because of their relatively large couplings with both η and
vector mesons [10] and their important roles in other Nη
production reactions [11–14].

The effective interaction Lagrangians for the vertices not
involving nucleon resonances are adopted as [11,12,16]

Lρηγ = e

mρ

gρηγ εμναβ∂μρν∂αAβη, (1)

Lωηγ = e

mω

gωηγ εμναβ∂μρν∂αAβη, (2)

Lρρη = gρρη

2mρ

εμναβ∂μρν∂αρβη, (3)

Lωωη = gωωη

2mω

εμναβ∂μων∂αωβη, (4)

where e can be obtained through the fine-structure constant
α = e2/4π = 1/137.036 and εμναβ is the Levi-Civita anti-
symmetric tensor with ε0123 = 1. For the coupling constants
gρρη and gωωη, we take the values from Ref. [13], which
were determined from a systematic analysis of the radiative
decay of pseudoscalar and vector mesons. As for the coupling
constants gρηγ and gωηγ , the values are determined from the
experimental decay widths. A summary of the values of various
coupling constants and the parameters adopted are given in
Table I.
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TABLE I. Resonances and parameters used in the calculation.
Widths and branching ratios are from Ref. [10] and [17].

State Width Decay Adopted g2/4π

(MeV) channel branching ratios

ρ 147.8 γ η 3 × 10−4 1.2 × 10−1

ω 8.49 γ η 4.6 × 10−4 9.85 × 10−3

φ 4.27 γ η 1.31 × 10−2 4.0 × 10−2

N∗(1535) 150 Nρ 0.02a 1.93
Nω 3.06
Nη 0.42 2.75 × 10−1

N∗(1650) 140 Nρ 0.08a 4.96 × 10−1

Nω 3.83 × 10−2

Nη 0.18 6.07 × 10−2

N∗(1710) 100 Nρ 0.15a 1.35
Nω 0.03 12.2
Nη 0.3 1.44

N∗(1720) 250 Nρ 0.775 105.8
Nω 0.73
Nη 0.03 7.87 × 10−2

aThese Nρ branching ratios are taken from Ref. [17] since they are
not offered in the new version of the PDG book. We have checked
that the N∗Nρ coupling constants derived from these Nρ branching
ratios are closed to the ones obtained in the VMD model within a
factor of 2.

The interaction Lagrangians for the vertices that involve
nucleon resonances are given as follows [14,15,18]:

LN∗(1535)Nρ = −gN∗(1535)Nρ

2mN

�̄N∗γ5σμν∂
ν �τ · �ρμ�N + H.c.,

(5)

LN∗(1535)Nω = −gN∗(1535)Nω

2mN

�̄N∗γ5σμν∂
νωμ�N + H.c.,

(6)

LN∗(1535)Nη = −igN∗(1535)Nη�̄N�N∗�η + H.c., (7)

LN∗(1650)Nρ = −gN∗(1650)Nρ

2mN

�̄N∗γ5σμν∂
ν �τ · �ρμ�N + H.c.,

(8)

LN∗(1650)Nω = −gN∗(1650)Nω

2mN

�̄N∗γ5σμν∂
νωμ�N + H.c.,

(9)

LN∗(1650)Nη = −igN∗(1650)Nη�̄N�N∗�η + H.c., (10)

LN∗(1710)Nρ = −gN∗(1710)Nρ

2mN

�̄N∗σμν∂
ν �τ · �ρμ�N + H.c.,

(11)

LN∗(1710)Nω = −gN∗(1710)Nω

2mN

�̄N∗σμν∂
νωμ�N + H.c., (12)

LN∗(1710)Nη = −igN∗(1710)Nη�̄Nγ5�N∗�η + H.c., (13)

LN∗(1720)Nρ = i
gN∗(1720)Nρ

mN∗ + mN

�̄μ�τ · (∂ν �ρμ − ∂μ �ρν)

×γνγ5�N + H.c., (14)

LN∗(1720)Nω = i
gN∗(1720)Nω

mN∗ + mN

�̄μ(∂νωμ − ∂μων)γν

×γ5�N + H.c., (15)

LN∗(1720)Nη = gN∗(1720)Nη

mη

�̄μ∂μ�η × �N + H.c., (16)

where the coupling constants gN∗Nη and gN∗Nρ can be deter-
mined by calculating the corresponding partial decay widths.
For gN∗Nω, we also employ the vector meson dominance model
to estimate their values for those nucleon resonances which lie
below the Nω threshold or have very little phase space to
decay. The corresponding calculations are described in detail
in the Appendix. It should be stressed that in this way only the
magnitudes of the coupling constants can be determined. To fix
the relative signs, we have followed the results of Ref. [12,14].

