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Projection after variation in the finite-temperature Hartree-Fock-Bogoliubov approximation
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The finite-temperature Hartree-Fock-Bogoliubov (HFB) approximation often breaks symmetries of the
underlying many-body Hamiltonian. Restricting the calculation of the HFB partition function to a subspace
with good quantum numbers through projection after variation restores some of the correlations lost in breaking
these symmetries, although effects of the broken symmetries such as sharp kinks at phase transitions remain.
However, the most general projection after variation formula in the finite-temperature HFB approximation is
limited by a sign ambiguity. Here, I extend the Pfaffian formula for the many-body traces of HFB density operators
introduced by Robledo [L. M. Robledo, Phys. Rev. C. 79, 021302(R) (2009)] to eliminate this sign ambiguity
and evaluate the more complicated many-body traces required in projection after variation in the most general
HFB case. The method is validated through a proof-of-principle calculation of the particle-number-projected
HFB thermal energy in a simple model.
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Introduction. The Hartree-Fock-Bogoliubov (HFB) ap-
proximation is an important mean-field method for studying
many-fermion systems in which pairing correlations are im-
portant. When extended to finite temperatures [1], this method
provides an efficient way to calculate statistical observables.
The finite-temperature HFB approximation has been widely
applied to the study of deformation and pairing properties of
nuclei [2,3] and is also useful for the study of atomic and
molecular Fermi gases [4]. However, the finite-temperature
HFB approximation often breaks symmetries of the underlying
many-body Hamiltonian. In particular, the HFB approximation
explicitly violates particle-number conservation if the pairing
field is nonzero and can also violate rotational invariance
when the mean-field solution is deformed. Breaking these
symmetries reduces the accuracy of HFB predictions of
statistical properties such as nuclear level densities [5].

To avoid breaking symmetries, the conservation of the sym-
metries of the underlying many-body Hamiltonian must be en-
forced during the variation to determine the HFB Hamiltonian.
This procedure is known as variation after projection (VAP)
and has been applied successfully in the zero-temperature HFB
approximation [6,7]. However, whereas at zero temperature the
HFB solution is determined by minimizing the energy, at finite
temperature the HFB solution is determined by minimizing
the grand thermodynamic potential [8]. Determining this
potential in VAP requires calculating the symmetry-projected
entropy S� = −Tr [D̂� ln D̂�], where D̂� = P̂�D̂P̂� is the
projected HFB density operator, P̂� is the projection operator
onto the quantum numbers � of the subspace to which the
variation is being restricted, D̂ is the unprojected HFB density
operator, and the trace Tr is over all many-particle states
in Fock space. Evaluating this expression for the entropy is
complicated and, to date, has only been done in the finite-
temperature Bardeen-Cooper-Schrieffer (BCS) approximation
by computing the trace explicitly in the many-particle subspace
of the full Fock space defined by the projection operator
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P̂� [9,10]. Such explicit evaluation in either the BCS or
HFB approximation is only possible if this many-particle
subspace is sufficiently small or if unbroken symmetries render
the necessary matrix algebra tractable. Consequently, the use
of VAP for the restoration of, for example, particle-number
conservation or rotational symmetry is currently unfeasible
for realistic finite-temperature HFB calculations of mid-mass
or heavy nuclei because the combinatorial growth of the di-
mension of the allowed many-particle subspace with the
number of single-particle orbitals renders the evaluation of
the projected entropy intractable.

Alternatively, the projection may be applied in the calcula-
tion of the HFB partition function but not in the variation that
determines the HFB Hamiltonian. This approach is known
as projection after variation (PAV) [11–13]. Unlike VAP,
PAV is tractable for finite-temperature calculations in the
large model spaces necessary for, e.g., heavy nuclei [14].
However, PAV does not fully eliminate the effects of broken
symmetries. In particular, sharp kinks around phase transitions
occur in PAV observables, and the thermodynamic entropy
may become unphysically negative in the low-temperature
limit [14]. Despite these problems, finite-temperature HFB
calculations of, for instance, nuclear level densities with PAV
include correlations that are missing in the standard HFB
approximation and therefore are more accurate than standard
finite-temperature HFB calculations [5].

