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Many radiative capture reactions of astrophysical interest occur at such low energies that their direct
measurement is hardly possible. Until now the only indirect method, which was used to determine the
astrophysical factor of the astrophysical radiative capture process, was the Coulomb dissociation. In this paper
we address another indirect method, which can provide information about resonant radiative capture reactions
at astrophysically relevant energies. This method can be considered an extension of the Trojan horse method
for resonant radiative capture reactions. The idea of the suggested indirect method is to use the indirect reaction
A(a,sγ )F to obtain information about the radiative capture reaction A(x,γ )F , where a = (sx) and F = (xA).
The main advantage of using the indirect reactions is the absence of the penetrability factor in the channel x + A,
which suppresses the low-energy cross sections of the A(x,γ )F reactions and does not allow one to measure these
reactions at astrophysical energies. A general formalism to treat indirect resonant radiative capture reactions is
developed when only a few intermediate states contribute and a statistical approach cannot be applied. The indirect
method requires coincidence measurements of the triple differential cross section, which is a function of the photon
scattering angle, energy, and the scattering angle of the outgoing spectator particle s. Angular dependence of the
triple differential cross section at fixed scattering angle of the spectator s is the angular γ -s correlation function.
Using indirect resonant radiative capture reactions, one can obtain information about important astrophysical
resonant radiative capture reactions such as (p,γ ), (α,γ ), and (n,γ ) on stable and unstable isotopes. The indirect
technique makes accessible low-lying resonances, which are close to the threshold, and even subthreshold bound
states located at negative energies. In this paper, after developing the general formalism, we demonstrate the
application of the indirect reaction 12C(6Li,dγ )16O proceeding through 1− and 2+ subthreshold bound states and
resonances to obtain the information about the 12C(α,γ )16O radiative capture at the astrophysically most effective
energy 0.3 MeV, which is impossible using standard direct measurements. Feasibility of the suggested approach
is discussed.
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I. INTRODUCTION

Understanding the origin of the elements and stellar
evolution is one of the important contemporary scientific
questions in nuclear physics and astrophysics. Over 70 years
ago, the concept that hydrogen and helium burning are the
sources for energy production in stars was postulated in [1].
A byproduct of this burning process is the production of new
elements.

It is well known today that a large number of different
reactions are involved in element production. Many of these
reactions take place on rather short-lived nuclei during
explosive processes occurring in the cosmos. For over 50
years, experimentalists have worked to determine stellar
reaction rates using systems involving stable beams and stable
targets. Until recently, very little experimental information was
available for reaction rates on radioactive nuclei. This is now
changing with the development of new indirect techniques to
determine these rates and new radioactive beam facilities that
are expanding the possibilities for both direct and indirect
studies. Nucleosynthesis in the universe, i.e. the cooking
processes that produce the elements of the periodic chart,
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proceeds through a variety of reactions and decays such as
(p,γ ), (n,γ ), (3He,γ ), (α,γ ), (p,α), (α,p), (n,α), (α,n), β
decays, reactions induced by γ quanta (photodisintegration),
and neutrinos [2]. Determining the rates of these processes
at stellar energies is the major part of the subject of nuclear
astrophysics.

The conditions under which the majority of astrophysical
reactions proceed in stellar environments make it difficult or
impossible to measure them under the same conditions in the
laboratory. For example, the astrophysical reactions between
charged nuclei occur at energies much lower than the Coulomb
barrier, which often makes the cross section of the reaction
too small to measure. This is due to the very small barrier
penetration factor from the Coulomb force, which produces
an exponential fall-off of the cross section as a function
of energy. Many years ago, the astrophysical S factor was
adopted as a way to characterize cross sections by removing
the Coulomb penetration factor based on an S wave, or zero
angular momentum capture. The S factor, S(E), is defined
through the relationship

σ (E) = e−2πη

E
S(E). (1)

Here, σ (E) is the energy-dependent cross section, η is the
Coulomb parameter of two interacting nuclei. Typically, the S
factor is the quantity that is used to extrapolate to low energies.
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Indirect techniques have been developed over the past
several decades to provide ways to determine reaction rates
that cannot be measured in the laboratory. Applications of
indirect methods have been undertaken with both stable and
radioactive beams. There are three different commonly used
indirect techniques to obtain information about astrophysical
reactions: the asymptotic normalization coefficient (ANC)
approach, the Trojan horse method (THM), and the Coulomb
dissociation (CD) technique. A review of these methods is
given in [3].

The ANC method in nuclear astrophysics was proposed in
[4] and is based on the fact that many direct astrophysical
radiative capture reactions are peripheral. Their astrophysical
factor is proportional to the square of the amplitude of the
overlap function. This amplitude is the ANC. The ANC method
focuses on determining the normalization of the tail of the
overlap function from peripheral transfer reactions whose
cross sections are significantly higher than the cross sections at
astrophysically relevant energies. Using the determined ANC
one can calculate the astrophysical factor of the direct radiative
capture process. Including both direct and resonant capture
in a consistent framework can be done through an R-matrix
analysis [5] if the relevant information is available.

The second indirect method, THM, was suggested in [6] and
was modified in [7] to make it workable. It provides a powerful
tool to determine the reaction rate for resonant rearrangement
reactions by obtaining the cross section for a binary resonant
process through the use of a surrogate Trojan horse particle.
The THM allows one to obtain the astrophysical factors of low-
lying resonances which are not available by direct methods
because of the absence of the penetrability factor in the entry
channel of the binary subreaction. The theory of the THM
based on the surface integral formalism [8] was presented in
[3]. In [9] the combination of the ANC method and THM was
applied.

The third powerful indirect technique to obtain the astro-
physical factors for the radiative capture processes is CD. The
Coulomb dissociation method for nuclear astrophysics was
proposed by [10] and has been tested successfully in many
reactions of interest to astrophysics. The most celebrated case
is the reaction 7Be(p,γ )8B, first studied in [11], followed by
numerous experiments in the last two decades [3]. The CD
technique uses the virtual photon flux from the interaction of
a high-energy ion with a very heavy target to dissociate the
heavy ion. The dissociation is an inverse process to a radiative
capture reaction that takes place in a stellar environment.
Measurements of the dissociation cross section can be used
to infer the reaction rate of radiative capture processes at
stellar energies. All three of these methods provide information
on stellar reaction rates at very low energy without requiring
an extrapolation of data from higher energies. The details of
all three techniques and more references can be found in the
review paper [3].

In this paper, the idea of the THM is extended for the
resonant radiative capture reactions. To determine the cross
section for the resonant radiative capture reaction A(x,γ )F ,
we propose to use the two-step transfer reactions A(a,sγ )F ,
proceeding through the intermediate subthreshold bound states
or resonances F ∗ = (xA)∗, with the subsequent decay of the

FIG. 1. Pole diagram describing the indirect radiative capture
reaction proceeding through the intermediate excited state F ∗.

excited state F ∗ → F + γ . This approach provides a pow-
erful indirect technique to study radiative capture processes
A(s,γ )F and, in particular, the astrophysical radiative capture
reactions. The mechanism of such processes is shown in Fig. 1,
where a = (sx) and F = (xA) are the ground bound states of
a and F . Note that the diagram in Fig. 1 can be obtained from
the similar diagram in the THM (see Fig. 2.2 of Ref. [3]) by
replacing the particle’s line b by the photon’s line γ .

Such indirect reactions allow us to reach a region previously
inaccessible if we would rely only on direct measurements.
Among the important reactions, which require a broader
approach than only direct measurements, are low-energy
astrophysical radiative capture processes, such as (p,γ ), (α,γ ),
and (n,γ ) [2] on stable and unstable isotopes performed in
direct and inverse kinematics. Among these reactions, without
any doubt, is the most important one, the so-called holy
grail reaction 12C + α → 16O(0+,Ex = 0.0 MeV) + γ , which
dominates the helium burning in red giants [2]. The indirect
reactions provide a perfect tool to study radiative capture
reactions at astrophysically relevant energies.

We present the theory of the indirect method to treat
the resonant radiative capture processes when only a few
subthreshold bound states and resonances are involved, and
statistical methods cannot be applied. The developed formal-
ism is based on the generalized multilevel R-matrix approach
and surface integral formulation of the transfer reactions,
which are the first stage of the indirect reaction mechanism
described by the diagram in Fig. 1 [3]. By the generalized

FIG. 2. Square of the d-α bound state wave function in the
momentum space.
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R-matrix approach we mean the R-matrix method applied to
2 → 3 particle reactions rather than to binary 2 → 2 particle
reactions. We also describe the methodology of the indirect
radiative capture experiment. There are many papers devoted
to the angular correlation of the photons emitted in nuclear
transfer reactions with final nuclei; see, for example, [12] and
references therein. Here we apply the generalized R matrix
to develop the formalism allowing one to study the photon’s
angular distribution correlated with the scattering angle of one
of the final nuclei formed in the transfer reaction.

Developing quite a general formalism, we keep in
mind, in particular, the application of the method for the
12C(6Li,dγ )16O reaction, which can provide important in-
formation about the astrophysical 12C(α,γ )16O process. This
astrophysical reaction is contributed by two interfering sub-
threshold resonances ([2], Sec. 4.5). We note that a bound state,
which is close to the threshold, is also called a subthreshold
resonance. The elastic scattering cross section in the presence
of subthreshold bound states has a peak at zero energy; that is,
it behaves like a resonance cross section with a resonance close
to the threshold. Also, the subthreshold bound state may reveal
itself as a resonance in the case of the radiative capture, which
can occur to the wing of the subthreshold state at positive
energy forming the intermediate excited state.

