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Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions.
The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from
elastic scattering. We perform a χ 2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies
E ≈ 5–40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962)] or Tian et al. [Int. J. Mod. Phys. E
24, 1550006 (2015)] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies
in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the
starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a
good description of the data across the included energy range. We present two parametrizations, both of which
represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included
in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a
significant energy dependence is required to describe elastic-scattering data.

DOI: 10.1103/PhysRevC.96.051601

Introduction. Optical potentials are commonly used in
nuclear-reaction theory as effective interactions that take
into account the complexity of the many-body effects in
nucleon-nucleus scattering. These effective potentials are
often determined from fitting to data, mostly elastic-scattering
angular distributions. The vast majority of these global fits have
assumed the interaction is local and strongly energy dependent.
However, it is well understood from many-body structure that
such effective interactions are intrinsically nonlocal. Even at
the mean field level, the exchange term in Hartree-Fock theory,
originating from antisymmetrization, introduces an explicit
nonlocal potential [1]. In addition, coupling from the elastic
channel to all other channels not explicitly included in the
model space also gives rise to nonlocality [2–6].

No matter how complex the target, it is always possible
to design a local optical potential that fits elastic scattering
at a given energy, as long as enough degrees of freedom
are included in the parametrization. To illustrate this fact,
we note the work on neutron scattering on one of the most
challenging targets, 9Be [7]. The strong clusterization in this
system produces large coupling effects (nonlocal by nature)
that can be mimicked by local strong surface terms, both in the
real and imaginary parts of the optical potential. The resulting
energy dependence is significant and intricate. However,
despite it being convenient to assume that all nonlocal effects
can be encapsulated in the energy dependence of local
optical potentials, in the past few years numerous studies
have demonstrated the importance of including nonlocality
explicitly in the predictions of reaction observables [8–14].
These studies have shown that nonlocality in optical potentials
can greatly affect the transfer cross sections in both shape and
magnitude. For this reason, it is important to revisit the issue
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of nonlocality in optical potentials and find ways to constrain
it. This study is one step along the way and addresses the
question: Do nucleon-target elastic-scattering data call for an
energy dependence in the optical potential, when nonlocality
is included explicitly?

Over the past few decades, there have been only two studies
aimed at providing an explicitly nonlocal phenomenological
nucleon-target potential, namely the work in the sixties by
Perey and Buck (PB) [15] and the more recent effort by Tian,
Pang, and Ma (TPM) [16]. In the first case, only two data sets
were used: the angular distribution for the elastic scattering
of n + 208Pb at 7.0 and 14.5 MeV. The PB potential consists
of a nonlocal real volume term, a nonlocal imaginary surface
term, and a local real spin-orbit potential. The nonlocality is of
Gaussian form with an ad hoc range β = 0.85 fm. The TPM
for neutrons was fitted to elastic-scattering data on 32S, 56Fe,
120Sn, and 208Pb for energies in the range of E = 8−30 MeV.
In addition to the nonlocal real volume term and the nonlocal
imaginary surface term, the TPM potential includes a nonlocal
imaginary volume term. As for PB, the nonlocality is also
assumed to be Gaussian but the range β is an additional
parameter in the fit. In both cases, the fitted parameters were
assumed to be energy and mass independent.

Although the potential itself is not an observable, micro-
scopic theories should be able to provide insight into the issue
of nonlocality and energy dependence. There have been many
efforts to derive optical potentials from microscopic theories.
The link between the self-energy and the optical potential,
explored by Mahaux and Sartor [17], was implemented for
a number of targets, and is known as the dispersive optical
model (DOM) [18,19]. There are also ongoing efforts of
extracting the optical potential from ab initio theories. In
Ref. [20], the optical potential is extracted from the many-body
Green’s function generated in a coupled-cluster calculation.
The resulting effective potential is strongly nonlocal and
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energy dependent. In these studies, the nonlocality produced
is not described by a simple Gaussian shape and the range is
larger than assumed in PB [9,19,20].

At present, nonlocal nucleon optical potentials extracted
from state-of-the-art ab initio theories are still unable to
provide a detailed description of the data [20]. Moreover, they
are difficult to implement within direct-reaction models. It is
therefore important to revisit the phenomenological approach.
The goal of the current study is to investigate, once a standard
Gaussian nonlocality is introduced explicitly, whether elastic-
scattering data requires an energy dependence in the potential
and explore the possible parametrization of that dependence.
We take as starting points the PB and TPM parametrizations.
We consider three spherical targets for which there is good
quality neutron-scattering data (40Ca, 90Zr, and 208Pb) and
a range of neutron energies 5 � E � 40 MeV. To obtain a
practical phenomenological global nonlocal potential, we use a
single-channel approach. Although coupling to other channels
can produce dynamic polarization in the scattering process,
these effects are averaged out in the optical model, especially
for spherical targets. Consequently, nucleon elastic scattering
off 40Ca, 90Zr, and 208Pb is usually well described using simple
local optical potentials. Note that neutron scattering on light
nuclei exhibiting strong clusterization features is extremely
challenging to describe in a global approach and therefore
falls outside the scope of this work. Dedicated studies for
those systems, such as Ref. [7], are necessary.