To calculate the Feynman diagrams shown in Fig. 1, a
relevant off-shell form factor is also used for the exchanged
particles to take into account the internal structure of hadrons
and off-shell effects. In our computations, we adopt a
monopole form factor for the N∗Nρ(ω) vertices as

Ft (q
2) = �2

t − m2

�2
t − q2

, (17)

where �t , m, and q are the cutoff parameter, mass, and
four-momentum of the exchanged meson, respectively. We
adopt �t = 1.31 GeV and �t = 1.5 GeV for ρ and ω
exchanges as the ones used in the CD-Bonn model [9]. For
the electromagnetic γ ηρ(ω) vertex, we follow Refs. [11,13]
and adopt the form factor as

FV =ρ,ω(q2) =
(

�∗2
V

�∗2
V − q2

)2

, (18)

where �∗
V ∼ 1.2 GeV is determined by fitting experimental

data. To take into account the off-shell effects of the interme-
diate nucleon resonances, we adopt the following form factor:

FB(p2) = �4
B

�4
B + (

p2 − m2
B

)2 (19)

with �B = 1.2 GeV [13].
The propagator of the nucleon resonance with S = 1

2 is
written as [19–23]

GN∗
1/2

(p) = i(p/ + MN∗ )

p2 − M2
N∗ + iMN∗�N∗

, (20)

and for the S = 3
2 state it is

GN∗
3/2

(p) = − i(p/ + MN∗ )

p2 − M2
N∗ + iMN∗�N∗

[
gμν − 1

3
γμγν

− 1

3MN∗
(γμpν − γνpμ) − 2

3M2
N∗

pμpν

]
.

(21)

The propagator of the vector meson can be written in the form

G
μν
V (q) = −i

(
gμν − qμqν/q2

q2 − m2

)
, (22)
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where qV is the four-momentum of the intermediate vector meson.
With all relevant effective Lagrangians, coupling constants and propagators given above, the amplitudes for various diagrams

can be written straightforwardly by following the Feynman rules. Here we present explicitly the individual amplitudes:

M
1
2

−
,V

a = egV ηγ gN∗NV gN∗Nη

4mV mN

ūf GN∗
1/2

(P )γ5(−γ ρq/ + q/γ ρ)uiεσραβqσ kαεβFt (q
2)FV (q2)FB(P 2),

M
1
2

+
,V

a = egV ηγ gN∗NV gN∗Nη

4mV mN

ūf γ5GN∗
1/2

(P )(−γ ρq/ + q/γ ρ)uiεσραβqσ kαεβFt (q
2)FV (q2)FB(P 2),

M
3
2

+
,V

a = egV ηγ gN∗NV gN∗Nη

mV mη(m∗
N + mN )

l2,λūf

( − G
λρ
N∗

3/2
(P )q/ + G

λμ
N∗

3/2
(P )qμγ ρ

)
γ5uiεσραβqσ kαεβFt (q

2)FV (q2)FB(P 2),

M
1
2

−
,V

b = egV ηγ gN∗NV gN∗Nη

4mV mN

ūf γ5(−γ ρq/ + q/γ ρ)GN∗
1/2

(P ′)uiεσραβqσ kαεβFt (q
2)FV (q2)FB(P ′2),

M
1
2

+
,V

b = egV ηγ gN∗NV gN∗Nη

4mV mN

ūf (−γ ρq/ + q/γ ρ)GN∗
1/2

(P ′)γ5uiεσραβqσ kαεβFt (q
2)FV (q2)FB(P ′2),

M
3
2

+
,V

b = egV ηγ gN∗NV gN∗Nη

mV mη(mN∗ + mN )
l2,λūf γ5

(
q/G

ρλ
N∗

3/2
(P ′) − qμγ ρG

μλ
N∗

3/2
(P ′)