Subthreshold resonances play an important role in many
astrophysical processes. Often, using direct measurements, it
is quite difficult or impossible to reach the astrophysically
relevant energy region where the subthreshold resonances
manifest themselves. However, the region where the con-
tribution of the subthreshold resonances is important can
be reached using indirect reactions [3,13]. For more details
regarding subthreshold resonances and how they are handled
in the R-matrix approach, see [13]. The excited bound state
subsequently decays to lower lying states by emitting a photon.
In this case, the subthreshold bound state is characterized by a
resonance width, in complete analogy with the real resonance
[14]. Besides the subthreshold resonances, we also take into
account the real resonances located at positive energies.

Numerous attempts to obtain the astrophysical factor of
the 12C(α,γ )16O reaction, both experimental and theoretical,
have been made for almost 50 years [15–51]. This reac-
tion is contributed by interfering E1 and E2 transitions.
The E1 transition is complicated by the interference of
the capture through the wing of the subthreshold 1− resonance
at −0.045 MeV with the low-energy tail of the resonance
1−, Eα-12C = 2.423 MeV, where Eα-12C is the α-12C relative
kinetic energy. The E2 transition is dominated by the capture
to the ground state of 16O through the wing of the subthreshold
bound state 2+, Eα-12C = −0.245 MeV. In addition, to fit the
experimental data, usually a few artificial levels are added
to fit E1 and E2 data [25,28]. The difficulty of the direct
measurements of the E1 transition can be easily understood if
even in the peak of the resonance at 1−, Eα-12C = 2.423 MeV
the cross section is only about 40–50 nb [45–47]. Moreover,
the E1 transition from 1− states to the ground state of 16O is
isospin forbidden for T = 0 components and is possible only
due to the small admixture of the T = 1 components.

The extremely small penetrability factor at Eα-12C � 1 MeV
makes it impossible or very difficult to measure the as-

trophysical factor for the 12C(α,γ )16O reaction at energies
Eα-12C � 1 MeV with reasonable accuracy. For the sensitivity
of the extracted astrophysical factor from the existing data,
see works [38,40,42]. Note that from the astrophysical point
of view the required uncertainty of this astrophysical factor at
Eα-12C ∼ 0.3 MeV should be �10%. New γ -ray facilities, an
upgraded γ -source (HIGS2) [48] in the USA and the Compton
γ -ray source of Eli-NP [49] in Romania, are supposed to
measure the astrophysical factor for the 12C(α,γ )16O reaction
down to 1 MeV.

In this paper we discuss a completely new method of mea-
suring the astrophysical factor S(Eα-12C) for the 12C(α,γ )16O
reaction down to astrophysical energies ∼300 keV. This
method is based on the coincidence measurements of
the deuterons and the photons from the indirect reaction
12C(6Li,dγ )16O. In the indirect method the absolute value
of the triple differential cross section is determined by its
normalization to the available direct data at higher energies.

The suggested technique allows one to determine not only
the astrophysical S factor down to energies Eα-12C ∼ 0.3 MeV
but also the interference pattern between the subthreshold
bound state and higher resonance for the E1 transition. We use
the surface-integral formalism [8] in which the matrix elements
are expressed in terms of the external radial overlap functions
and do not depend on the R-matrix hard-sphere scattering
phase shifts. Hence, when considering the interference of
the E1 and E2 matrix elements, the R-matrix hard-sphere
phase shifts do not appear. The method, which we address
here, can be used for a broader type of radiative capture
experiments A(a,sγ )F proceeding through the subthreshold
and real resonances.

II. THEORY

We follow the THM idea and extend it for the radiative
capture reaction. To measure the cross section of the binary
process

x + A → F ∗ → γ + F (2)

proceeding through the intermediate resonance F ∗ at astro-
physical energies, we suggest measuring the surrogate reaction
[two-body to three-body process (2 → 3 particles)]

a + A → s + F ∗ → s + γ + F (3)

in the vicinity of the quasifree (QF) kinematics [3]. Here
the incident particle, a = (sx), which has a dominant cluster
structure, is accelerated at energies above the Coulomb barrier.
The reaction (3) is a two-stage process. In the first stage
the transfer reaction a + A → s + F ∗ occurs, populating the
wing of the subthreshold bound state at ExA > 0 or the real
resonance. In the second stage, the excited state F ∗ decays to
the ground state F by emitting a photon. From the measured
energy dependence of the cross section of the reaction (3), the
energy dependence of the binary subprocess (2) is determined.
By normalizing the measured cross section to the available
direct one(s) measured at higher energies with better accuracy,
one can get the absolute value of the astrophysical S factor at
low energies.
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The mechanism of the indirect reaction shown schemati-
cally in Fig. 1 gives the dominant contribution to the cross
section in a restricted region of the three-body phase space
when the relative momentum of the fragments s and x is zero
[the quasifree (QF) kinematical condition] or less than the
wave number of the bound state a = (sx). Since the transferred
particle x is virtual, its energy and momentum are not related
by the on-shell equation, that is, Ex �= k2

x/(2mx).
The main advantage of the indirect method is that the pen-

etrability factor in the entry channel of the binary reaction (2)
is not present in the expression for the indirect reaction cross
section. It allows one to measure the resonant reaction (2) cross
section at astrophysically relevant energies at which direct
measurements are impossible or extremely difficult because of
the presence of the penetrability factor in the binary reaction
cross section. Moreover, the indirect method allows one to
measure the cross section of the binary reaction (2) even at
negative ExA owing to the off-shell character of the transferred
particle x in reaction (3).

The expression for the amplitude of the transfer reaction (3)
(for x = n) in the surface integral approach and distorted-wave
Born approximation (DWBA) was derived in [8]. It is assumed,
similar to the THM [3], that only the energy dependence of the
cross section of the reaction (3) is measured, while its absolute
value is determined by normalizing the cross section of the
reaction (3) to the available direct experimental data at higher
energies. That is why it makes sense to use the plane-wave
approximation to get the indirect reaction amplitude. The
comparison of the plane-wave impulse approximation (PWIA)
and DWBA has been done in many THM papers [3,9,52–54].
In these papers, the momentum distribution of the spectator
was calculated in plane wave and DWBA. Both calculations
agreed with each other and experimental data within the range
of the QF peak. The most detailed comparison of the PWIA
and DWBA was done in [54]. It was confirmed again that
the angular distributions of the spectator calculated in the
DWBA and PWIA agree quite well within the QF peak. A
further probe of the reliability of the plane-wave approach in
describing the experimental data came from the comparison
between plane-wave Born approximation (PWBA) and DWBA
calculations. The differences in the ratios of the integrated
resonance cross sections calculated in plane-wave and DWBA
approaches are less than 19%, compared with the experimental
uncertainties. Therefore, when no absolute values of the cross
sections are extracted, the PWIA description is more preferable
than DWBA because PWBA does not depend on the optical
potentials, which are not known accurately at low energies.

In this paper, we, for the first time, present the general
equations of the indirect reaction triple differential and double
cross sections to be used for the analysis of the radiative
reactions proceeding through the subthreshold and isolated
resonances. The system of units in which h̄ = c = 1 is used
throughout the paper.

Indirect reaction amplitude for the
resonant radiative capture

Let us consider the radiative capture reaction (2) proceeding
through the wing (at ExA > 0) of the subthreshold bound state

(aka subthreshold resonance) F ∗ = F (s), where F (s) = (xA)(s)

or real resonance at ExA > 0. We assume that both can decay
to the ground state F = (xA). To measure the cross section
of this reaction at astrophysically relevant energies where
subthreshold resonances can be important, for the reasons
explained above, we use the indirect reaction (3). First, we
derive the reaction amplitude of the indirect radiative capture
process and then the triple differential cross section of reaction
(3). After that, by integrating over the angles of the emitted
photons, we get the double differential cross section. The
interference of the subthreshold bound state and the resonance,
which both decay to the ground state F = (xA), is taken into
account. Evidently this case can be applied for the E1 and E2
transitions of the reaction 12C(α,γ )16O.

To describe the radiative capture to the ground state
through two interfering states we use the single channel,
two-level generalized R-matrix equations developed for the
three-body reactions 2 particles → 3 particles [3,8]. We
also take into account the interference of transitions with
different multipolarities L. Thus, we take into account the
interference of radiative decays from different levels with the
same multipolarity and interference of transitions from various
levels with different multipolarities.

