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Thermodynamic properties of a neutral vector boson gas in a constant magnetic field
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The thermodynamical properties of a neutral vector boson gas in a constant magnetic field are studied starting
from the spectrum given by Proca formalism. Bose-Einstein condensation (BEC) and magnetization are obtained
in the limit of low temperature. In this limit, the condensation is reached not only by decreasing the temperature
or augmenting the density but also by increasing the magnetic field. The magnetization turns out to be a positive
quantity that increases with the field; under certain conditions self-magnetization is possible. The anisotropy in the
pressures due to the axial symmetry imposed to the system by the magnetic field is also discussed. Astrophysical
implications are commented.
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I. INTRODUCTION

There is a diversity of structures associated with a wide
range of magnetic fields (10−9 to 1015 G) coexisting in our
universe. Salient examples are large objects such as galaxies
(radius 1.5 × 1018 km) and compact objects such as neutron
stars (radius 20 km). The internal composition of neutron stars,
still poorly understood, is described by all sorts of exotic dense
matter in form of hyperons, a superfluid of paired neutrons
and/or protons, a Bose-Einstein condensate (BEC) of mesons,
or deconfined quark matter in the presence of strong magnetic
fields [1]. Size and shape of a compact object depend on its
composition but also on the magnetic field [2]. There are also
some phenomena at an astrophysical scale that do not have
explanations, as jets of pulsars, where magnetic fields might
be relevant [3,4].

Even though some theories have been proposed to explain
the origin of such magnetic fields, this issue is far from
exhausted and it is still under great debate. In this regard,
spin-1 bosons seem to be good candidates for magnetic field
sources since, at low temperature, they are known to show
spontaneous magnetization. As a consequence, under certain
conditions, a gas of bosons can generate and sustain its own
magnetic field [5,6].

The study of BEC and magnetization for a charged scalar or
vector boson gas in the presence of a constant magnetic field
was tackled in Refs. [7–12]. For low temperatures, the charged
vector boson gas is paramagnetic, can be self-magnetized,
and undergoes a diffuse phase transition to a Bose-Einstein
condensate. For a diffuse phase transition, there is not a critical
temperature but an interval of temperatures along which the
transition occurs gradually [13]. In particular, a diffuse BEC
phase is characterized by the presence of a finite fraction of
the total particle density in the ground state and in states on its
neighborhood at some temperature T > 0 [7,8,11].
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Although both charged and neutral vector bosons could
be relevant participants in astronomical phenomena, the
thermodynamics of the neutral vector boson gas has been less
studied. An effect analogous to self-magnetization, named BE
ferromagnetism, was found in Ref. [5] for a gas of nonrel-
ativistic neutral bosons with spin 1. In Refs. [14] and [15],
magnetic-field-induced superconductivity and superfluidity
are obtained for a gas of charged and neutral vector mesons, but
this ignores the weak coupling between the neutral mesons and
the magnetic field. More recently, BEC for a gas of interacting
vector bosons at zero magnetic field was studied in Ref. [16].

Hence, the aim of this paper is to study the thermodynamical
properties of a neutral vector boson gas (NVBG) in a constant
magnetic field. We will deal with its phenomenology in the
framework of Proca theory, independently of the realistic
conditions in which it may appear. Neutral vector bosons can
be mesons, atoms, and other paired fermions with zero net
charge and total integer spin. For numerical calculations, we
use positronium gas parameters, characterized by a mass of
approximately 2me (me is the electron mass) and twice the
electron magnetic moment κ = 2μB , with μB being the Bohr
magneton. Since we are focused on possible astrophysical
applications, we will consider systems of densities in the range
of 1030 to 1034 cm−3.

We found that the phase transition to the BEC is driven
by temperature, particle density, and magnetic field. For
sufficiently low temperatures, self-magnetization arises. An
analysis of this phenomenon leads us to the conditions for the
appearance of a self-sustained field. The axial symmetry of
the magnetic field is reflected in the particle spectra and in
the energy-momentum tensor of the system which becomes
anisotropic. For that reason, we also study the splitting of
the parallel and perpendicular pressures with respect to the
direction of the magnetic field.

Our paper is organized as follows. In Sec. II, we present
the equation of motion and spectrum of neutral vector boson
with magnetic moment. Section III contains a derivation of the
thermodynamical potential, particle density, BEC, internal en-
ergy, entropy, and specific heat for the NVBG. Magnetization,
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self-magnetization, and anisotropic pressures are also dis-
cussed. Section IV is devoted to conclusions. Appendixes A
and B contain some details of the calculations.