)
uiεσραβqσ kαεβFt (q

2)FV (q2)FB(P ′2),

MV
c = egV ηγ gV V ηgNNV

2m2
V

G
μρ
V (q)εσραβqσ lα1 εβG

γν
V (q ′)εωνδμq ′ωlδ2ūf

(
γγ + i

κV

2mN

σγκq
′κ
)

uiFt (q
′2)FV (q2). (23)

where a, b, and c indicate the corresponding Feynman
diagrams shown in Fig. 1, JP (= 1

2
±

or 3
2

+
) represents the

quantum numbers of intermediate nucleon resonance, and V
refers to the ρ (ω) meson. εμ, ui , and ūf are the polarization
vector of the photon and the spinors of initial and final protons,
respectively. The momenta for individual particles are taken
as γ (k) + p(pi) → p(pf ) + η(l1) + η(l2), where the letters in
parentheses indicate the momenta of corresponding particles.
We also define q = k − l1, q ′ = pi − pf , P = q + pi , and
P ′ = pi − l2. Note that the amplitudes due to the interchange
of the final two η’s are not shown above to save space, but their
contributions should be considered in the calculations.

III. RESULTS AND DISCUSSIONS

With the formulas and ingredients given in the last section,
we have studied the reaction γp → pηη for beam momentum
(pγ ) below 3 GeV. The calculated total cross sections as
a function of beam momentum are shown in Fig. 2(a). In
this figure, we show the role of various nucleon resonances
and background contributions in determining the total cross
sections. The dotted, dashed, dot-dashed, and dot-dot-dashed
curves represent the contributions of the N∗(1535), N∗(1650),
N∗(1710), and N∗(1720), respectively. The coherent sum of
all contributions is shown by the solid line.

It can be found that the N∗(1535) gives the dominant
contribution at low energies. With increasing energies, the
roles of the N∗(1710) and N∗(1720) become more and more
important. On the other hand, the contributions from the
N∗(1650) and t-channel mesonic terms only play minor roles
in this reaction. The dominant role of the N∗(1535) at lower
energies is mainly due to its rather large coupling to the
Nη channel and the s-wave coupling nature, while at higher
energies the important roles of the N∗(1710) and N∗(1720) are
mainly due to their relatively large couplings to Nρ and Nω
channels. The relative importance of the contributions from

various meson exchanges is shown in Fig. 2(b), where the
dashed and dotted lines represent the contributions of ρ and ω
exchanges respectively. It is obvious that the contribution from
ρ exchange plays a more important role in this reaction. The
relative role of ρ exchange compared with ω exchange can be
partially understood by looking at the different strengths of
ρηγ and ωηγ couplings. As can be seen in Table I, the ratio of
g2

ρηγ /g2
ωηγ ∼ 10 can roughly account for the strength of ρ and

ω exchanges at the lower energies. This shows that the present
reaction may be helpful in the study of nucleon resonances
which have substantial coupling to the Nρ channel. Since
the N∗(1535) is expected to dominant in the near-threshold
region, this reaction can be used to test the coupling of the
N∗(1535) with the Nρ channel [11,15] when experimental
data are available.

For future comparisons with experimental data, we also
calculate the angular distributions and invariant mass spectra
of final particles. In our model, it is found that the N∗(1535)
dominates at lower energies, while the N∗(1710) becomes
as important as the N∗(1535) at beam momenta larger than
2.4 GeV. Thus we present the differential cross sections
calculated at pγ = 1.89 GeV (Fig. 3) and pγ = 2.5 GeV
(Fig. 4) as two representative examples. At a relatively low
energy (pγ = 1.89 GeV), the N∗(1535) shows as a slight
enhancement in the distribution of Mpη relative to the phase
space distribution, and the angular distribution of η in the
center of mass frame shows a linear increase in cos θη. At
pγ = 2.5 GeV, a two-peak structure appears in the MNη

