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Pure spin-3/2 propagator for use in particle and nuclear physics

J. Kristiano, S. Clymton, and T. Mart*

Departemen Fisika, FMIPA, Universitas Indonesia, Depok 16424, Indonesia
(Received 14 July 2017; revised manuscript received 3 October 2017; published 7 November 2017)

We propose the use of a pure spin-3/2 propagator in the (3/2,0) ⊕ (0,3/2) representation in particle and nuclear
physics. To formulate the propagator in a covariant form we use the antisymmetric tensor spinor representation
and we consider the � resonance contribution to the elastic πN scattering as an example. We find that the use of
a conventional gauge-invariant interaction Lagrangian leads to a problem: the obtained scattering amplitude does
not exhibit the resonance behavior. To overcome this problem we modify the interaction by adding a momentum
dependence. As in the case of the Rarita-Schwinger formalism, we find that a perfect resonance description could
be obtained in the pure spin-3/2 formulation only if hadronic form factors were considered in the interactions.
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For decades the most commonly used propagator for
spin-3/2 particles (e.g., the N and � resonances) in particle
and nuclear physics has been the Rarita-Schwinger (RS) one
[1], although it is also well known that the RS propagator
has an intrinsic and long-standing problem [2,3]: it contains
the unphysical extra degrees of freedom (DOF) or lower spin
background. To be more precise, let us begin with the RS field
that is formed by the tensor product of a vector and a Dirac field
represented by (1/2,1/2) and (1/2,0) ⊕ (0,1/2), respectively.
This tensor product yields [4](

1
2 , 1

2

) ⊗ [(
1
2 ,0

) ⊕ (
0, 1

2

)]= (
1, 1

2

) ⊕ (
1
2 ,1

) ⊕ (
1
2 ,0

) ⊕ (
0, 1

2

)
,

(1)

which shows that the RS field consists of two fields: the
(1,1/2) ⊕ (1/2,1) and the Dirac field. The orthogonality
relation can be used to eliminate the Dirac field. The (1,1/2) ⊕
(1/2,1) is, however, still not free from the Dirac background.

So far, the popular choice for the interaction Lagrangian
is given, e.g., in Eq. (16) of Ref. [5], which contains the
so-called off-shell parameter. This parameter is required to
maintain the invariance of the RS Lagrangian under point
transformations [6]. In the phenomenological study of nuclear
physics, however, the physical meaning of the off-shell
parameter raised a serious problem, i.e., the coupling constants
could heavily depend on the off-shell parameter [7] and the
� contribution for the Compton amplitude is obscured by
this parameter [8]. There is also some infamous fundamental
problem regarding the interaction with the electromagnetic
field, i.e., the Johnson-Sudarshan [9] and Velo-Zwanziger [10]
problems. The origin of these problems lies in the unphysical
degree of freedom that arises in the interaction for whatever
choice we make for the off-shell parameter.

Furthermore, it is shown in Ref. [5] that this interaction
does not possess any local symmetry of RS field and, as
a consequence, it violates the constraints for reducing the
number of independent components of the field to the correct
value and involves the unphysical lower-spin DOF. The
pathologies of this interaction can be removed by introducing
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the gauge-invariant (GI) or consistent interaction to decouple
the unphysical spin-1/2 background from the �-exchanges
amplitude [5].

Nevertheless, for the practical use of spin-3/2 propagators
and couplings, e.g., in the isobar or coupled-channels model for
meson-nucleon scattering or meson-induced reaction, a pure
spin-3/2 propagator is strongly desired. In particle physics
there are seven nucleon and five � resonances with spins
3/2 [11]. These resonances are also intensively used in
nuclear physics. Obviously, a solid formulation of the spin-3/2
amplitude is inevitable in these sectors.

From the theoretical point of view, a particle with spin
3/2 can be represented by the pure spin-3/2 representation,
(3/2,0) ⊕ (0,3/2), which is free from the spin-1/2 field.
However, in the (3/2,0) ⊕ (0,3/2) representation the for-
mulation involves an eight-dimensional spinor because the
spin-3/2 operator is represented by 4 × 4 matrices. Such an
eight-dimensional spinor representation is not the popular
choice because it cannot be written in a covariant form.
As a consequence it is hard to construct the corresponding
interaction Lagrangian.

Fortunately, Acosta et al. [12] show that the components of
the eight-dimensional spinor can be embedded into a totally
antisymmetric tensor of second rank. The representation is
called the antisymmetric tensor spinor (ATS) representation,
which is formed by the tensor product of an antisymmetric
tensor and the Dirac field. The pure spin-3/2 representation is
projected from the ATS representation.