The indirect reaction described by the diagram of Fig. 1
proceeds as a two-stage process. The first part is transfer of
particle x (stripping process) to the excited state Fτ ,τ = 1,2,
where F1 = F (s) is the subthreshold resonance and F2 is the
resonance state at ExA > 0. No γ is emitted during the first
stage. In the second stage the excited state Fτ decays to the
ground state F = (xA) by emitting a photon. Then the indirect
reaction amplitude followed by the photon emission from the
intermediate subthreshold resonance and resonance takes the
form

M
MsMMF

MaMA
=

2∑
τ,ν=1

∑
M

F
(s)
ν

M
F

(s)
τ

V
MF M
M

F
(s)
ν

ν AντM
MsM

F
(s)
τ

MaMAτ . (4)

Here Mi is the projection of the spin Ji of the particle i, MF
(s)
τ

is the projection of the spin JF (s) of the subthreshold resonance
(τ = 1) and resonance (τ = 2), and M is the projection of
the angular momentum of the emitted photon. Also 2 is
the number of the level included. We assume that the spins
of the subthreshold resonance and real resonance are equal,
F1 = F2 = F (s), and that these resonances do interfere. At
the moment we confine ourselves to transitions with one
multipolarity L. That is why the index L is omitted. Later

on we take into account transitions with different L. M
MsM

F
(s)
τ

MaMAτ

is the amplitude of the direct transfer reaction

a + A → s + Fτ (5)

populating the intermediate excited state Fτ . The reaction (5)
is the first stage of the indirect reaction (3). Vν is the amplitude
of the radiative decay of the excited state Fν(ν = 1,2) to the
ground state F = (xA) and Aντ is the matrix element of the
level matrix in the R-matrix method.
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In the prior form of the plane-wave approximation

M
MsM

F
(s)
τ

MaMAτ takes the form

M
MsM

F
(s)
τ

MaMAτ (ksFτ
,kaA) = 〈

χ
(0)
ksFτ

�τ

∣∣VxA

∣∣ϕsxϕAχ
(0)
kaA

〉
. (6)

Here, �1 is the bound-state wave function of the subthreshold
bound state F1 = (xA)(s); �2 is the F2 resonance wave
function; ϕsx and ϕA are the bound-state wave functions of a =
(sx) and A, respectively; χ

(0)
kaA

= eikaA·raA and χ
(0)
ksFτ

= eiksFτ ·rsF

are the planes waves in the initial and final states of the reaction
(5), respectively; rij is the radius vector connecting the centers
of mass of nuclei i and j ; kaA is the a-A relative momentum in
the initial state of the reaction (5) and ksFτ

is the s-Fτ relative
momentum in the final state of this transfer reaction; and VxA

is the x-A interaction potential.

In the matrix element M
MsM

F
(s)
τ

MaMAτ (ksFτ
,kaA) we introduce in

the bra state the projection operator
∑
n

|ϕAn
〉〈ϕAn

|, where the

sum over n is taken over the bound and continuum states
of nucleus A. In the projection operator we keep only the
projection on the ground state of A. Then Eq. (6) can be
rewritten as

M
MsM

F
(s)
τ

MaMAτ

(
ksFτ

,kaA

) = 〈
χ

(0)
ksFτ

ϒτ

∣∣V xA

∣∣ϕsxχ
(0)
kaA

〉
, (7)

where V xA = 〈ϕA|VxA|ϕA〉. Also,

ϒτ (rxA) = 〈ϕA|�τ 〉 =
∑

mji
mli

〈
jimji

limli

∣∣JF (s)M
(s)
Fτ

〉

× 〈
JxMxJAMA

∣∣jimji

〉
ϒτji liJF (s) (rxA)Ylimli

(r̂xA)

(8)

is the projection of the wave function �τ on the ground
state wave function of A; ϒτji liJF (s) (rxA) is its radial part;
ji (mji

) is the channel spin (its projection) of x + A and
li (mli ) is their orbital angular momentum (its projection) at
which the subthreshold resonance and resonance occur in the
channel x + A; 〈jimji

limli |JF (s)M
(s)
Fτ

〉 is the Clebsch-Gordan
coefficient; and Ylimli

(r̂xA) is the spherical harmonic, r̂ = r/r .
ϒτji liJF (s) (rxA) is the radial part of ϒτ (rxA) in the state τ

with the channel spin ji and the orbital angular momentum li .
Since we assume that both levels τ = 1 and τ = 2 do interfere,
ji and li are the same for both levels. We assume that only
one ji and li contribute to the reaction. It is important to
underscore that, although the subthreshold resonance is located
at ExA = −ε

(s)
xA, the capture occurs to its wing at ExA > 0.

Hence, ϒ1ji liJF (s) (rxA) is described by the resonance radial wave
function, which we take in the R-matrix form. We also take
the radial overlap ϒ2ji liJF (s) (rxA) in the form of the R-matrix
resonant wave function. It has been shown in [3] that in the
surface integral approach the dominant contribution to the prior
form of the transfer reaction amplitude comes from the external
region rxA � RxA. In the external region we take the resonance
wave function as [8]

ϒτji liJF (s) (rxA) =
√

μxA

kxA

�τji liJF (s) e
−iδhs

li
Oli (rxA)

rxA

, (9)

where

Oli (rxA) = iFli (kxA,rxA) + Gli (kxA,rxA)

= e
iδhs

li

√
F 2

li
(kxA,rxA) + G2

li
(kxA,rxA) (10)

is the outgoing spherical wave in the partial wave li , Fli and
Gli are the Coulomb regular and singular solutions, and δhs

li
is

the R-matrix hard-sphere scattering phase shift. From Eqs. (9)
and (10) is clear that ϒτji liJF (s) (rxA) does not depend on the
R-matrix hard-sphere scattering phase shift.

At rxA = RxA we get

ϒτji liJF (s) (RxA) =
√

2μxA

RxA

γτji liJF (s) . (11)

�τji liJF (s) is the formal resonance width in the R-matrix
approach for the level τ , which is related to the reduced width
amplitude γτji liJF (s) of the level τ as [55]

�τji liJF (s) = 2Pli (ExA,RxA)γ 2
τji liJF (s)

. (12)

Here, Pli (ExA,RxA) is the barrier penetrability factor and RxA

is the channel radius. Equation (12) holds at ExA > 0 both for
the subthreshold resonance and resonance.

The observable resonance width is expressed in terms of
the observable reduced width by [55]

�̃τji liJF (s) = 2Pli (ExA,RxA)γ̃ 2
τji liJF (s)

, (13)

where the observable and formal reduced widths γ̃ 2
τji liJF (s)

and

γ 2
τji liJF (s)

, respectively, are related by [55]

γ̃ 2
τji liJF (s)

=
γ 2

τji liJF (s)

1 + γ 2
τji liJF (s)

[
dSli (ExA)/dExA

]∣∣
ExA=Eτ

. (14)

E1 = −ε
(s)
xA and E2 = ER , where ER is the resonance energy

corresponding to the level τ = 2. The inverse equation is

γ 2
τji liJF (s)

=
γ̃ 2

τji liJF (s)

1 − γ̃ 2
τji liJF (s)

[
dSli (ExA)/dExA

]∣∣
ExA=Eτ

. (15)

For the subthreshold resonance (τ = 1) [14][
C1ji liJF (s)

]2
W 2

−η
(s)
xA,li+1/2

(
2κ

(s)
xARxA

)
2μxARxA

=
γ 2

1ji liJF (s)

1 + γ 2
1ji liJF (s)

[
dSli (ExA)/dExA

]∣∣
ExA=−ε

(s)
xA

= γ̃ 2
1ji liJF (s)

, (16)

where γ̃ 2
1ji liJF (s)

and γ 2
1ji liJF (s)

are the observed and formal
reduced widths of the subthreshold resonance; C1ji liJF (s) is the
ANC of the subthreshold bound state (xA)(s) for the decay
to the channel (x + A)1ji liJF (s) ; W−η

(s)
xA,li+1/2(2κ

(s)
xARxA) is the

Whittaker function; η
(s)
xA = (ZxZA/137)μxA/κ

(s)
xA and κ

(s)
xA are

the x-A Coulomb parameter and the bound-state wave number
of the subthreshold bound state F (s); μxA is the reduced mass

045811-5



A. M. MUKHAMEDZHANOV AND G. V. ROGACHEV PHYSICAL REVIEW C 96, 045811 (2017)

of x and A; Zje is the charge of nucleus j ; and Sli (ExA) is the
R-matrix Thomas shift function [55].

Now we return to the transfer reaction amplitude

M
MsM

F
(s)
τ

MaMAτ (ksFτ
,kaA). To calculate it we use the three-body

approach in which we neglect the internal degrees of freedom
of particles x, A, and s. The potential V xA(rxA) depends only
on the distance between x and A. Then the amplitude of the
direct transfer reaction (5) in the plane-wave, surface-integral
approximation reduces to [3,8]

M
MsM

F
(s)
τ

MaMAτ

(
ksFτ

,kaA

) =
√

π

μxA

ili ϕsx(psx)RxAϒτji liJF (s) (RxA)M̃li

∑
Mxmji

mli

〈JsMsJxMx |JaMa〉

× 〈
JxMxJAMA

∣∣jimji

〉〈
jimji

limli

∣∣JF (s)MF
(s)
τ

〉
Y ∗

limli
(p̂xA)

=
√

π

μxA

ili ϕsx(psx)
√

2μxARxAγτji liJF (s) M̃li

∑
Mxmji

mli

〈JsMsJxMx |JaMa〉

× 〈
JxMxJAMA

∣∣jimji

〉〈
jimji

limli

∣∣JF (s)MF
(s)
τ

〉
Y ∗

limli
(p̂xA), (17)

M̃li =
{
jli (pxARxA)[Bli (kxA,RxA) − 1 − Dli (pxA,RxA)] + 2μxA

ZxZA

137

∫ ∞

RxA

drxAjli (pxArxA)
Oli (rxA)

Oli (RxA)

}
, (18)

Dli (pxA,RxA) = RxA

∂ ln jli (pxA,rxA)

∂rxA

∣∣∣∣
rxA=RxA

, Bli (kxA,RxA) = RxA

∂ ln Oli (kxA,rxA)

∂rxA

∣∣∣∣
rxA=RxA

. (19)

Note that M
MsM

F
(s)
τ

MaMAτ (ksFτ
,kaA) does not contain the hard-

sphere scattering phase shift δhs
li

. Also, ϕsx(psx) is the Fourier
transform of the radial part of the s-wave bound-state wave
function ϕsx(psx) of a = (sx). Also, κsx = √

2μsxεsx is the
wave number of the bound-state a = (sx) and εsx is its binding
energy for the virtual decay a → s + x. Since particles s and
x are structureless, the spectroscopic factor of the bound state
a = (sx) is unity and we can use just the bound-state wave
function ϕsx . In the center of mass of the reaction (2) kaA = ka ,
ksFτ

= ks and [3]

pxA = ka − mA

mF

ks , psx = ks − ms

ma

ka (20)

are the off-shell x-A and s-x relative momenta in the
vertices x + A → Fτ and a → s + x of the diagram in
Fig. 1, respectively; px = ka − ks is the off-shell momentum
of the transferred virtual particle x and kj is the on-shell
momentum of particle j . Also ks and ExA are related by energy
conservation [3]:

EaA − εsx = ExA + k2
s /(2μsF ), (21)

where μsF is the reduced mass of particles s and F .