distribution. As can be inferred from Fig. 2(a), this structure
is mainly caused by the contributions from the N∗(1535) and
N∗(1710). Compared to the case where the N∗(1535) gives
the dominant contribution, the interference effects among
various N∗’s play an important role here. We have checked
that the shapes of the angular distribution and the invariant
mass distribution are sensitive to the relative phases among
the various amplitudes. Thus the experimental results at this
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FIG. 2. Total cross section for the γp → pηη reaction as a
function of beam momentum within our model: (a) contribution from
various nucleon resonances and mesonic term; (b) contribution from
ρ and ω exchanges.

energy can put strong constraints on the roles of various
N∗’s. These model predictions can be checked by future
experimental data.

Note that in our calculations we do not consider the final
state interactions among final particles, since our work is
not focused on the very near threshold region. At higher
energies, the effects due to final state interactions are expected
to be small. For example, the N -η final state interactions
are expected to be significant only at excess energies below
20 MeV [13,24]. Therefore, the inclusion of such effects will
not cause significant changes to the results shown in Fig. 3.
However, the predictions for the total cross sections in the very
near threshold region should be interpreted with caution.

In summary, we have investigated the reaction γp → pηη
within an effective Lagrangian approach in this work. By
assuming that this reaction proceeds mainly through the
contact term and the excitations of the N∗(1535), N∗(1650),
N∗(1710), and N∗(1720) in the intermediate states, we
calculate various contributions to this reaction. It is found
that the excitation of the N∗(1535) dominates this reaction in
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FIG. 3. Predictions of angular distribution, invariant mass spec-
trum, and Dalitz plot at pγ = 1.89 GeV. The solid line represents the
full results and the dashed line represents the phase space distribution.
θ denotes the angle of the outgoing particles relative to the incident
beam direction in the center-of-mass frame.

the near threshold region. With increasing energies, the roles
of the N∗(1710) and N∗(1720) become important gradually.
Since we expect that the nucleon resonances are mainly excited
by the exchange of vector mesons in this reaction, we also
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FIG. 4. Same as Fig. 3, but at pγ = 2.5 GeV.
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study the relative roles of the ρ and ω exchanges. We find
that the ρ exchange is much more important because of the
relatively large value of gρηγ . Therefore, this reaction offers a
potentially good place to study nucleon resonances which have
large couplings to the Nρ and Nη channels. The predicted
total cross section, angular distribution, and invariant mass
spectrum of final particles can be tested by future experiments.
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APPENDIX: COUPLING CONSTANTS
AND DECAY AMPLITUDES

In this appendix, we present the formulas needed for the
determination of various coupling constants. The relevant cou-
pling constants gN∗Nη are determined from the experimentally
observed partial decay widths of the nucleon resonances. With
the Lagrangians given in Sec. II, the partial decay widths can
be easily obtained as

�N∗(1535)→Nη = g2
N∗(1535)Nη(mN + EN )pc.m.

η

4πMN∗(1535)
, (A1)

�N∗(1650)→Nη = g2
N∗(1650)Nη(mN + EN )pc.m.

η

4πMN∗(1650)
, (A2)

�N∗(1710)→Nη = g2
N∗(1710)Nη(EN − mN )pc.m.

η

4πMN∗(1710)
, (A3)

�N∗(1720)→Nη = g2
N∗(1720)Nη(mN + EN )

(
pc.m.

η

)3

12πMN∗(1720)m2
η

. (A4)

The coupling constants gN∗Nρ can be extracted from the
experimental partial decay width �N∗→Nρ→Nππ , which can
be calculated through the following formula:

d�N∗(p)→Nρ→N(p1)π(p2)π(p3)

= |MN∗→Nρ→Nππ |2 d3p1

(2π )3

m1

E1

d3p2

(2π )3

1

2E2

d3p3

(2π )3

1

2E3

×(2π )4δ4(p − p1 − p2 − p3). (A5)

The decay amplitude MN∗→Nρ→Nππ of various N∗s can be
constructed in the standard way using the Lagrangian Lρππ =
gρππ (�π × ∂μ �π ) · �ρμ for the ρππ vertex and the Lagrangian
densities offered above. As an example, we present here the
explicit decay amplitude of N∗(1710):