ATS is formed by a tensor product of an antisymmetric
tensor field and the Dirac field, which is represented by (1,0) ⊕
(0,1) and (1/2,0) ⊕ (0,1/2), respectively. This tensor product
may be expressed as [12]

[(1,0) ⊕ (0,1)] ⊗ [(
1
2 ,0

) ⊕ (
0, 1

2

)]
= [(

3
2 ,0

) ⊕ (
0, 3

2

)] ⊕ [(
1, 1

2

) ⊕ (
1
2 ,1

)]
⊕[(

1
2 ,0

) ⊕ (
0, 1

2

)]
. (2)

Thus, the ATS representation consists of two fields, i.e., the
(3/2,0) ⊕ (0,3/2) and the RS field. The RS field can be
removed from the ATS by operating the projection operator.
To this end, one can define the Casimir operator F =
1
4JμνJ

μν , where Jμν is the angular momentum operator for the
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representation. The eigenstate equation of the Casimir operator
for the field (a,b) reads

F |(a,b)〉 = C(a,b)|(a,b)〉, (3)

where C(a,b) = a(a + 1) + b(b + 1). The (1,1/2) ⊕ (1/2,1)
and (1/2,0) ⊕ (0,1/2) fields are removed from the ATS by the
projection operator

P =
[
F − C

(
1, 1

2

)][
(F − C

(
1
2 ,0

)]
[
C

(
3
2 ,0

) − C
(
1, 1

2

)][
C

(
3
2 ,0

) − C
(

1
2 ,0

)] . (4)

Reference [12] shows that the projection operator is equal to

Pαβγ δ = 1
8 (σαβσγ δ + σγ δσαβ) − 1

12σαβσγ δ , (5)

where

σαβ = i
2 [γα,γβ] . (6)

This projection operator ensures that the ATS has only the
(3/2,0) ⊕ (0,3/2) representation. The pure spin-3/2 ATS is
obtained by operating a pure spin-3/2 projection operator to
the GI RS spinor, i.e., [12]

wμν(p,λ) = 2Pμν
αβUαβ(p,λ), (7)

where λ = −3/2,−1/2,+1/2,+3/2 are the z components of
the spin-3/2 operator eigenvalues and Uαβ(p,λ) is the GI RS
spinor, given by

Uαβ(p,λ) = 1

2m
[pαUβ(p,λ) − pβUα(p,λ)], (8)

with Uα(p,λ) the RS vector-spinor.
Up to the normalization constant (2m)−1 the GI RS spinor

Uαβ(p,λ) given in Eq. (8) is identical to the GI RS field
tensor �μν = ∂μ�ν − ∂ν�μ given in Ref. [5]. Therefore, the
ATS representation differs from the GI RS field tensor in
the projection operator. Note that this projection operator is
different from the common projection operator in a RS field.
This projection operator projects out the (3/2,0) ⊕ (0,3/2)
field from the ATS representation instead of the (1,1/2) ⊕
(1/2,1) field. The propagator of pure spin-3/2 representation
reads

Sαβγ δ(p) = �αβγ δ(p)

p2 − m2 + iε
, (9)

where

�αβγ δ(p) =
(

p2

m2

)
Pαβγ δ −

(
p2 − m2

m2

)
1αβγ δ, (10)

and 1αβγ δ is the identity in ATS space with

1αβγ δ = 1
2 (gαγ gβδ − gαδgβγ )14×4. (11)

Based on the orthogonality relation for the projection operator
γ μPμνρσ = 0, one can prove that the pure spin-3/2 spinor
satisfies γμwμν(p,λ) = 0. This relation reduces the number
of DOF of the ATS representation, i.e., 6 × 4 = 24, by
4 × 4 = 16. As expected, the pure spin-3/2 field in the ATS
representation has 24 − 16 = 8 DOF.