Now we consider the amplitude Vν , ν = 1,2 describing
the radiative decay of the intermediate resonance Fν → F +
γ [56]:

V
MF Mλ

M
(s)
Fν

ν
= −

∫
drxA

〈
IF
xA(rxA)

∣∣Ĵ(r)|ϒν(rxA)〉 · A∗
λkγ

(r),

(22)

where IF
xA(rxA) is the overlap function of the bound-state

wave functions of x, A, and the ground state of F = (xA).
Again, for the pointlike nuclei x and A the overlap function
IF
xA(rxA) can be replaced by the single-particle bound-state

wave function of (xA) in the ground state. Also A∗
λkγ

(r) is the
electromagnetic vector potential of the photon with helicity
λ = ±1 and momentum kγ at coordinate r. Ĵ(r) is the charge
current density operator. The matrix element in Eq. (22) is
written assuming that on the first stage of the reaction the
excited state Fν , ν = 1,2, is populated, which subsequently
decays to the ground state F .

Using the multipole expansion of the vector potential,
leaving only the electric components with the lowest allowed
multipolarities L and using the long wavelength approximation
for Ĵ(r) (see for details [56]), we get

V
MF Mλ
M

F
(s)
ν

ν = − 1

2π

∑
L

√
1

2kγ

√
L + 1

L

√
ĴF l̂f

i−LkL
γ

(2L − 1)!!
eZeff(L)

[
DL

Mλ(φ,θ,0)
]∗

× 〈lf 0L0|li0〉(−1)li−ji−JL

F (s)
〈
JF MF LM

∣∣JL
F (s)M

L

F
(s)
ν

〉{ lf jiJF

JL
F (s)Lli

}
RL

νjf lf JF ji liJ
L

F (s)

=
√

2

4π

∑
L

i−L(−1)L+1
√

L̂kL−1/2
γ

[
γ

JL

F (s)

(γ )νJF L

][
DL

Mλ(φ,θ,0)
]∗〈

JF MF LM
∣∣JL

F (s)M
L

F
(s)
ν

〉
, (23)
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where γ
JL

F (s)

(γ )νJF L is the formal R-matrix radiative width ampli-
tude for the electric EL transition JL

F (s) → JF given by the
sum of the internal and external radiative width amplitudes;
see Eqs. (32) and (33) from [57], in which we singled
out

√
2k

L+1/2
γ . Because now we take into account a few

multipolarities L, we replace the previously introduced spin of
the intermediate resonance JF (s) by JL

F (s) , where the superscript
L denotes the multipolarity of the EL transition to the ground
state F . Replacement of JF (s) by JL

F (s) takes into account that
the spins of the intermediate excited states are different for
different multipolarities. Since we added the subscript L to
the spin of the intermediate resonance, we added the same
subscript to its projection ML

F
(s)
ν

. It is important to note that

V
MF Mλ
M

F
(s)
ν

ν does not depend on the hard-sphere scattering phase

shift.
The determined radiative width amplitude is related to the

formal resonance radiative width by the standard equation

�
JL

F (s)

(γ )νJF L = 2kL+1/2
γ

(
γ

JL

F (s)

(γ )νJF L

)2
. (24)

Note that the observable radiative width is related to the formal
one by

(
γ̃

JL

F (s)

(γ )νJF L

)2 =
(
γ

JL

F (s)

(γ )νJF L

)2

1 + γ 2
νji liJF (s)

[dSli (ExA)/dExA]|ExA=Eν

. (25)

We consider the two-level approach with ν = 1 (ν = 2)
corresponding to the subthreshold resonance (the resonance
at ExA > 0). Then Eν = −ε

(s)
xA for ν = 1 and Eν = ER for

ν = 2 with ER being the resonance energy corresponding to
the level ν = 2. This observable radiative width is related to
the observable resonance radiative width as

�̃
JL

F (s)

(γ )νJF L = 2kL+1/2
γ

(
γ̃

JL

F (s)

(γ )νJF L

)2
. (26)

Also in Eq. (23) M is the projection of the angular
momentum L of the emitted photon (multipolarity of the
electromagnetic transition) and eZeff(L) is the effective charge
of the x + A system for the electric transition EL. The matrix
element RL

νjf lf JF ji liJ
L

F (s)
is

RL
νjf lf JF ji liJ

L

F (s)
= 〈

rL+2
xA Iji lf JF

(rxA)ϒνji liJ
L

F (s)
(rxA)

〉
. (27)

ϒνji liJ
L

F (s)
(rxA) is the resonant scattering wave function in the

R-matrix approach whose external part is given by Eq. (9).
Again, it follows from Eqs. (9) and (10) that ϒνji liJ

L

F (s)
(rxA)

does not depend on the R-matrix hard-sphere scattering phase
shift.

The internal resonant wave function Xintτ in the R-matrix
approach matches the external one on the border rxA = RxA

and satisfies the boundary condition

Xintτ (kxA,RxA) =
√

2μxARxAγτji liJ
L

F (s)
. (28)

For τ = 1, Xint1 is the overlap function of the bound-state wave
functions of F (s) = (xA)(s), x, and A, which is normalized to
unity over the internal region rxA � RxA.

Substituting Eqs. (17) and (23) into Eq. (4) we get the
expression for the indirect reaction amplitude:

M
MsMF Mλ
MaMA

= ϕsx(psx)

2

√
RxA

πμxA

∑
L

(−1)L+1L̂1/2kL−1/2
γ

[
DL

Mλ(φ,θ,0)
]∗ ∑

li

ili−LM̃li

×
2∑

ν,τ=1

γ
JL

F (s)

(γ )νJF LAL
ντ γτji liJ

L

F (s)

∑
ML

F
(s)
ν

〈
JF MF LM

∣∣JL
F (s)M

L

F
(s)
ν

〉

×
∑

mji
mli

Mx

〈
jimji

limli

∣∣JL
F (s)M

L

F
(s)
τ

〉〈JxMxJsMs |JaMa〉
〈
JxMxJAMA

∣∣jimji

〉
Y ∗

limli
(p̂xA). (29)

The amplitude M
MsMF Mλ
MaMA

describes the indirect reaction
proceeding through the intermediate resonances, which decay
to the ground state F = (xA) by emitting photons. Equa-
tion (29) is a generalization of Eq. (4) by including the sum
over multipolarities L corresponding to the radiative electric
transitions from the intermediate resonances with the spins
JL

F (s) to the ground state F with the spin JF . Note also that
we assume that two levels contribute to each transition of
multipole L. It requires the two-level generalized R-matrix
approach. The generalization of Eq. (29) for three- or more-
level cases is straightforward. In Eq. (29) the reaction part
and radiative parts are interconnected by the R-matrix level
matrix elements AL

ντ . Note that M
MsMF Mλ
MaMA

does not contain the
R-matrix hard-sphere scattering phase shift.

The part
∑2

ν,τ=1 γ
JL

F (s)

(γ )νJF LAL
ντ γτji liJ

L

F (s)
is the standard R-

matrix term for the binary resonant radiative capture reaction.

However, we analyze the three-body reaction a(xs) + A →
s + F + γ with the spectator s in the final state rather than the
standard two-body radiative capture reaction x + A → F +
γ . This difference leads to the generalization of the standard
R-matrix approach for the three-body reactions resulting in
the appearance of the additional terms, ϕsx(psx)M̃li . That is
why we call the developed approach the generalized R-matrix
method for the indirect resonant radiative capture reactions.

(i) The most important feature of this approach is that
the indirect reaction amplitude does not contain the
penetrability factor Pli (ExA,RxA) in the entry channel
of the subreaction (2). This factor is the main obstacle
to measure the astrophysical factor of this reaction
if one uses direct measurements. The absence of
this penetrability factor in the entry channel of the
subreaction allows one to use the indirect method to
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get the information about the astrophysical factor of
the subreaction.

(ii) The indirect reaction amplitude is parametrized in
terms of the formal R-matrix width amplitudes, which
are connected to the observable resonance widths.

(iii) The final expression for the indirect reaction amplitude
M

MsMF Mλ
MaMA

does not depend on the R-matrix hard-
sphere scattering phase shift.

We take the indirect reaction amplitude at fixed projections
of the spins of the initial and final particles including the fixed
projection M of the orbital momentum L of the emitted photon
and fixed its chirality λ. For example, for the 12C(α,γ )16O
reaction the electric dipole E1 (L = 1) and quadrupole E2
(L = 2) transitions contribute and they interfere. In the long
wavelength approximation only the minimal allowed li for
given L contributes. For example, for the case considered
below, lf = 0 and li = L = 1 for the dipole and li = L = 2 for
the quadrupole electric transitions contribute. The dimension
of the R-matrix level matrix AL depends on the number of the
levels taken into account for each L.