II. EQUATION OF MOTION OF A NEUTRAL VECTOR
BOSON BEARING A MAGNETIC MOMENT

Neutral spin-1 bosons with magnetic moment that move
in a magnetic field can be described by an extension of the
original Proca Lagrangian for spin-1 particles that includes
particle-field interactions [17,18]:

L = −1

4
FμνF

μν − 1

2
ρμνρμν + m2ρμρμ

+ imκ(ρμρν − ρνρμ)Fμν. (1)

In Eq. (1), the indices μ and ν run from 1 to 4, Fμν is the
electromagnetic tensor, and ρμν and ρμ are independent field
variables that follow [17]

∂μρμν − m2ρν + 2iκmρμFμ
ν = 0, ρμν = ∂μρν − ∂νρμ.

(2)

A variation of the Lagrangian with respect to the field ρμ

gives us the equations of motion that in the momentum space
read

[(pμpμ + m2)δν
μ − pνpμ − 2iκmFμ

ν]ρμ = 0. (3)

Thus, the boson propagator is

D−1
μν = (pμpμ + m2)δν

μ − pνpμ − 2iκmFμ
ν. (4)

Considering the magnetic field uniform, constant, and
in p3 direction B = Be3, one can start from Eq. (2) and
obtain the generalized Sakata-Taketani Hamiltonian for the
six-component wave equation of the system [17,18] following
the same procedure of Ref. [17]. The Hamiltonian reads

H = σ3m + (σ3 + iσ2)
p2

2m
− iσ2

(p · S)2

m

− (σ3 − iσ2)κS · B, (5)

with p = (p⊥,p3) and p⊥ = p2
1 + p2

2. σi are the 2 × 2 Pauli
matrices, Si are the 3 × 3 spin-1 matrices in a representation
in which S3 is diagonal, and S = {S1,S2,S3}.1

The equations for p and r are obtained from Eq. (5) and read
∂p
∂t

= i[H,p] = 0,

m
∂r
∂t

= i[H,p] = (σ3 − iσ2)p + iσ2[S,p,S]. (6)

From Eq. (6), it follows that the neutral bosons move freely
in the direction parallel to the field as well as in the per-
pendicular one. Therefore, all the momentum components are
preserved as quantum observables. This is a main difference
with respect to the charged vector boson gas, in which the

charge–magnetic field interaction leads to a quantization in the
transversal momentum component (Landau levels) [19].

The eigenvalues of (5) are

ε(p3,p⊥,B,s) =
√

m2 + p2
3 + p2

⊥ − 2κsB

√
p2

⊥ + m2, (7)

where s = 0, ± 1 are the spin eigenvalues. Note that although
the transverse momentum component is not quantized, the
magnetic field intensity B enters in the energy spectrum of
the neutral bosons coupled with it (see the last term in the
previous equation), as happens for the charged bosons [19]. In
both cases, this coupling reflects the axial symmetry imposed
on the system by the magnetic field.

The ground-state energy of the neutral spin-1 boson (s = 1
and p3 = p⊥ = 0) is

ε(0,B) =
√

m2 − 2κBm = m
√

1 − b, (8)

with b = B
Bc

and Bc = m
2κ

.
The rest energy of the system Eq. (8) decreases with the

magnetic field and becomes zero for B = Bc. For the values
of m and κ , we are considering (m = 2me and κ = 2μB),
Bc = m2

e/e = 4.41 × 1013 G, which is the Schwinger critical
field. Let us note that the ground state of the charged vector
boson has a similar instability (see Ref. [7]).

Equation (8) allows us to define an effective magnetic
moment as

d = −∂ε(0,B)

∂B
= κm√

m2 − 2mκB
= κ√

1 − b
. (9)

The system has a paramagnetic behavior because d > 0. It
will be also important for the discussion below that d grows
with the increase of the magnetic field and diverges for b →
1 (B → Bc).