However, in the most general HFB case, the calculation
of the PAV partition function is limited by a sign ambiguity
(see Eq. (3.46) of Ref. [12]). In many physical cases, the
HFB Hamiltonian is invariant under an unbroken symmetry
that renders the HFB energies at least two-fold degenerate.
For instance, invariance of the HFB Hamiltonian under time-
reversal symmetry guarantees two-fold degeneracy of the
HFB energies. This degeneracy is a necessary condition for
eliminating the sign ambiguity of PAV via the method of
Ref. [14]. However, there are important physical systems in
which no such simplifying symmetries exist and the HFB
energies have no degeneracy. This may occur, for instance, in
odd mass nuclei, in which time-reversal symmetry is broken
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in the HFB. Similarly, when a cranking term is added to the
Hamiltonian, the HFB energies of the rotating frame have no
degeneracy [15]. A general formula for calculating the PAV
partition function with no sign ambiguity would be useful for
these cases.

Here, I introduce a method for calculating the PAV partition
function unambiguously in the most general finite-temperature
HFB approximation. Specifically, I extend the Pfaffian formula
for the many-body traces of (unprojected) HFB density
operators introduced by Robledo [16] to evaluate the more
complicated traces required in the PAV calculation. The
Pfaffian is the square root of the determinant of a skew-
symmetric matrix with a well-determined sign (see Appendix
A of Ref. [16]). To demonstrate the validity of the Pfaffian
method, I calculate the particle-number PAV thermal energy in
a tractable model in which the HFB energies are not degenerate
in the paired phase. The results from this method match the
results obtained if the necessary many-body traces for the PAV
calculation are evaluated explicitly in the many-particle model
space. The codes and data files necessary to reproduce the
results described below are provided in the Supplemental
Material repository for this article [17].

Recently, Pfaffian formulas have been introduced to over-
come a sign ambiguity in the calculation of overlaps of arbi-
trary HFB states [16,18]. Although the problem of calculating
many-body traces that I address here is different from the
calculation of these overlaps, my method shares with these
methods the idea of using the Pfaffian to circumvent a sign
ambiguity.

Pfaffian formula for finite-temperature projection after
variation. The projection operator onto state m of the irre-
ducible representation K of a symmetry group is formally
given by [18]

P̂Km = dK

�0

∫
d�RK

mm(�)R̂(�), (1)

where dK is the dimension of the representation, �0 is the
total volume integral over the group, RK

mm(�) is the diagonal
element corresponding to state m of the matrix representation
of the group, and R̂(�) is the symmetry operator acting on
many-particle states in Fock space. In the finite-temperature
HFB PAV approach, observables at inverse temperature β =
1/T can be calculated from the PAV partition function, which
is given by

ZKm = Tr [P̂Kme−β(ĤHFB−μN̂ )]

= dK

�0

∫
d�RK

mm(�)Tr [R̂(�)e−β(ĤHFB−μN̂)], (2)

where ĤHFB is the HFB Hamiltonian, N̂ is the particle-number
operator, and μ is the chemical potential inserted to constrain
the average particle number in the grand-canonical ensemble.
The main challenge of PAV is the evaluation of the many-body
traces

ζ (β,�) = Tr [R̂(�)e−β(ĤHFB−μN̂)] . (3)

I emphasize that the trace in Eq. (3) is over the entire many-
particle model space. My purpose is to show how to evaluate
Eq. (3) in the most general HFB case, where the HFB energies

have no degeneracy. Throughout this paper, I assume that the
model space of the system under investigation consists of a
finite number Ns of single-particle orbitals.