The indirect reaction amplitude depends on the off-shell
momenta psx and pxA. Both off-shell momenta are expressed
in terms of ka and ks ; see Eq. (20). Also the the indirect
reaction amplitude depends on the momentum of the emitted
photon kγ whose direction is determined by the angles in the
Wigner D function.

In the center-off-mass of the reaction (3) neglecting the
recoil effect of the nucleus F during the photon emission from
the energy conservation we get

EaA + Q = EsF + kγ , (30)

kγ = ExA + εxA, (31)

where EsF = k2
s /(2μsF ), Q = εxA − εsx , and εxA is the

binding energy of the ground state of the nucleus F .
To estimate the recoil effect we take into account that in the

center-off-mass of the reaction (3) the momentum conservation
in the final state gives

k
′
F = −kγ − ks , (32)

where k
′
F is the momentum of the final nucleus F after emitting

the photon. Then the energy conservation leads to

EaA − εsx = k2
s

2μsF

+ ExA = k2
s

2ms

+ (k′
F )2

2mF

+ kγ (33)

= k2
s

2μsF

+ 2
kskγ

2mF

cos θ ′ + k2
γ

2mF

+ kγ . (34)

We remind the reader that we use the system of units in which

h̄ = c = 1, that is, Eγ = kγ . Evidently the term
k2
γ

2mF
= Eγ

Eγ

2mF

can be neglected because Eγ � mF . The contribution of the
term 2 kskγ

2mF
cos θ ′ depends on cos θ ′ = k̂s · k̂γ .

To estimate the recoil effect of the nucleus F we consider
the reaction 12C(6Li,dγ )16O at the most effective astrophysical
energy ExA = Eα-12C = 0.3 MeV; the energy of the emitted
photon is kγ ≈ 7 MeV and EaA = 7 MeV. As we will see
below [Fig. (4)] at 0.3 MeV the maximum of the photon’s
angular distribution is at θ = 52◦, where θ is the angle between
pα12C and kγ . In the QF kinematics pα12C||kd , where ks = kd ;
that is, θ ′ = θ . At θ = 52◦, which is the maximum of the
photon’s angular distribution and is close to the maximum
of the angular distribution for the E2 transition, the recoil
effect is ∼6.5%. Note that for the E1 transition the photon’s
angular distribution has a peak at 90◦, at which the recoil effect
vanishes.

Neglecting the recoil effect of the nucleus F in Eq. (33), we
can replace k

′
F by ks . Then kγ and ks are related by Eq. (30)

while kγ and ExA are related by Eq. (31). If we would take
into account the recoil effect then the relationship between kγ

and ExA is more complicated than Eq. (31), and is given by

kγ = ExA

ks cos θ ′
mF

+ 1
, (35)

where we neglected the extremely small term
k2
γ

2mF
. However,

in this paper, because we do not analyze the real data and make
a proposal, we neglect the recoil effect of the nucleus F .

The expression for pxA is needed to calculate M̃li . From the
energy-momentum conservation law in the three-ray vertices
a → s + x and x + A → F (s) of the diagram in Fig. 1 we
get [3]

ExA = p2
xA

2μxA

− p2
sx

2μsx

− εsx. (36)

In the QF kinematics psx = 0 and

ExA = p2
xA

2μxA

− εsx. (37)

Thus always p2
xA

2μxA
> ExA.

III. DIFFERENTIAL CROSS SECTIONS

A. Triple differential cross section

Let us consider the indirect resonant reaction contributed by
different interfering multipoles L. For each L we assume a two-
level contribution. Then the triple differential cross section of
the resonant indirect radiative capture reaction for unpolarized
initial and final particles (including the photon) in the center
of mass of the reaction (3) is given by

dσ

d�k̂s
d�k̂γ

dEsF

= μaAμsF

ĴaĴA(2π )5

ksF k2
γ

kaA

∑
MaMAMsMF Mλ

∣∣MMsMF Mλ
MaMA

∣∣2

= − 1

(2π )7

μaAμsF

Ĵx ĴA

ϕ2
sx(psx)RxA

4μxA

ksF

kaA

(−1)JF −ji

∑
L′L

(−1)L
′+LkL′+L+1

γ Ĵ L′
F (s) Ĵ

L
F (s)

√
L̂′L̂

∑
l′i li l

iL
′−l′i−L+li

√
l̂′i l̂i
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× M̃∗
l′i
M̃li

{
ji l

′
iJ

L′
F (s)

lJ L
F (s) li

}{
JL′

F (s)JF L′

LlJL
F (s)

} 2∑
ν ′,ν,τ ′,τ=1

[
γ

JL′
F (s)

(γ )ν ′JF L′
]∗[

γ
JL

F (s)

(γ )νJF L

][
AL′

v′τ ′
]∗[

AL
ντ

]
× γτ ′ji l

′
i J

L′
F (s)

γτji liJ
L

F (s)
〈l′i0li0|l0〉〈L′1L − 1|l0〉[1 + (−1)L

′+L+l]Pl(cos θ ). (38)

To obtain Eq. (38) we adopted z||p̂xA, that is, Ylml
(p̂xA) =

√
l̂

4π
δml0. Thus, in the plane-wave approximation, the direction p̂xA

becomes the axis of the symmetry. Note that if we replace the plane waves by the distorted waves, the vestige of this symmetry
will still survive [12].

We remind the reader that the radiative transition JL
F (s) → JF is the electric EL, where JL

F (s) is the spin of the intermediate
state (subthreshold resonance or resonance).

For a more simple case when only one multipole L contributes into the radiative transition, the triple differential cross section
takes the form

dσ

d�k̂s
d�k̂γ

dEsF

= − 1

(2π )7

μaAμsF

Ĵx ĴA

ϕ2
sx(psx)RxA

2μxA

ksF

kaA

kL̂
γ (−1)JF −ji L̂

(
Ĵ L

F (s)

)2 ∑
li l

l̂i
∣∣M̃li

∣∣2
{
ji liJ

L
F (s)

lJ L
F (s) li

}{
JL

F (s)JF L

LlJL
F (s)

}

×
2∑

ν ′,ν,τ ′,τ=1

[
γ

JL

F (s)

(γ )ν ′JF L

]∗[
γ

JL

F (s)

(γ )νJF L

][
AL

v′τ ′
]∗[

AL
ντ

]
,γτ ′ji liJ

L

F (s)
γτji liJ

L

F (s)
〈li0li0|l0〉〈L1L − 1|l0〉Pl(cos θ ). (39)

Also formally we keep the summation over li ; in the long-
wavelength approximation for given L at astrophysically
relevant energies only the minimal allowed li contributes.

The triple differential cross section depends on ks and
kγ . Because we neglected the recoil of the final nucleus F ,
ks and kγ are related by Eq. (30). We remind the reader
that we selected axis z||pxA. Hence the photon’s scattering
angle is counted from pxA, which itself is determined by
ks . Thus the angular dependence of the triple differential
cross section determines the angular correlation between the
emitted photons from the intermediate excited state F ∗ and
the spectator s. Because we consider the three-body reaction
(3) the angular correlation function also depends on the spins
JL

F (s) of the intermediate nucleus F ∗ which decays to F .
By choosing QF kinematics, psx = 0, one can provide the

maximum of the triple differential cross section due to the
maximum of ϕ2

sx(psx). At fixed ks the triple differential cross
section determines the emitted photon’s angular distribution,
which is contributed by different interfering multipoles L. By
measuring the photon’s angular distributions at different pho-
ton energies (that is, at different ks or ExA) one can determine
the energy dependence of the photon’s angular distribution.
However, a wide variation of ks away from the QF kinemat-
ics psx = ks − (ms/ma)ka = 0 will decrease the differential
cross section due to the drop of ϕ2

sx(psx). Usually, in indirect
methods ks is varied in the interval in which psx � κsx [3].

B. Double differential cross section

Integrating the triple differential cross section over the the
photon’s solid angle �k̂γ

we get the noncoherent sum of the
double differential cross sections with different multipoles L:

dσ

d�k̂s
dEsF

= 1

(2π )6

μaAμsF

Ĵx ĴA

ϕ2
sx(psx)RxA

μxA

ksF

kaA

×
∑
L

√
L̂Ĵ L

F (s)k
L̂
γ

∑
li

∣∣M̃li

∣∣2

×
2∑

ν ′,ν,τ ′,τ=1

[
γ

JL

F (s)

(γ )ν ′JF L

]∗
[γ

JL

F (s)

(γ )νJF L]
[
AL

v′τ ′
]∗[

AL
ντ

]
× γτ ′ji liJ

L

F (s)
γτji liJ

L

F (s)
. (40)

Despite of the virtual transferred particle x in the diagram of
Fig. 1, using the surface integral approach and the generalized
R-matrix, we can rewrite the double differential cross section
in terms of the on-the-energy-shell (OES) astrophysical factor
for the resonant radiative capture A(x,γ )F for the electric
transition of the multipolarity L and the relative orbital angular
momentum li of particles x and A in the entry channel of the
A(x,γ )F radiative capture. In the R-matrix formalism this
astrophysical factor is given by [5]

SEL,li (ExA)(MeV b)

= 2πλ2
N

Ĵ L
F (s)

Ĵx ĴA

1

μxA

m2
Ne2πηi Pli (ExA,RxA)10−2kL̂

γ

×
∣∣∣∣∣
∑
ν,τ

[
γ

JL

F (s)