The free Lagrangian for a pure spin-3/2 field in the ATS
representation is given by [12]

L = (∂μ�̄αβ)�μναβγ δ(∂ν�γδ) − m2�̄μν�μν , (12)

ππ

(   )p’N(   )pN

(   )k’k

(   )

(   )

qΔ

FIG. 1. Feynman diagram for the elastic πN scattering with a �

resonance in the intermediate state.

where �μναβγ δ = 4gσρPαβρμPσνγ δ , �μν is the (3/2,0) ⊕
(0,3/2) field and m is the mass of particle. The kinetic term
of the Lagrangian is invariant under the following gauge
transformation:

�μν → �μν + ξμν , (13)

where ξμν is an antisymmetric tensor containing the γ matrices

ξμν = γ μ∂νξ − γ ν∂μξ . (14)

Let us consider the πN → πN scattering with a � reso-
nance in the intermediate state as an example. The correspond-
ing Feynman diagram is depicted in Fig. 1, where the momenta
of the involved particles are also shown for our convention. The
popular choice for πN� Lagrangian interaction is [5]

LπN� =
(

gπN�

mπ

)
�̄μ�μν(z)N∂νπ + H.c., (15)

where �μν(z) is given by

�μν(z) = gμν − (
z + 1

2

)
γμγν, (16)

the constant z is arbitrary and conventionally called the off-
shell parameter. Furthermore, �μ, N , and π in Eq. (16) denote
the �-baryon vector-spinor, nucleon spinor, and pion field
respectively. As stated before this Lagrangian does not possess
any local symmetries of the RS field, and as a consequence
it induces the unphysical lower-spin DOF, which is called
the spin-1/2 background [5]. To decouple this unphysical
background from the �-exchange amplitude Pascalutsa and
Timmermans introduced a GI interaction which is given by [5]

LπN� =
(

gπN�

mπm�

)
N̄γ5γμ�̃μν∂νπ + H.c., (17)

where �̃μν is the dual tensor of the GI RS field tensor �μν

defined as

�μν = ∂μ�ν − ∂ν�μ. (18)

This GI interaction yields the �-exchange amplitude

�μ(k′)Sμν(q)�ν(k) = (gπN�/mπ )2

/q − m�

q2

m2
�

P (3/2)
μν (q)k′μkν,

(19)

with P
(3/2)
μν the spin-3/2 projection operator in the RS field

given by

P (3/2)
μν (q) = gμν − 1

3
γμγν − 1

3q2
(/qγμqν + qμγν /q). (20)
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Analogous to the GI interaction, one can construct the πN�
interaction by changing the GI RS field tensor to the (3/2,0) ⊕
(0,3/2) representation

LπN� = gπN�N̄γ5γμ�̃μν∂νπ + H.c., (21)

where �μν is the (3/2,0) ⊕ (0,3/2) field tensor and �̃μν is its
dual tensor. By using the vertex factor

�μν(k) = gπN�γ5γμkν, (22)

the corresponding �-exchange amplitude becomes
�μν(k′)S̃μνρσ (q)�ρσ (k), where S̃μνρσ is defined by

�μν(k′)S̃μνρσ (q)�ρσ (k) = 1
4g2

πN�εμναβερσκλγ5γμ

× Sαβκλ(q)γργ5k
′
νkσ . (23)

By evaluating Eq. (23) we find that the nonvanishing �-
exchange amplitude originates from the contraction with
1αβκλ, since the contraction with Pαβκλ vanishes due to the
orthogonality relation γ αPαβκλ = 0 and σ̃ μν = −γ5σ

μν . After
some calculations we obtain the �-exchange amplitude in the
form of

�μν(k′)S̃μνρσ (q)�ρσ (k) = g2
πN�

(
q2 − m2

�

)
m2

�

(
q2 − m2

� + iε
)

×(
gνσ + 1

2γ νγ σ
)
k′
νkσ . (24)

Based on Eq. (24) we can conclude that this �-exchange
amplitude cannot describe the contribution of a resonance,
since at the resonance pole (q2 = m2

�) the amplitude is equal
to zero instead of being maximum. As a consequence, the
Lagrangian given in Eq. (21) cannot be used for calculating
the resonance contribution.

The problem originates from the GI interaction Lagrangian
given in Eq. (21), since the contraction between γ matrices
and the pure spin-3/2 field tensor vanishes. To overcome
this problem one can modify the interaction Lagrangian by
replacing the γ matrix with a partial derivative, i.e.,

LπN� =
(

gπN�

m�

)
N̄γ5∂

μ�μν∂
νπ + H.c. (25)

By using the vertex factor

�μν(k) =
(

gπN�

m�

)
γ5q

μkν, (26)

the �-exchange amplitude corresponding to this interaction
reads

�μν(k′)Sμνρσ (q)�ρσ (k) =
(

gπN�

m�

)2

γ5q
μ

× Sμνρσ (q)γ5q
ρk′νkσ . (27)

After some calculations we obtain

�μν(k′)Sμνρσ (q)�ρσ (k) = g2
πN�k′νkσ

q2 − m2
� + iε

[
q4

4m4
�

P (3/2)
νσ (q)

−
(

q2 − m2
�

2m4
�

)(
q2gνσ − qνqσ

)]
,

(28)

which differs from the result of the GI interaction given by
Eq. (19) by the second term. However, this result is very
interesting, because at the resonance pole, i.e., q2 = m2

�,
the second term vanishes and the �-exchange amplitude is
proportional to the RS spin-3/2 projection operator.