In Ref. [16], Robledo derived a Pfaffian formula to evaluate
the traces of grand-canonical HFB density operators. These
operators have the form e(1/2)η†Rη, where the 2Ns × 2Ns-
dimensional matrix R has the property that σR is skew-
symmetric, with the matrix σ being

σ =
(

0 1
1 0

)
, (4)

and η = (a1, . . . ,aNs
,a

†
1, . . . ,a

†
Ns

)
T

, with {ak,a
†
k} (k =

1, . . . ,Ns) being the fermion annihilation and creation op-
erators associated with some basis of single-particle orbitals.
Robledo’s formula, given in Eqs. (12) and (13) of Ref. [16], is

Tr [e
1
2 η†Rη] = (−)

Ns (Ns+1)
2

e−tr [Y]/2

det T22
pf

(
T12T −1

22 −(1 + T T
22 )

1 + T22 T21T T
22

)
,

(5)

where the Ns × Ns-dimensional matrices Tij are the blocks of
the 2Ns × 2Ns-dimensional matrix

T = eR =
(
T11 T12

T21 T22

)
, (6)

and the exponential term e−tr[Y]/2 = (det T22)1/2 follows
from the Balian-Brézin decomposition [19] of the operator
e(1/2)η†Rη. pf denotes the Pfaffian of a matrix. As discussed
below, for density operators, the sign of e−tr[Y]/2 can be
determined easily. I will show that Eq. (5) can be used to
evaluate the many-body traces ζ (β,�) given in Eq. (3) and
will determine the sign of e−tr[Y]/2 in this more complicated
case.

In any particle or quasiparticle basis of the model space, any
fermion operator that conserves total particle or quasiparticle
number can be written in quadratic form as

Â = 1
2η†Aη + A0, (7)

where A is a 2Ns × 2Ns-dimensional matrix with the property
that σA is skew-symmetric and A0 is a constant. A short
proof of this result is given in the Supplemental Material [17].
Each of the generators Â(j ) of the usual symmetries broken
in the HFB approximation, i.e., particle number and rotational
symmetries, is a fermion operator that conserves total particle
number and thus can be written in the form (7) in terms of a
constant A

(j )
0 and a 2Ns × 2Ns-dimensional matrix A(j ) with

the property that σA(j ) is skew-symmetric. The symmetry
operator R̂(�) is expressed in terms of these generators as

R̂(�) =
∏
j

eixj (�)Â(j )
, (8)

where the coefficients xj (�) are �-dependent real numbers.
The HFB Hamiltonian conserves total quasiparticle number
and therefore can also be written in any particle or quasiparticle
basis in the form (7) as

ĤHFB − μN̂ = 1
2η†Hη + U0, (9)
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where σH is skew-symmetric and U0 is a constant. As a
concrete example, in the particle basis in which the HFB
solution is determined, H can be expressed as

H =
(

h − μ �

−�∗ −(hT − μ)

)
= W

(
E 0
0 −E

)
W †, (10)

where h is the Hermitian Hartree-Fock potential, � is the
skew-symmetric pairing field, E = diag(E1, . . . ,ENs

) is the
diagonal matrix of the HFB quasiparticle energies, and
the matrix W is the general Bogoliubov transformation that
diagonalizes H [6,8]. The constant U0 = tr(h − μ)/2 − 〈V̂ 〉,
where V̂ is the two-body interaction of the underlying many-
body Hamiltonian. The term 〈V̂ 〉 arises from the variation to
minimize the grand thermodynamic potential [8]. Thus, the
argument R̂(�)e−β(ĤHFB−μN̂) of the many-body trace in Eq. (3)
is a product of exponentials of operators of the form (7).