(γ )νJF L

][
AL

ντ

]
γτji liJ

L

F (s)

∣∣∣∣∣
2

. (41)

Here, λN = 0.2118 fm is the Compton nucleon wavelength,
mN = 931.5 MeV is the atomic mass unit, μxA is the x-A
reduced mass expressed in MeV, and ηi is the x-A Coulomb
parameter at relative enerrgy ExA. Then the indirect double
differential cross section takes the form

dσ

d�k̂s
dEsF

= KFϕ2
sx(psx)RxA

∑
L

√
L̂

Ĵ L
F (s)

×
∑

li

e−2πηi P −1
li

(ExA,RxA)
∣∣M̃li

∣∣2
SEL,li (ExA),

(42)
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where

KF = 102

(2π )7

μaAμsF

m2
Nλ2

N

ksF

kaA

(43)

is the kinematical factor.
To determine the astrophysical factor from the indirect

double differential cross section we need to identify the
region where accurate direct data are available and only one
resonance dominates with given L and li . By normalizing in
this region the astrophysical factor obtained from the indirect
measurement to the experimental one, we get

SEL,li (ExA) = NF
dσ

d�k̂s
dEsF

√
Ĵ L

F (s)

L̂

1

KFϕ2
sx(psx)RxA

× e2πηi Pli (ExA,RxA)
∣∣M̃li

∣∣−2
. (44)

Here, NF is an energy-independent normalization factor
providing correct astrophysical factor SEL,li (ExA) at higher
energies. Using this normalization factor we can determine
with accuracy, which is not achievable in any direct approach,
the astrophysical factors at energies ExA → 0. This is the main
achievement of the indirect approach. We remind the reader
that in our formalism we use the plane-wave approximation
rather than the distorted wave. But it should not affect
the accuracy of our method because the distorted-wave and
plane-wave approximations give similar energy dependence
of the transfer reaction cross section. The normalization
factor NF compensates for the inaccuracy of the plane-wave
approximation.

We summarize the methodology of the indirect method to
obtain the astrophysical factor:

(1) Measurements of the photon’s angular distribution
(photon-spectator angular correlation) at different ExA

energies covering the interval from low energies rel-
evant to nuclear astrophysics up to higher energy at
which direct data are available. To cover a broad energy
range at fixed energy of the projectile, the energy, and
scattering angle of the spectator should be varied near
the QF kinematics (psx = 0).

(2) Obtaining the indirect double differential cross section
by integrating the triple differential cross section over
the photon’s scattering angle.

(3) Expressing the astrophysical factor in terms of the
indirect double differential cross section.

(4) Normalization of astrophysical factor to the available
experimental data at higher energy.

(5) Determination of the astrophysical factor at astrophys-
ical energies.

IV. RADIATIVE CAPTURE 12C(α,γ )16O VIA INDIRECT
REACTION 12C(6Li,dγ )16O

In this section we demonstrate the application of the
developed formalism for the analysis of the indirect reaction
12C(6Li,dγ )16O to obtain the information about the astrophys-
ical factor for the 12C(α,γ )16O at energies <1 MeV. For our
analysis we use the energy levels from [58].

At low energies the astrophysical reaction under con-
sideration is contributed by the L = 1 and L = 2 electric
transitions [25,28,30,33,38]. E1 transition to the ground state
JF = 0, lf = 0 proceeds as the resonant capture through
the wing at Eα-12C > 0 of the subthreshold bound state 1−
at Eα-12C = −0.045 MeV, which works as the subthreshold
resonance. Besides, the E1 transition to the ground state is
contributed by the resonant capture through the low-energy
tail of the 1− resonance located at ER = 2.423 MeV. The
E2 transition is contributed by the subthreshold 2+ state
at Eα-12C = −0.2449 MeV and the low-energy tail of 2+
resonance at 2.68 MeV.

These four states are observable physical states contributing
to the low-energy radiative capture under consideration.
Besides these states, when fitting the data the artificial level was
added for E1 transition (see, for example, [25,28,30,33,39]
and references therein). In the present paper we calculate the
photon’s angular distribution (the angular photon-deuteron
correlation) at low energies down to the most effective
astrophysical energy Eα-12C = 0.3 MeV.

We take into account the mentioned four physical states
and added one artificial state for the E1 transition. It can
be explained qualitatively why it is necessary to include the
background level into the fit of the E1 transition. The problem
is that the subthreshold state J = 1, Eα-12C = −0.045 MeV
and the resonance J = 1, ER = 2.423 MeV cannot decay by
the E1 transition to the ground state of 16O because all of
them have the isospin T = 0. Evidently the observed weak
E1 transition from the first two J = 1, T = 0 states is possible
only due to the small admixture of the higher lying J = 1, T =
1 states [20].

The reduced widths of the subthreshold resonances are
known from the experimental ANCs [28,44] and the reduced
width of the 1−, 2.423 MeV resonance is determined from the
resonance width. We disregard the cascade transitions to the
ground state of 16O through subthreshold states. According
to [20], the sum of all cascade transitions contributes only
7–10%. Because we don’t pursue here a perfect fit, we neglect
all the cascade transitions. In our fit, as in Ref. [20], we also
disregard the E2 direct radiative capture to the ground state
of 16O.

For the case under consideration, Jx = 0, JA = 0, ji = 0,
li = L = JL

F (s) , and JF = 0, and the expression for the triple
differential cross section for the case under consideration
simplifies to

dσ

d�k̂s
d�k̂γ

dEsF

= −μaAμsF

(2π )7

ϕ2
sx(psx)RxA

2μxA

ksF

kaA

∑
L′L

(−1)L
′+LkL′+L+1

γ

√
L̂′L̂

×M̃∗
L′M̃L

2∑
ν ′,ν,τ ′,τ=1

[
γ L′

(γ )ν ′0L′
]∗

[γ L
(γ )ν0L]

[
AL′

v′τ ′
]∗[

AL
ντ

]
,

× γτ ′0L′L′γτ0LL

∑
l

〈L′0L0|l0〉〈L′1L − 1|l0〉Pl(cos θ ).

(45)
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Here, a = 6Li, A = 12C, s = d, x = α, and F = 16O. This
expression is used for the analysis of the indirect reaction
12C(6Li,dγ )16O at low energies. We outline here some details
of the calculations.

After integration over the photon’s solid angle we get the
indirect double differential cross section (42) in which li = L.
Then at energies near the 1− resonance at 2.423 MeV where,
as we will see below, the E1 transition completely dominates,

SE1(ExA) = NF
dσ

d�k̂s
dEsF

1

KFϕ2
sx(psx)RxA

× e2πηi P1(ExA,RxA)|M̃1|−2. (46)

The S(E1) astrophysical factor was measured at energies near
2.423 MeV with a very good accuracy [20,33,37]. Should
we have the experimental indirect double differential cross
section expressed in arbitrary units, we can use Eq. (46) to
normalize the SE1(ExA) to the experimental one at higher
energies. After that, having measured the indirect double
differential cross section at 0.3 MeV, we can determine
SE1(0.3 MeV) + SE2(0.3 MeV).

In this paper we calculate the photon’s angular distribution
at different Eα-12C energies for the 12C(α,dγ )16O reaction and
how it is affected by the interference character (constructive
or destructive) of the 1− subthreshold bound state and 1−
resonance. In the R-matrix approach the fitting parameters are
the formal reduced widths which are related to the observable
ones by Eq. (15). The observable reduced widths (γ̃1011)2 and
(γ̃1022)2 are expressed in terms of the corresponding ANCs of
the subthreshold bound states by Eq. (16). For the ANCs of
the 1− and 2+ subthreshold states we adopted [C(s)

(α12C)1]2 =
4.39 × 1028 fm−1 and [C(s)

(α12C)2]2 = 1.48 × 1010 fm−1 [44],
respectively. In all the calculations, following [28], we use the
channel radius Rα12C = 6.5 fm. The observable reduced width
of the resonance 1− is expressed in terms of the observable
resonance width of this resonance. For this resonance we
adopt �̃2011 = 0.48 MeV [58]. In the case under consideration
for the E1 transition we take into account three states and
select the boundary condition at the energy of the first level,
which is the 1− subthreshold bound state, that is, E1 = −ε

(s)
xA(1).

For the E2 transition we take into account two levels
and select the boundary condition at the energy of the 2+
subthreshold bound state E2 = −0.245 MeV.

Now we discuss the radiative width amplitudes. We use
Eq. (25) to express the formal radiative widths amplitudes
γ 1

(γ )101, γ 1
(γ )201, and γ 2

(γ )102 in terms of corresponding observable
reduced widths, which are related to the observable radiative
resonance widths by Eq. (26) [55].

Another important point to discuss is the kinematics of
the indirect reaction. The triple differential cross section is
proportional to ϕ2

dα(pdα), which is shown in Fig. 2. The
maximum of ϕ2

dα(pdα) at pdα = 0 (QF kinematics) also
provides the maximum of the triple differential cross section.
pdα is the d-α relative momentum in the three-ray vertex
6Li → d + α of the diagram in Fig. 1.

To calculate the Fourier transform of the 6Li = (dα) bound-
state wave function we use the Woods-Saxon potential with the
depth V0 = 60.0 MeV, radial parameters r0 = rC = 1.25 fm,

and diffuseness a = 0.65 fm. This potential provides the d-α
bound state with the binding energy εdα = 1.474 MeV [58].
The corresponding bound-state wave number of the (dα)
bound state is κdα = √

2μdαεdα = 0.31 fm−1. The square
of ANC for the virtual decay 6Li → d + α is [C(dα)0]2 =
7.28 fm−1. This value is higher than a realistic value of this
square of [C(dα)0]2 = 5.29 fm−1 [59]. To get the correct ANC
from the one obtained in the Woods-Saxon potential we need
to introduce the spectroscopic factor. However, because we are
not interested in the absolute cross section, we keep using the
ANC generated by the Woods-Saxon potential.