For future consideration we need to point out here that the
GI electromagnetic interaction reads [5]

LγN� = eN̄ (g1�̃μν + g2γ5�μν + g3γμγ ρ�̃ρν

+ g4γ5γμγ ρ�ρν)Fμν + H.c., (29)

whereas the non-GI interactions are [5]

L(1)
γN� = ieG1

2m
�̄ρ�ρμ(z1)γνγ5NFμν + H.c.,

L(2)
γN� = − eG2

(2m)2
�̄ρ�ρμ(z2)γ5∂νNFμν + H.c., (30)

where z1 and z2 are the off-shell parameters. Interestingly, the
pure spin-3/2 interaction is given by

LγN� = eN̄ (f1�μν + f2γμ∂ρ�ρν)Fμν + H.c., (31)

which differs from the GI one by the number of coupling
constants, i.e., the pure spin-3/2 representation has only two
couplings because �̃μν = −γ5�μν . Thus, the interaction of the
photon with the pure spin-3/2 resonance has the same number
of couplings as in the case of the non-GI model.

To visualize the behavior of the pure spin-3/2 propagator
we will compare the contributions of the spin-3/2 �(1232) res-
onance amplitudes obtained from the pure spin-3/2 propagator
and from the Rarita-Schwinger one to the total cross section
of elastic πN scattering. To this end we include the resonance
width � in the resonance propagator by replacing iε → i�m�

and write the scattering amplitude in the form of

M = ū(p′,s ′)(A + B /Q)u(p,s), (32)

with Q = (k + k′)/2. For the RS propagator with GI interac-
tion we obtain

A = G
{
mN

(
3k′ · k − 2p · k − m2

π − 2q · k′q · k/q2)
+m�

(
3k′ · k − 2p · k − m2

π − 2m2
πq · Q/q2

)}
, (33)

B = G
{
3k′ · k − m2

π + 2m2
N − 2q · k′q · k/q2

+ q · (k′ − k) + 2m�mN (1 − q · Q/q2)
}
, (34)

with

G = q2 g2
πN�/

[
3m2

πm2
�

(
q2 − m2

� + i�m�

)]
. (35)

In the case of the pure spin-3/2 propagator we have

A = G
[(

q4/12m4
�

)(
3k′ · k − m2

π − 2p · k

− 2m2
π q · Q/q2

) − {(
q2 − m2

�

)
/2m4

�

}
× (q2k′ · k − q · kq · k′)

]
, (36)

B = (
q4mNG/6m4

�

)
(1 − q · Q/q2), (37)

with

G = g2
πN�/

[
q2 − m2

� + i�m�

]
. (38)
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FIG. 2. Contribution of the �(1232) resonance to the πN → πN

scattering total cross section in arbitrary unit (arb. units) according
to the Rarita-Schwinger formalism with GI interaction and the pure
spin-3/2 models as a function of total c.m. energy W . Panels (a) and
(b) show the contributions if the hadronic form factors are excluded
and included, respectively. Note that for the sake of comparison the
two models do not use the same value of coupling constant.

The cross section can be obtained from the scattering am-
plitude M given by Eq. (32) by means of the standard
method [13]. Since the analytic forms of the two amplitudes
are completely different we have to use different coupling
constants in order to produce comparable results. We believe
that this should not raise a problem since the coupling
constants are usually fitted to reproduce the experimental
data.

The original contributions of both models are depicted
in Fig. 2(a), where we can see the resonance behavior
centered around W ≈ 1.25 GeV, followed by the background
phenomenon originating from momentum dependence of the
numerator of Eq. (28) indicated by a smoothly increasing cross
section for W � 1.40 GeV. Note that this background shifts
the resonance peak from the original position at 1.232 GeV
to a higher energy region. It is also obvious from Fig. 2(a)
that the background obtained from the pure spin-3/2 model
is significantly smaller than that of the RS model at W ≈
1.40 GeV. This phenomenon originates from the second term
in the square bracket of Eq. (28). Above this energy point
the first term of Eq. (28) starts to become dominant, since
q4 = W 4, and the total contribution starts to diverge.