III. THERMODYNAMICAL PROPERTIES

The general expression for the thermodynamical potential
of the NVBG has the form

	(B,μ,T )

=
∑

s=−1,0,1

1

β

[∑
p4

∫ ∞

−∞

p⊥dp⊥dp3

(2π )2
ln det D−1(p∗)

]
. (10)

Here D−1(p∗) is the neutral boson propagator given by (4),
β = 1/T denotes the inverse temperature, μ is the boson
chemical potential, and p∗ = (ip4 − μ,0,p⊥,p3). After doing
the Matsubara sum, Eq. (10) becomes

	(B,μ,T ) = 	st + 	vac, (11)

where 	st is the statistical contribution of bosons and anti-
bosons that depends on B,T , and μ:

	st(B,μ,T ) =
∑

s=−1,0,1

1

β

{∫ ∞

0

p⊥dp⊥dp3

(2π )2
ln[(1 − e−[ε(p3,p⊥,B,s)−μ]β )(1 − e−[ε(p3,p⊥,B,s)+μ]β )]

}
, (12)

1S1 = 1√
2

(
0 1 0
1 0 1
0 1 0

)
, S2 = i√

2

(
0 −1 0
1 0 −1
0 1 0

)
, S3 =

(
1 0 0
0 0 0
0 0 −1

)
.
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and 	vac is the vacuum term which is only B dependent:2

	vac =
∑

s=−1,0,1

∫ ∞

0

p⊥dp⊥dp3

(2π )2
ε(p3,p⊥,B,s). (13)

We can rewrite 	st as

	st(B,μ,T ) =
∑

s=−1,0,1

	st(s), (14)

with

	st(s) = 1

β

{ ∫ ∞

0

p⊥dp⊥dp3

(2π )2
ln[(1 − e−[ε(p3,p⊥,B,s)−μ]β )(1 − e−[ε(p3,p⊥,B,s)+μ]β )]

}
(15)

being the contribution of each spin state to the statistical part
of the potential.

Using the Taylor expansion of the logarithm, Eq. (15) can
be written as

	st(s) = − 1

4π2β

∞∑
n=1

enμβ + e−nμβ

n

∫ ∞

0
p⊥dp⊥

×
∫ ∞

−∞
dp3e

−nβε(p3,p⊥,B,s). (16)

The term enμβ stands for the particles and the term e−nμβ is
for the antiparticles.

In Eq. (16), the integration in p3 can be completely carried
out, while the integration in p⊥ can be only partially done, and
we obtain for the thermodynamical potential the expression

	st(s) = − z2
0

2π2β2

∞∑
n=1

enμβ + e−nμβ

n2
K2(yz0)

− α

2π2β

∞∑
n=1

enμβ + e−nμβ

n

×
∫ ∞

z0

dz
z2

√
z2 + α2

K1(yz), (17)

where Kn(x) is the McDonald function of order n, y = nβ,
z0 = m

√
1 − sb, and α = smb/2. To get Eq. (17), the change

of variables z2 = (m2 + p2
⊥ + α2)2 − α2 was done.

To compute the integral in the second term of Eq. (17),

I =
∫ ∞

z0

dz
z2

√
z2 + α2

K1(yz), (18)

we follow the procedure described in Appendix A. Finally,
	st(s) reads

	st(s) = − z2
0

2π2β2

⎛
⎝1 + α√

z2
0 + α2

⎞
⎠ ∞∑

n=1

enμβ + e−nμβ

n2

×K2(yz0) − αz2
0

π2β2
√

z2
0 + α2

2The vacuum term is important, for instance, in the positronium
case. It would represent a correction to the usual Euler-Heisenberg
term in which the electron-positron pairs bosonize by coupling, for
instance, through Coulomb force.

×
∞∑

n=1

enμβ + e−nμβ

n2

∞∑
w=1

(−1)w(2w − 1)!!

(z2
0 + α2)w

×
(

z0

y

)w

K−(w+2)(yz0). (19)

In the low-temperature limit, T � m (which for m =
2me

∼= 1 MeV means T � 1010K), 	st(−1) and 	st(0) van-
ish. Therefore, in this limit 	st 	 	st(1). This means that all
the particles are in the spin ground state s = 1. The leading
term of 	st(1) is the first one in Eq. (19). Since it admits a
further simplification, for the assumed low temperatures the
statistical part of the thermodynamical potential is

	st(B,μ,T ) = − ε(0,B)3/2

21/2π5/2β5/2(2 − b)
Li5/2(eβμ′

)

= −
(
m

√
1 − b

)3/2

21/2π5/2β5/2(2 − b)
Li5/2(eβμ′

), (20)

where Lin(x) is the polylogarithmic function of order n
and μ′ = μ − ε(0,B). The quantity μ′ is a function of the
temperature and the magnetic field that leads to the critical
condition for the BEC: The existence of a nonzero temperature
Tcond for which μ′ = 0.