We analyze the data with PB-like and TPM-like interac-
tions, considering the issue of the dependence on energy and
asymmetry N−Z

A
, where N , Z, and A are, respectively, the

neutron, proton, and total nucleon numbers of the target. Our
results demonstrate unequivocally that the data call for an en-
ergy dependence in the imaginary part of the optical potential.
To test the predictive power of the obtained parametrizations,
we apply them to other cases (27Al and 118Sn). Finally, we
discuss the limitations of the present construction.

PB and TPM parametrizations. In this work, we have
coupled the code NLAT [21] to SFRESCO [22] in order to
perform a χ2 minimization of angular distributions produced
in the optical model with nonlocal potentials. We have
selected 24 sets of data for neutron elastic scattering on three
different targets at several beam energies: 40Ca (E = 9.9,
11.9, 13.9, 16.9, 21.7, 25.5, 30.1, 40.1 MeV), 90Zr (E = 5.9,
7.0, 8.0, 10.0, 11.0, 24.0 MeV), and 208Pb (E = 7.0, 9.0,
11.0, 14.6, 16.9, 20.0, 22.0, 26.0, 30.3, 40.0 MeV) [23–34].
We made sure all targets were spherical nuclei, spanning a
wide range of asymmetry, and that the data covered most of
the angular range. Although most often systematic errors on
elastic-scattering data are not discussed in the publications,
we assume these dominate the uncertainties in the cross
sections and take a 10% error for all data points to account for
these.

We first evaluate the χ2 obtained when using either the
original PB or the original TPM potential, for each data
set we consider. Because PB only fits elastic scattering at
E < 15 MeV, it does worse at higher energies. TMP, on the
other hand, does better than PB in the range 20 < E < 30
MeV but worse at lower energies. At E = 40 MeV, TPM
does poorly over the whole angular range just like PB,

TABLE I. Summed χ 2 for the various reactions here considered:
the original parametrization is shown in the first column, the energy
range for the neutron in the laboratory is the second column, and then
the χ 2, with and without angular restriction, for the original potentials
(columns 3 and 4) and for the energy-dependent potentials resulting
from our fit (columns 5 and 6).

E (MeV) χ 2
θ<100 χ 2

tot χ 2
θ<100(E) χ 2

tot(E)

PB <20 116 136 92 121
PB �20 640 465 61 136
TPM <20 131 230 109 158
TPM �20 158 182 82 177

suggesting that extrapolations beyond the fitted range are not
reliable.

In columns 3 and 4 of Table I, we show the χ2 compiled by
summing the various sets over two energy bins. Because we
expect the optical model approach to work poorly at backward
angles, we have considered χ2

θ<100, restricting the angles to θ <
100◦. By comparing columns 3 and 4, one can verify that there
are significant differences between χ2

θ<100 and the full χ2
tot,

calculated with the whole angular range. As pointed out above,
PB does better at lower beam energies, while TPM overall
provides a better description at the higher beam energies. The
main difference of TPM compared to PB is the inclusion of
the volume imaginary term which is expected to be necessary
in describing data at the higher energies.

Starting from PB, we fit each data set, by allowing both the
real and imaginary depths to vary (Vv and Ws), while keeping
the rest of the original parametrization. While the resulting
Vv was very close to the original potential, the data required
a significant variation of Ws with energy (mostly linear) and
with the target. We repeated this procedure using the TPM
potential as starting point, varying the depth of the real part
Vv , and both volume and surface depths for the imaginary part
(Wv and Ws). We found again that Vv reflected weak energy
and target dependencies, but there were strong variations of
Wv and Ws . This preliminary study [35] pointed toward the
need for an explicit energy dependence in the imaginary part
of the optical potential.

Considering only the effect of antisymmetrization, one
might expect a Gaussian nonlocality as introduced in these
phenomenological potentials, with a range roughly of the size
of the nucleon. However, there is no reason to expect this
shape and range should account for the complex scattering
dynamics [4–6]. Our hypothesis is that channel-coupling
effects would primarily affect the absorptive term. In addition
to the energy dependence, it should also be target dependent.
We now turn to local phenomenological potentials to obtain
insight.