Usually the indirect experiments are performed at fixed
incident energy of the projectiles [3]. In the case under
consideration the projectile is 6Li or 12C (in the inverse
kinematics). To cover the Eα-12C energy interval, ∼2 MeV at
fixed relative kinetic energy E6Li12C, one needs to change pdα .
Since k6Li is fixed to change pdα we have to change kd so that
pdα � κdα . It can be achieved by changing kd or its direction
k̂d or both. Experimentally one can select all the events falling
into the region pdα � καd . Here, to simplify calculations, we
assume that kd ||k6Li. It means that the variation of pdα is
achieved by changing of kd . Owing to the energy conservation
by changing kd , we can vary Eα-12C, but simultaneously we
change the d-α relative momentum pdα . The triple differential
cross section given by Eq. (45) is proportional to the d-α
bound-state wave function in the momentum space ϕ2

dα(pdα),
which decreases with increase of pdα; see Fig. 2.

To avoid significant decrease of the triple differential cross
section when covering the Eα-12C energy interval ≈2 MeV it is
better to take a lower E6Li12C, but not too close to the Coulomb
barrier in the initial channel of the indirect reaction (3). Taking
into account that this Coulomb barrier is ≈5 MeV, we consider
as an example the relative kinetic energy E6Li12C = 7 MeV.
In this case for Eα-12C = 2.28 MeV, which is close to the
resonance energy of the 1− resonance, pdα = 0.141 fm−1,
while at Eα-12C = 0.3 MeV pdα = 0.281 fm−1. Hence, when
covering the Eα-12C energy interval from the energy Eα-12C =
2.28 MeV to the most effective astrophysical energy for the
process 12C(α,γ )1616, the square of the Fourier transform
ϕ2

dα(pdα) drops by a factor of 2.97. Note that the drop of
ϕ2

dα(pdα), when moving from Eα-12C = 2.28 to 0.9 MeV, is 2.1.
ϕ2

dα(pdα) appears because we consider the indirect three-body
reaction. There is another energy-dependent factor M̃L, which
is also result of the consideration of the three-body indirect
reaction. This factor will be considered below.

Our goal is to calculate the photon’s angular distributions at
different Eα-12C energies. It can allow us to compare the indirect
cross sections at higher energy, Eα-12C = 2.28 MeV, and at
the most effective astrophysical energy, Eα-12C = 0.3 MeV.
Because the indirect triple differential cross section does
not contain the penetrability factor in the channel α-12C of
the binary subreaction (2), the indirect method allows one
to measure the triple differential cross section at Eα-12C =
0.3 MeV, which is impossible by any direct method:

(1) By comparing the triple differential cross sections at
higher energies and at 0.3 MeV we can determine how
much the indirect cross section will drop when we
reach Eα-12C = 0.3 MeV. It will help us to understand
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TABLE I. Parameters used in calculations of the astrophysical
factors of the 12C(α,γ )16O radiative capture and the photon’s angular
distributions from the indirect 12C(6Li,dγ )16O reaction.

L = 1 L = 2

E1 (MeV) (−0.45) (−0.245)
γ10LL (MeV1/2) (0.0867) (0.1500)
γ L

(γ )10LL (MeV1/2fmL+1/2) (0.0241) (0.9415)
E2 (MeV) 3.0 2.8
γ20LL (MeV1/2) 0.3254 0.75
γ L

(γ )20LL (MeV1/2fmL+1/2) −0.00963 −0.09257
E3 (MeV) 33.8
γ30LL (MeV1/2) 1.1
γ L

(γ )30LL (MeV1/2fmL+1/2) −0.00239

whether it is feasible to measure the triple differential
cross section at such a low energy.

(2) The second goal is to determine whether the inter-
ference of the 1− subthreshold resonance and 1−
resonance at 2.423 MeV is constructive or destructive
because the pattern of this interference may affect the
photon’s angular distribution.

(3) The third goal is to compare the relative contribution
of the E1 and E2 transitions.

A. Astrophysical factors for 12C(α,γ )16O

First, to determine the parameters, which we use to calculate
the triple differential cross sections, we fit the experimental
astrophysical factors SE1 for the E1 transition and S(E2) for
the E2 transition for the 12C(α,γ )1616 reaction from [20].
We do not pursue a perfect fit and are mostly interested
in fitting energies below the 1− resonance at 2.423 MeV,
and at low energies Eα-12C � 1 MeV. To get an acceptable
fit for the E1 transition we needed to include three levels:
two physical states—the subthreshold 1− state and the 1−
resonance—and one background state. For the E2 transition
it was enough to include only two physical states: the 2+
subthreshold resonance and 2+ resonance at 2.683 MeV.

We repeat that we do not pursue the perfect fit of the exper-
imental S factors. Our goal is to demonstrate the pattern of the
triple differential cross section using reasonable parameters.
More complicated fits can be done when indirect data will be
available. In our fit, we kept fixed only the parameters of the
subthreshold resonances 1− and 2+ while the parameters of
the higher lying resonances 1− and 2+ were varying. The
fixed parameters are shown in Table I in parentheses. In
this table is shown the set of the parameters used to fit the
astrophysical factors SE1 and SE2. These parameters are also
used to calculate the triple differential cross section. En is the
energy of the nth level.

Note that in the R-matrix approach, which includes a few
interfering levels, it is convenient to choose one of the energy
levels coinciding with the location of the observable physical
state [56,60] while energies of other levels become fitting
parameters.

FIG. 3. Low-energy astrophysical SE1(Eα-12C) and SE2(Eα-12C)
factors for E1 and E2 transitions for the 12C(α,γ )16O radiative
capture. Black dots are astrophysical factors from [20] and the solid
red line is the present paper’s fit. (a) SE1(Eα-12C) astrophysical factor;
(b) SE2(Eα-12C) astrophysical factor.

In this paper we adopted E1 = −ε
(s)
α-12C(1) = −0.045 MeV

for L = 1 and E2 = −ε
(s)
α-12C(2) = −0.245 MeV for L = 2

transitions. Then the boundary conditions for the second
and third levels of the E1 transition are taken at Eα-12C =
−0.045 MeV while for L = 2 the boundary condition is taken
at Eα-12C = −0.245 MeV. Moreover, because in our choice
the locations of the subthreshold bound states for L = 1
and L = 2 are fixed, the energies of other levels are fitting
parameters and deviate from the real resonance energies. For
example, the 1− resonance at 2.423 MeV in the fit is shifted
to Eα-12C = 3.0 MeV and the 2+ resonance at 2.683 MeV
is shifted to 2.8 MeV. Hence, the statement that we take
into account the radiative capture through the wing of the
subthreshold 1− resonance at Eα-12C = −0.045 MeV and the
1− resonance at Eα-12C = 2.423 MeV does not contradict the
fact that in the fit the resonance at 2.423 MeV is shifted to 3.0
MeV. To fit the E1 transition we needed to add the background
state at 33.8 MeV with parameters given in Table I.

In this table, the given parameters provide the construc-
tive interference of the subthreshold 1− resonance and the
resonance at 2.423 MeV at low energies. Changing the sign
of γ 1

(γ )2011 = −0.00963 MeV1/2fm3/2 to positive provides the
destructive interference between the first two 1− levels. In what
follows, by the E1 constructive (destructive) interference we
mean the constructive (destructive) interference between the
first two 1− levels.

In Fig. 3 the calculated SE1 and SE2 astrophysical factors for
the E1 and E2 transitions, respectively, are compared with the
experimental ones from [20]. Our fitted astrophysical factors
are SE1(0.3MeV) = 124.6 keV b for the E1 transition and
SE2(0.3MeV) = 71.1 keV b for the E2 transition. Evidently
our value for the E1 transition is higher than the contemporary
accepted value of 80 keV b for constructive interference but the
value for the E2 transition is close to the low value 60 keV b
[38]. But, as we have underscored, our values should not
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FIG. 4. Angular distribution of the photons emitted from the
reaction 12C(6Li,dγ )16O proceeding through the wings of two
subthreshold resonances, 1−,Eα-12C = −0.045 MeV and 2+,Eα-12C =
−0.245 MeV, and the resonances at Eα-12C > 0. The green dashed-
dotted line is the angular distribution for the electric dipole transition
E1, the blue dashed line is the angular distribution generated by the
electric quadrupole E2 transition, and the red solid line is the total
angular distribution resulting from the interference of the E1 and E2
radiative captures. (a) Eα-12C = 0.3 MeV, constructive interference of
the E1 transitions through the wing of 1−,Eα-12C = −0.045 MeV
and the resonance 1−,ER = 2.423 MeV; (b) Eα-12C = 0.3 MeV,
destructive interference of the E1 transitions through the wing of
1−,Eα-12C = −0.045 MeV and the resonance 1−,ER = 2.423 MeV;
(c) the same as panel (a) for Eα-12C = 0.9 MeV; (d) the same as panel
(b) for Eα-12C = 0.9 MeV.

be taken very seriously. In the absence of indirect data we
use the parameters obtained from fitting the data from [20]
to generate the photon’s angular distributions to make some
qualitative predictions. We also show how the photon’s angular
distributions are affected by lowering SE1(0.3 MeV).