Exponentials of fermion operators of the form (7) follow
the group property [19]

e
1
2 η†Aηe

1
2 η†Bη = e

1
2 η†Cη, (11)

where the matrix C has the property that σC is skew-symmetric
and is determined from the single-particle representation of the
group by the matrix equation

eC = eAeB. (12)

Consequently, I may rewrite Eq. (3) as

ζ (β,�) = eC0 Tr [e
1
2 η†C(β,�)η], (13)

where the 2Ns × 2Ns-dimensional matrix C(β,�) is deter-
mined by the matrix equation

eC(β,�) =
⎛
⎝∏

j

eixj (�)A(j )

⎞
⎠e−βH, (14)

and the constant C0 = i
∑

j xj (�)A(j )
0 − βU0 depends on the

constants A
(j )
0 and U0 related to the symmetry generators and

the HFB Hamiltonian, respectively. Evaluating the right-hand
side of Eq. (13) using previously developed methods yields
the square root of a determinant [12]. The undetermined sign
of this square root appears for each term ζ (β,�) in the integral
over � in Eq. (2) and consequently limits the evaluation of the
PAV partition function.

To overcome this sign ambiguity, I note that the argument
of the trace in Eq. (13) has the form of a HFB density operator.
Consequently, I may evaluate Eq. (13) using Eq. (5), where
the required matrix T of Eq. (6) is given by T = eC(β,�). As
shown below and in [17], the matrices A(j ) and constants A

(j )
0

may be determined from the expressions for the symmetry
generators Â(j ) in second quantization. The matrix H and
constant U0 are outputs of the standard finite-temperature HFB
approximation [1,8]. Thus, it is straightforward to calculate T .

However, to evaluate Eq. (13) using Eq. (5), one must
determine the sign of the factor e−tr[Y]/2 in Eq. (5). This term
is given by the Balian-Brézin decomposition as [19]

e−tr[Y]/2 = 〈	|e 1
2 η†C(β,�)η|	〉 =

√
det T22e

iδ, (15)

where |	〉 is the vacuum associated with the operators {ak,a
†
k}

of the model space basis and δ = 0,π is the undetermined
phase factor. For the density operators considered in Ref. [16],
e−tr[Y]/2 is real and positive because the expectation value of a
density operator in any state is real and positive. The operator
e

1
2 η†C(β,�)η does not have this property, so the phase term δ

must be determined directly.
Using Eq. (15), I express the phase factor δ as

δ = Im [ln e−tr[Y]/2] − 1
2 Im [ln (det T22)] . (16)

In order to determine δ from Eq. (16), it is convenient to
formulate the problem in a particle basis. The matrix T given
by Eq. (14) is obtained by using the matrices A(j ) and H
appropriate to this basis. The symmetry generators conserve
particle number, so the symmetry operator leaves the particle
vacuum invariant, i.e., R̂(�)|0〉 = |0〉. Using this fact together
with Eqs. (7)–(9) and (11), I rewrite Eq. (15) as

e−tr[Y]/2 = 〈0|
⎡
⎣∏

j

e
ixj (�)

2 η†A(j )η

⎤
⎦e

−β
2 η†Hη|0〉

= eβU0−i
∑

j xj (�)A(j )
0 〈0|R̂(�)e−β(ĤHFB−μN̂)|0〉

= eβU0−i
∑

j xj (�)A(j )
0 〈0|e−β(ĤHFB−μN̂)|0〉. (17)

The operator in the expectation value on the right-hand side
of Eq. (17) is the (unnormalized) unprojected HFB density
operator. Thus, this expectation value is real and positive,
and the phase of e−tr[Y]/2 is set by the complex coefficient

eβU0−i
∑

j xj (�)A(j )
0 . Given the phase of e−tr[Y]/2, one may obtain δ

from Eq. (16). Once δ has been determined, one may use Eq. (5)
to evaluate ζ (β,�) in Eq. (3) unambiguously. By repeating this
procedure for every quadrature point in the integral in Eq. (2),
it is possible to calculate the PAV partition function in the most
general finite-temperature HFB approximation.