MN∗(1710)→Nρ→Nππ = gρππgN∗(1710)NρFρ

(
p2

ρ

)
×ūN (p1,s1)σμνk

ν
ρG

μα
ρ

×(p2 − p3)αuN∗(1710), (A6)

where Fρ(q2) = ( �2

�2+|p2
ρ−m2

ρ | )
2

with � = 1.0 GeV [15] is

introduced to take into account the off-shell effects and Gμα
ρ

is the propagator of the ρ meson [see Eq. (22)]. The value of

gρππ is well determined as gρππ = 3.02. Using these formulas,
the coupling constant can be extracted by comparing with the
experimental value. The adopted values of the partial decay
width in the calculations and the obtained coupling constants
are shown in Table I.

For the coupling constants gN∗Nω, since the resonances
considered in this work either lie below the threshold or have
very limited phase space to decay, knowledge of their values
is still rather poor. The Particle Data Group (PDG) estimation
for the decay branch ratio RNω is only available for N∗(1710),
through which we can determine the coupling constant
gN∗(1710)Nω by the decay process N∗(1710) → Nω → Nπ0γ .
The corresponding decay amplitude can be written as

MN∗(1710) = − e

mω

gωπγ gN∗(1710)Nω

2mN

εμναβPμ

×Gνσ (P )Fω(P 2)kαε∗
β�̄NσσρPρ�N∗ . (A7)

The PDG value for the partial decay width is ob-
tained as �N∗(1710)→Nω→Nπ0γ = �0

N∗(1710) × Br(N∗(1710) →
Nω) × Br(ω → γπ ) = 0.662 MeV. Then one can get an
estimation of gN∗(1710)Nω using the same formula as Eq. (A5),
and the obtained value is also shown in Table I. To get a rough
estimation of the coupling constants gN∗Nω for other N∗, one
possible way is to utilize the vector meson dominance (VMD)
model. In the VMD model, the ωγ interaction Lagrangian can
be described as

Lωγ = em2
ω

2γω

ωμAμ, (A8)

where the coupling strength γω = 8.53 is fixed by the
electromagnetic ω → e+e− [25]. Through a straightforward
calculation, the N∗Nγ partial widths calculated within the
VMD model (via ω meson) can be given as

�N∗(1535)Nγ = αg2
N∗(1535)Nωp3

4γ 2
ωm2

1(
1 + �2

ω

/
m2

ω

)

× 1(
1 + m2

ω

/
�2

)4 , (A9)

�N∗(1650)Nγ = αg2
N∗(1650)Nωp3

4γ 2
ωm2

1(
1 + �2

ω

/
m2

ω

)

× 1(
1 + m2

ω

/
�2

)4 , (A10)

�N∗(1720)Nγ = αg2
N∗(1720)Nω(4MN∗ + 2m − p)p3

6γ 2
ωMN∗ (m + MN∗ )2

× 1(
1 + �2

ω

/
m2

ω

) 1(
1 + m2

ω

/
�2

)4 , (A11)

where α is the fine-structure constant and p is the momentum
of final particles in the N∗ rest frame. Note that the form factor

Fω(q2) = ( �2

�2+|p2
ω−m2

ω | )
2

with � = 1 GeV is considered in the
calculations as in Ref. [15]. The experimental value of radiative
decay width of N∗ can be expressed by helicity amplitudes

�s
N∗Nγ = q2

π

2mN

(2J + 1)mN∗

(∣∣As
1
2

∣∣2 + ∣∣As
3
2

∣∣2)
, (A12)
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where the As
1
2

and As
3
2

represent the scalar parts of the decay

amplitudes and can be obtained through As = 1
2 (Ap + An)

[26]. With the central value of the helicity decay amplitudes

of the N∗’s in the PDG book [10] and the assumption that the
ω meson dominates the scalar part of the N∗ radiative decay,
it is then easy to get gN∗Nω values using the above formulas.
Values of gN∗Nω estimated in this way are also listed in Table I.
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