Energy and asymmetry dependences. A strong energy
dependence in the depth of the optical potential is usually
obtained when extracting local global optical potentials
[36–38]. A simple parametrization is provided by Becchetti
and Greenlees (BG) [38], where the global optical potential
was derived for targets with mass A > 40 and at energies
E < 50 MeV. The corresponding parametrizations for Vv ,
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TABLE II. Best-fit parameters using PB or TPM as starting points
for the minimization, fitting data with θ < 100◦.

PB-E TPM-E

a −0.017 ± 0.015 0.20 ± 0.0040
b (MeV) 0.74 ± 0.46 4.5 ± 0.5
c (MeV) 11.94 ± 0.38 12.15 ± 0.40
d 0.34 ± 0.011 0.018 ± 0.0085
e (MeV) −2.00 ± 0.25 0.36 ± 0.26

Wv , and Ws all contain a linear dependence in energy and/or
asymmetry. While we do not expect this potential to compare
directly to the nonlocal potentials under study here, we borrow
the simple form of the isotopic dependence of Ref. [38] in our
analysis.

Since our independent fits show no need for an energy-
dependent real part in the optical potential, we keep it constant.
We parametrize the imaginary depths as

Ws = a E + b (N − Z)/A + c, Wv = d E + e . (1)

We then fit these five parameters to all 24 sets of elastic data.
During this fit, all other parameters are kept at their original
value, and the geometry for the imaginary volume term in
the PB potential is taken to be the same as the imaginary
volume term from TPM. We do this for the PB-like (PB-
E) and TPM-like (TPM-E) potentials. We take only data up
to θ = 100◦, to avoid distortions of the potential in regions
where the optical model may not be reliable. We estimate the
uncertainties on the parameters from the covariance matrix.
The resulting parametrizations are given in Table II.

We compare the χ2 for these two parametrizations with
those of the original potentials. We summarize the results for
the χ2 in columns 5 and 6 of Table I. No matter whether
you consider the lower or higher energy bin, all angles or
the restricted angular region, the energy dependence always
provides a significant improvement in the description of the
data. This improvement can be very large for those cases in
which the original potential performs poorly.

We also present in Fig. 1 the angular distributions for
neutron elastic scattering on 208Pb at four different energies.
The results for elastic scattering using the original PB (solid
black) and TPM (dotted green) potentials are compared with
those obtained using our energy-dependent parametrizations
PB-E (dashed red) and TPM-E (dot-dashed blue), and with
the data of Refs. [30,33,34]. Cross sections are multiplied
by arbitrary factors for readability. The original PB potential
describes the angular distribution well for the lowest energies,
while the original TPM potential does an excellent job at
E = 30 MeV. As mentioned earlier, both PB and TPM provide
cross sections that are significantly far from the data at 40 MeV.
Both the PB-E and TPM-E parametrizations are effective in
describing the data across the whole energy range.

The two sets of parameters PB-E and TPM-E, shown in
Table II, are very different. The PB-E potential is consistent
with no energy dependence in the surface term of its imaginary
part and a robust energy dependence in the volume term (the
predicted slope d is larger than the associated error by an order
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FIG. 1. Angular distributions for 208Pb(n,n)208Pb at E = 11, 20,
30.3, 40 MeV. Data are from Refs. [30,33,34].

of magnitude). On the other hand, the TPM-E parametrization
has a strong energy dependence in the surface term and
a weaker—but nonzero—energy dependence in the volume
term. This set of data hence does not constrain the details of
Ws and Wv , but regardless of the results, energy dependence
is required. We do not expect the energy dependence of
the nonlocal optical potential to be identical to the local
counterpart. Nevertheless, it is interesting to note that the
slopes a and d we obtain in the nonlocal parametrizations are of
the same order of magnitude as in the local BG potential [38].

Interestingly, the energy dependence also relies on the
geometry of the potential and parameter restrictions imposed
during the fit. Table III shows two alternate parametrizations
that were obtained starting from PB. Because PB does not
contain an imaginary volume term, the choice of geometry
for this term is rather arbitrary. If instead of using the TPM
geometry, we choose the geometry of the imaginary surface
term in PB (many local potentials impose that these two terms
have the same geometry) and perform the fit for angles less than
100◦, we find the parameters given in column 2 of Table III
(PB-PB). Comparing these to the PB-E parametrization, we
now find a robust (nonzero) energy dependence in both of the
imaginary terms, with a similar asymmetry term. However, e is
more negative, leading to a larger range of energies for which
Wv would be negative (defined by E < −e/d).