Particle-number projection in pairing model with cranking.
To demonstrate that the Pfaffian method described above
works, I show here the results of its application to a simple
model. The model consists of one nucleon species in a single
j shell, the f7/2 shell, which has eight single-particle orbitals.
The nucleons interact through a pure pairing interaction, and
the system is rotating with angular velocity ω around the z
axis. The Hamiltonian in the rotating frame is

Ĥ = −G
∑

m,m′>0

a†
ma

†
m̄am̄′am′ − ωĴz . (18)

The single-particle orbitals are labeled by the magnetic quan-
tum number m, and m̄ denotes the time-reversed counterpart
of m. To obtain the results shown below, I set G = 1, varied
ω/G, and assumed half-filling, i.e., four particles in the shell.
Under time reversal, Ĵz changes sign, so the Hamiltonian (18)
manifestly violates time-reversal symmetry for nonzero ω. In
the paired phase, the HFB energies for nonzero values of ω are
not degenerate and thus the PAV method of Ref. [14] cannot be
applied. I note that the Hamiltonian (18) always preserves the
product of time-reversal and a rotation of π about the x or y
axis [15]. As shown in Ref. [15], while these symmetries may
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FIG. 1. Particle-number PAV thermal energy in the rotating frame
from the explicit projection (solid blue line) and the Pfaffian formula
(red dashed line) as a function of inverse temperature β. Open circles
show the exact diagonalization results. The unprojected HFB thermal
energy (green dashed-dotted line) is also shown for comparison. All
energies are in units of the pairing strength G.

be used to simplify the HFB equations, for ω �= 0 the HFB
energies in the rotating frame have no degeneracy.

In a finite dimensional model space, the projection operator
onto N particles can be written as a discrete Fourier sum, and
the particle-number PAV partition function is given by

ZN = e−βμN

Ns

Ns∑
n=1

e−iϕnNTr [eiϕnN̂ e−β(ĤHFB−μN̂ )], (19)

where ϕn = 2πn/Ns are quadrature angles and the leading
exponential term cancels the dependence of ZN on the
chemical potential. The particle-number operator N̂ is the
generator of a U (1) symmetry group and can be written in
the form (7) in any particle basis as

N̂ =
∑
m

a†
mam = 1

2
η†

(
1 0
0 −1

)
η + Ns

2
. (20)

The HFB Hamiltonian at each inverse temperature β value
may be written in the form (9), where the matrix H is given
by Eq. (10) and the constant U0 = tr(h − μ)/2 − 〈V̂ 〉, as
discussed above. I calculated ZN for N = 4 particles at each β
value using Eq. (5) together with Eq. (17) to evaluate the many-
particle traces in the Fourier sum in Eq. (19). From the PAV
partition function, I calculated EN = −∂ ln ZN/∂β, the
particle-number PAV thermal energy in the intrinsic frame
of the rotating shell. The algorithm used to evaluate the
Pfaffians was adapted from Ref. [20]. I also calculated the same
quantity EN from the PAV partition function (19) obtained
by constructing the many-body matrices in the traces on the
right-hand side of Eq. (3) and then evaluating these many-body
traces explicitly in the many-particle model space. I refer to
this latter method as “explicit projection.”

In Fig. 1, the PAV thermal energy in the intrinsic frame
obtained using the Pfaffian method is compared with the same
quantity obtained using explicit projection for a range of

ω/G values. In every case, the results calculated with the
Pfaffian method agree with those from explicit projection to
very high accuracy. This agreement confirms that the Pfaffian
PAV method works. For weak cranking, i.e., small values of
ω/G, the PAV energy has a sharp kink at the pairing phase
transition. As ω/G increases and the single-particle part of
the Hamiltonian (18) becomes stronger, this kink diminishes
in size. The existence of sharp kinks at phase transitions is
common in PAV calculations; e.g., see Fig. 3 of Ref. [14]. The
kinks in the PAV results in Fig. 1 are particularly large for
small ω/G values because the system is very small. In a VAP
calculation, kinks of this type would be smoothed out.