The large background contribution is natural in the co-
variant Feynman diagrammatic approach. Alternatively, this
could be also interpreted as the contribution of a Z-diagram
[14], i.e., the existence of particle and antiparticle in the

intermediate state, which is not considered in Fig. 1. The
situation is quite different in the multipoles approach, where a
relatively perfect resonance structure is parametrized by using
the Breit-Wigner function [15]. However, in a covariant isobar
model [16] the large background contributions produced by a
number of resonances in the model could disturb the nature
of the resonance itself and increase the difficulty to fit the
experimental data. To suppress this undesired background one
usually considers a hadronic form factor (HFF) in each of
hadronic vertices of Fig. 1. A related discussion to this end
can be found, e.g., in Refs. [17,18]. Nevertheless, here we
have to emphasize that the use of HFF is theoretically required
to account for the fact that the nucleon is not a point-like
object. In the present analysis we use a dipole HFF in the form
of [18]

F = �4/[�4 + (
q2 − m2

�

)2
], (39)

with the hadronic cutoff � = 0.5 GeV. The choice seems to
be trivial, but at present it is solely intended as an example.
A detailed study for this purpose can be addressed in the
future.

The result obtained after including this HFF is shown in
Fig. 2(b). Clearly, we obtain a perfect resonance structure for
both models and the fact that the RS structure is slightly shifted
to the right can be understood from its original contribution
shown Fig. 2(a). Therefore, instead of its different formulation
the pure spin-3/2 propagator also exhibits a common resonance
structure as in the conventional RS propagator. This result also
emphasizes our argument that in order to obtain the natural
properties of resonance the use of HFF is mandatory in the
covariant Feynman diagrammatic approach.

Finally, one could also raise questions about the consistency
of the interaction Lagrangian given in Eq. (25). According to
Ref. [19], an interaction is said to be consistent if the interaction
Lagrangian has the same symmetry as in the free Lagrangian,
i.e., the invariance under the same transformation as in the
free Lagrangian. The Lagrangian given in Eq. (25) is not
invariant under the gauge transformation given by Eq. (13).
However, it is not difficult to construct a consistent La-
grangian for this purpose. The general form of the interaction
Lagrangian reads

L = gJ̄μν�
μν + H.c. (40)

The invariance of this interaction under the gauge transforma-
tion given in Eq. (13) requires that

J̄μνξ
μν = 0, (41)

whereas Jμν must not be a symmetric tensor because in general
one does not expect that Jμν�

μν vanishes. One of the possible
choices for the consistent Lagrangian is

LπN� =
(

gπN�

m�

)
N̄γ5Pμνρσ ∂ρ�μν∂σπ + H.c. (42)

By using the vertex factor

�μν(k) =
(

gπN�

m�

)
γ5Pμνρσ qρkσ , (43)

052201-4



RAPID COMMUNICATIONS

PURE SPIN-3/2 PROPAGATOR FOR USE IN PARTICLE . . . PHYSICAL REVIEW C 96, 052201(R) (2017)

the corresponding �-exchange amplitude for this interaction
reads

�μν(k′)Sμνρσ (q)�ρσ (k)

=
(

gπN�

m�

)2

qαk′βPμναβSμνρσ (q)Pρσγ δq
γ kδ . (44)

With the idempotent relation of the projection oper-
ator PμναβPαβρσ = Pμν

ρσ , one can prove the relation
Pμναβ�αβρσ = Pμν

ρσ . As a result, the transition amplitude
becomes

�μν(k′)Sμνρσ (q)�ρσ (k) = g2
πN�

m2
�

(
q2 − m2

� + iε
)

× [qαk′βPαβγ δq
γ kδ]

= g2
πN�

q2 − m2
� + iε

[
q2

4m2
�

P
(3/2)
βδ k′βkδ

]
.

(45)

Surprisingly, this transition amplitude contains only the RS
spin-3/2 projection operator term. This transition amplitude
differs from the result of Pascalutsa and Timmermans [5] by
the (/q + m�) factor.

In conclusion we have proposed the use of a pure spin-3/2
propagator to describe the properties of spin-3/2 particles
in the study of particle and nuclear physics. We used the
ATS representation to describe the corresponding projection
operator. We have shown that in the ATS formalism we have
to redefine the interaction Lagrangian, otherwise the obtained
scattering amplitude cannot display the resonance behavior.
By calculating its contribution to the elastic πN scattering
total cross section we have shown that this pure spin-3/2
propagator also exhibits the natural properties of a resonance,
as in the conventional RS one, if the hadronic form factors
were considered in its hadronic interactions.
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