In addition, we can impose the restriction e � 0 when
we perform the fit using the PB geometry. The resulting

TABLE III. Best fit parametrization starting with PB assuming the
same geometry for the two imaginary terms (column 2) and imposing
e � 0 (column 3), fitting data with θ < 100◦.

PB-PB PB-00

a 0.017 ± 0.0044 0.14 ± 0.0076
b (MeV) 1.3 ± 0.59 0.066 ± 0.57
c (MeV) 12.60 ± 0.097 9.3 ± 0.15
d 0.31 ± 0.0056 0.23 ± 0.065
e (MeV) −2.33 ± 0.068 9.6 × 10−5 ± 5.4 × 10−3
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FIG. 2. Angular distributions for 27Al(n,n)27Al at E = 10.159,
18, 26 MeV. Data are from Refs. [39,40].

parameters are given in column 3 of Table III (PB-00). In this
case, e is consistent with zero, meaning that this is probably not
a true minimum of the system but rather an artifact of hitting
one of the imposed bounds. Still, we use this to illustrate the
differences that can arise due to different restrictions that are
imposed. In this case, there is still a strong energy dependence
in both imaginary terms, but we also find an asymmetry that
is undetermined within its associated error. While the need for
an energy dependence in the imaginary terms is robust, the
specific parameters are heavily influenced by the constraints
that are included in the fitting. This implies that this set of
elastic scattering data is not enough to constrain the details of
the imaginary potential.

The asymmetry dependence obtained in both parametriza-
tions of Table II are much smaller than the BG one: PB-E
predicts a weak b < 1 MeV, while TPM-E predicts a slightly
larger b = 4.5 MeV. Moreover, we find no need for an
asymmetry dependence in the real part of the potential,
contrary to Becchetti and Greenlees. Given the large difference
in b obtained in both parametrizations and the significant
corresponding uncertainties, we do not think the resulting
asymmetry dependence is robust. For a meaningful study of
the asymmetry dependence, one will have to include both
neutron and proton data, and potentially charge-exchange
measurements, which is beyond the scope of the current study.

Predictions. Finally, we use the PB-E and TPM-E
parametrizations to make predictions for a few cases that
are not included in our fit. We choose spherical nuclei in
very different parts of the nuclear chart, namely 27Al and
118Sn, for which a wealth of neutron elastic-scattering data
exists. In Figs. 2 and 3, we show the neutron elastic-scattering
cross sections on 27Al and 118Sn, respectively. The calcula-
tions with the original potentials and our energy-dependent
parametrizations are compared to data [39–42]. In both
cases, the energy-dependent parametrizations provide good
predictions for the angular distributions over the whole energy
range, which indicates that the interpolation over asymmetry
is valid. Here also the original TPM potential does poorly at
the lowest energies, while the opposite is true for the original
PB potential.
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FIG. 3. Angular distributions for 118Sn(n,n)118Sn at E = 11, 14,
18, 24 MeV. Data are from Refs. [41,42].

Summary and outlook. We have investigated the
parametrization of nonlocal optical potentials that describe
the elastic scattering of neutrons off nuclear targets. We have
found that neither the PB [15] nor the TPM [16] potentials
are able to provide a good description of elastic-scattering
data across the energy range E = 5–40 MeV. To correct this,
we have developed two new parametrizations by including
in the original nonlocal PB and TPM potentials an energy
dependence inspired from the BG local optical potential [38].
Our results for 40Ca, 90Zr, and 208Pb, the nuclei included in the
fit, demonstrate a clear improvement in the description of the
angular distributions, with the χ2 improving by factors of 2, 5,
or even 10 for specific data sets. These energy-dependent fits,
PB-E and TPM-E, are also able to make predictions for nuclei
not included in the fit.

While we find that some details of the PB-E and TPM-E
parametrizations are not robust or unique, like their asymmetry
dependence, our study clearly shows that when including a
standard Gaussian nonlocality in the optical potential, one
still needs a significant energy dependence. This energy
dependence can be parameterized with a simple linear term.
The need for energy dependence in addition to nonlocality is
in agreement with the expectation from microscopic theories
but it goes against the belief by a significant fraction of the
nuclear-reaction community that nonlocality alone can remove
the energy dependence of optical potentials. Given that there
is an interplay between nonlocality and energy dependence,
we must note that our conclusions are specific to our choice
of a standard Gaussian nonlocality. This study calls for the
development of a new global nonlocal energy-dependent
optical potential, encompassing a larger range of data and a
more varied array of observables. One important next step for
this work on neutron scattering is to allow for a non-Gaussian
nonlocality provided by ab initio calculations. Also important
is to analyze proton elastic data on similar systems and explore
long isotopic chains to reliably constrain the asymmetry term.
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