For comparison, I also show the thermal energy in the intrin-
sic frame from exact diagonalization of the model (18) [21] and
from the unprojected finite-temperature HFB approximation.
The PAV energy decreases more quickly than the unprojected
HFB energy, especially for weak cranking. The evolution of
the HFB results with the cranking term ω/G is as expected.
With no cranking, the HFB thermal energy is constant in
the unpaired phase, and the pairing phase transition is at the
expected value Tc = 1 [15]. As ω/G is increased, Tc decreases
and the HFB results agree more and more with the exact results.
For ω/G = 1.5, the system is unpaired for all temperatures
considered and the agreement between the mean-field results
and the exact results is very good.

For weak and intermediate cranking, comparison of the
HFB PAV results with the exact results shows that the
PAV method neglects significant correlations. In particular,
the pairing phase transition, which is sharp in the PAV
results, is entirely washed out in the exact results. There is
also a significant correlation energy that lowers the exact
ground-state energy below the PAV ground-state energy. In
sum, particle-number PAV does not significantly improve
over the unprojected HFB results for this simple model.
However, PAV results can be significantly more accurate than
results from the unprojected HFB approximation for physically
interesting calculations. I refer the reader to Ref. [5] for a
comparison of approximate particle-number PAV results with
unprojected HFB results for heavy nuclei and to Ref. [14] for a
benchmarking of particle-number PAV calculations for heavy
nuclei against exact results calculated with the shell-model
Monte Carlo method [22]. The calculation done here is
intended solely as a proof of the validity of the Pfaffian PAV
method.

Finally, since I am proposing that the Pfaffian method be
used in realistic calculations, I must consider the scaling of the
method’s computational time with the model space dimension.
Both the matrix multiplication in Eq. (14) and the evaluation
of the Pfaffian in Eq. (5) scale as O(N3

s ) and must be done
for each of the quadrature points in the integral in Eq. (2).
In some projection methods such as the Fourier sum used in
the particle-number projection formula (19), there are O(Ns)
quadrature points. Thus, at worst, the overall scaling with the
model space dimension is O(N4

s ). For the test case shown
above where Ns = 8, the time necessary to calculate the PAV
partition function and thermal energy for all 238 β values is ∼1
s on a laptop (2.7 GHz Intel Core i5 MacBook Pro with 8 GB of
RAM). The model space used in Ref. [14] for rare-earth-metal
nuclei included 40 proton orbitals and 66 neutron orbitals. The
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time necessary to calculate the particle-number PAV partition
function with the Pfaffian method for the same number of β
values in a model space of this size would take ∼1 h in the
worst case. Finding the finite-temperature HFB solutions for
all the β values would consume the bulk of the computational
time in a realistic application.

Discussion. I have shown how to use the Pfaffian formula
for the many-body traces of HFB density operators derived in
Ref. [16] to evaluate the more complicated traces necessary to
calculate the PAV partition function in the finite-temperature
HFB approximation. I have demonstrated that the Pfaffian
method gives correct results by comparing the particle-
number PAV thermal energy in the intrinsic frame calculated
using the Pfaffian method with the same quantity calculated
using explicit projection, in which all the many-body traces
necessary to calculate the PAV partition function are evaluated
directly in the many-particle model space. It is straightforward
to apply the Pfaffian PAV method to any finite-temperature
HFB calculation. The required inputs to the method are (i)
the matrices A(j ) and constants A

(j )
0 defining the generators of

the broken symmetry and (ii) the matrix H and constant U0

defining the HFB Hamiltonian. A(j ) and A
(j )
0 may be found

analytically from the second-quantized form of the generators
in a particle basis, as done in Eq. (20). H and U0 are outputs of
the standard finite-temperature HFB method. One interesting

application would be finite-temperature HFB studies of odd-
mass nuclei with particle-number or angular-momentum PAV.
The techniques developed here could also be used to study the
response of the nucleus to rotations at finite temperature by us-
ing a cranking model in analogy with the example (18) studied
above.

Finally, PAV calculations will always be limited by the
effects of the broken symmetries. VAP completely prevents
symmetry breaking in the HFB approximation, but this method
is not yet practical for calculations in large model spaces.
Further development of VAP methods, such as the use of
approximate forms of the entropy as discussed in Ref. [13],
would be useful.
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