B. Photon’s angular distributions

In Figs. 4, 5, 6, and 7 the photon’s angular distributions
are shown at four different Eα-12C energies: 0.3, 0.9, 2.1, and
2.28 MeV. We do not show the angular distributions at the
middle energy 1.5 MeV because it is very similar to the angular
distributions at higher energies and is completely dominated by
the E1 transition. The calculations are performed at E6Li12C =
7 MeV (9.33 MeV in the laboratory system with 6Li projectile),
which is higher than the Coulomb barrier VCB ≈ 5 MeV in the
entry channel 6Li + 12C of the indirect reaction.

Figures 4 and 5 are very instructive. First, we note that
the E1 angular distributions of the photons at all energies
are peaked at 90◦ while the E2 angular distributions are
double-humped and peaked at 45◦ and 135◦. However, the
interference of the E1 and E2 transitions leads to different
total angular distributions. The total angular distributions
at 0.3 MeV are quite similar for the E1 transitions with
constructive and destructive interferences, panels (a) and (b) in
Fig. 4, with pronounced peaks at 52◦ and 50◦, respectively. The

FIG. 5. Angular distribution of the photons emitted from the
reaction 12C(6Li,dγ )16O proceeding through the wings of the two
subthreshold resonances, 1−,Eα-12C = −0.045 MeV and 2+,Eα-12C =
−0.245 MeV, and the resonances at Eα-12C > 0. Notations of the
lines are the same as in Fig. 4. (a) The same as Fig. 4(a) for
Eα-12C = 2.1 MeV; (b) the same as Fig. 4(b) for Eα-12C = 2.1 MeV;
(c) the same as Fig. 4(c) for Eα-12C = 2.28 MeV; (d) the same as Fig.
4(d) for Eα-12C = 2.28 MeV.

character of the total angular distribution at 0.3 MeV depends
on the relative weight of the E1 and E2 transitions.

The photon’s angular distributions at 0.9 MeV, panels (c)
and (d), are the most instructive. The patterns of the photon’s
angular distributions are different for the constructive and
destructive E1 transitions, which allows one to distinguish
between two types of the E1 interferences. However, the
cross section for the destructive E1 interference is too small
compared to the cross section at 0.3 MeV.

FIG. 6. The same as in Fig. 4, but the calculations are done with
three modified R-matrix parameters generating a lower SE1(0.3 MeV)
astrophysical factor.
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FIG. 7. The same as in Fig. 5, but calculations are done with
three modified R-matrix parameters generating a lower SE1(0.3 MeV)
astrophysical factor.

Now we proceed to the angular distributions at higher
energies, shown in Fig. 5. At higher energies, the E1 transition
dominates and we see profound E1 type angular distributions
for both the E1 constructive and destructive interferences of
the two first 1− levels. Hence, for the angular distributions at
higher energies one cannot distinguish between constructive
and destructive E1 interferences.

Comparing the relative values of the triple differential cross
sections of Figs. 5(c) and 4(a), we can make, presumably, the
most important conclusion: the triple differential cross section
near the 1− resonance at 2.28 MeV exceeds the one at 0.3 MeV
by approximately an order of magnitude. We remind the reader
that in the case of the direct measurements, when moving
from 2.28 to 0.3 MeV the cross section drops by a factor of
109. Our estimation detailed in the next section shows that
measurements of the indirect triple differential cross section
at 0.3 MeV are feasible. Thus, for the first time, we provide
a possibility to measure the 12C(α,γ )16O right at the most
effective astrophysical energy 0.3 MeV.

In Figs. 4 and 5 we have used the R-matrix parameters,
which provide a higher SE1(0.3 MeV) = 124.6 keV b for the
constructive E1 transition than the contemporary accepted
∼80 keV b [38]. To check how the photon’s angular distri-
butions are affected by a lower E1 astrophysical factor we
changed three R-matrix parameters in Table I: E2 = 3.1 MeV,
γ 1

(γ )2011 = −0.006132 MeV1/2fm3/2, and γ3011 = 1.4 MeV1/2.
With these parameters we get SE1(0.3 MeV) = 75.8 keV b and
SE1(0.9 MeV) = 14.7 keV b. We use the modified parameters
to calculate the photon’s angular distributions again at Eα-12C =
0.3, 0.9, 2.1, and 2.28 MeV; see Figs. 6 and 7. Thus we repeated
calculations similar to the ones shown in Figs. 4 and 5 but with
three modified parameters leading to smaller SE1.

We find that decrease of the SE1 does not change the
angular distribution except for panel (d) in Fig. 6, which is
different than panel (d) in Fig. 4 but the absolute values of
the cross sections in these panels are quite small. The main
effect of the dropping of the SE1 factor is a decrease of the

triple differential cross section at higher energies where E1
significantly dominates over E2. As a result, the ratio of the
triple differential cross sections at 2.28 and 0.3 MeV is only
6.5. That is, the relative weight of the triple differential cross
section at 0.3 MeV increases, which makes more plausible the
chances to measure the triple differential cross section at 0.3
MeV for lower SE1.

In Ref. [38] it was underscored that contemporary ex-
perimental data do not exclude very low SE1(0.3 MeV) =
10 keV b and high SE2(0.3 MeV) = 154 keV b. We did
not exploit here all the possibilities for the astrophysical
factors, but evidently these marginal values can change the
photon’s angular distributions. Indirect measurements can
finally resolve ambiguities in the low-energy astrophysical
factors.

V. FEASIBILITY OF THE PROPOSED APPROACH

Reliable estimates for the 12C(6Li,d) reaction cross section
at 10–11 MeV energy of the 6Li beam populating the 1− state
at 9.585 MeV can be made. Using FRESCO [61] reaction code
and the same set of potentials as in [44], DWBA calculations
predict cross section on the order of 10 mb/sr for forward
angles (0◦–30◦ in center-of-mass system). The γ branching of
this state to the 16O ground state is 5 × 10−8 [58]. This sets the
absolute scale for the cross sections to be measured at close
to 1 nb. This is a very challenging but achievable target for
a dedicated experimental setup. One possibility is to couple
high efficiency array for high energy γ rays (such as nearly
4π BaF or CsI [62–76]) with a large-area position-sensitive
Si array (with total solid angle of ∼1 sr) to detect deuterons.
Another possibility is to use inverse kinematics (12C beam on
6Li target) and detect 16O recoils in the spectrometer while still
measuring deuterons at back angles in coincidence with high
energy γ rays. The former approach (direct kinematics) allows
one to achieve better energy resolution, while the latter leads
to very clean measurement due to triple 16O-γ -d coincidence.
We estimate that event rates as high as 103 per day can be
achieved with high intensity beams (on the order of 1 particle
μA) while keeping energy resolution within 100 keV. This
specific estimate was made for the direct kinematics approach
assuming 60 μg/cm2 12C target thickness. Slow variation of
triple differential cross section with energy (by one order of
magnitude) makes it possible to achieve satisfactory statistics
even at Eα-12C = 0.3 MeV within a reasonable time frame. One
week of beam time would produce on the order of few hundred
events in the region of the Gamow window energy.

VI. SUMMARY

In this paper, we suggested and developed the formalism
of resonant indirect radiative capture reactions. The derived
expressions for the triple and double differential cross sections
can be used for the analysis of the indirect radiative capture
reactions. The developed formalism can be utilized when
indirect reactions proceed through a few subthreshold bound
states and resonances. In this case, the statistical theory cannot
be applied and the intermediate subthreshold bound states and
resonances should be taken into account explicitly.
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The idea of the indirect method is to use the indirect reaction
A(a,sγ )F to obtain information about the radiative capture
reaction A(x,γ )F , where a = (sx) and F = (xA). The main
advantage of using the indirect reactions is the absence of the
Coulomb-centrifugal penetrability factor in the entry channel
x + A of the binary subreaction A(x,γ )F , which suppresses
the low-energy cross section of this reaction and does not allow
one to measure it at astrophysically relevant energies.

Using indirect resonant radiative capture reactions one can
obtain the information about important astrophysical resonant
radiative capture reactions such as (p,γ ), (α,γ ), and (n,γ )
on stable and unstable isotopes. The indirect technique makes
accessible low-lying resonances, which are close to the thresh-
old, and even subthreshold bound states at negative energies.

In this paper, after developing the general formalism, we
have demonstrated the application of the indirect method for
the indirect reaction 12C(6Li,dγ )16O proceeding through 1−
and 2+ subthreshold bound states and resonances to obtain
information about the 12C(α,γ )16O radiative capture.

The indirect method requires measurement of the triple dif-
ferential cross section in the coincidence experiment, in which
one has to measure the photon’s angular distribution at given
energy and scattering angle of the deuteron. This photon’s
angular distribution is the photon-deuteron angular correlation.

We show that the ratio of the triple differential cross
section at energy Eα-12C = 2.28 MeV, which is close to the
1− resonance at 2.423 MeV, to the one at Eα-12C = 0.3 MeV
is about an order of magnitude. Such a small drop of the
triple differential cross section when one reaches the most
effective astrophysical energy Eα-12C = 0.3 MeV makes it
possible to obtain information about the astrophysical factor
for the 12C(α,γ )16O process. We remind the reader that in
the direct experiment the cross section of the 12C(α,γ )16O
reaction drops by ∼ 109 when moving from energies close to
the resonance at 2.423 MeV down to 0.3 MeV. We discuss also
the optimal experimental kinematics to measure the indirect
reactions and, in particular, the 12C(6Li,dγ )16O process.
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