The vacuum contribution to the thermodynamical potential
after being regularized is (see Appendix B):

	vac = − m4

288π
[b2(66 − 5b2) − 3(6 − 2b − b2)(1 − b)2

× log(1 − b) − 3(6 + 2b − b2)(1 + b)2 log(1 + b)].

(21)

By adding Eqs. (22) and (21), we get the total thermodynamical
potential for the NVBG in the limit of low temperatures,
Eq. (22):

	(B,μ,T ) = −
(
m

√
1 − b

)3/2

21/2π5/2β5/2(2 − b)
Li5/2(eβμ′

) − m4

288π

× [b2(66 − 5b2) − 3(6 − 2b − b2)(1 − b)2

× log(1 − b) − 3(6 + 2b − b2)(1 + b)2

× log(1 + b)]. (22)
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A. Particle density and Bose-Einstein condensation

To obtain the particle density, we compute the derivative of
Eq. (22) with respect to the chemical potential μ

N = −∂	(B,μ,T )

∂μ
=

(
m

√
1 − b

)3/2

21/2π5/2β3/2(2 − b)
Li3/2(eμ′β).

(23)

By setting μ′ = 0 in the previous equation, we get the BEC
critical temperature Tcond:

Tcond = 1

m
√

1 − b

[
21/2π5/2(2 − b)N

ζ (3/2)

]2/3

, (24)

where ζ (x) is the Riemann ζ function.
Although the behavior of Eq. (24) resembles the one

obtained for bosons at zero magnetic field—the functional
relation between Tcond and N is the same—when the field is
present the critical temperature depends on it (through b), and
Tcond diverges when b → 1 (B → Bc). The dependence of
the critical temperature on b evidences that the condensation
can be reached not only by decreasing the temperature or
augmenting the density but also by increasing the magnetic
field. This can be easily seen if we compute the density of
particles out of the condensate Noc (for T < Tcond):

Noc =
(
m

√
1 − b

)3/2
T 3/2

21/2π5/2(2 − b)
Li3/2(eμ′β) = N

(
T

Tcond

)3/2

,

(25)

because from Eq. (25) follows that Noc → 0 when T → 0 but
also when b → 1.

Given that there is a critical temperature for each value of
the field (as well as a critical field for each temperature), it is
possible to draw a T vs b phase diagram. We did so in Fig. 1
for two fixed values of the densities: N = 1030 cm−3 and N =
1032 cm−3, respectively. We can see from the graphics how
Tcond grows with the augment of the density and diverges when
b → 1 (B → Bc). The values of the critical temperatures (the

dotted lines that separate the region where the BEC appears
from that where there is no BEC) are in the range of T =
107 to 109, K which are typical of compact objects.

We can also examine the transition to the condensate
through the behavior of the specific heat at constant volume:

Cv = ∂E

∂T
, (26)

where E = T S + 	 + μN is the internal energy of the system.
The entropy of the vector bosons gas is

S = −∂	

∂T
= −β

(
μ′N + 5

2
	st + β

∂μ′

∂β
N

)
, (27)

with

μ′ ∼= −ζ (3/2)T

4π

[
1 −

(
Tcond

T

)3/2
]
�(T − Tcond) (28)

in the low-temperature limit. Here �(x) is the Heaviside θ
function.

With the use of Eq. (27), the internal energy can be written
as

E = m
√

1 − bN + 	vac − 3

2
	st − β

∂μ′

∂β
N. (29)

Equation (29) allows us to obtain for the specific heat the
following expression:

Cv = −β

(
15

4
	st + 3

2
μ′N + 1

2
β

∂μ′

∂β
N − β2 ∂2μ′

∂β2
N

)
.

(30)
The specific heat has been plotted in Fig. 2 as a function of

the temperature for a fixed value of the density N = 1032 cm−3

and three values of the magnetic field. As it is apparent, it has
a maximum that is a fingerprint of the BEC phase transition.
The maximum decreases, smoothes with the increment of
the magnetic field, and is expected to disappear for B → Bc

(b → 1), because when B = Bc the gas is condensed at any
temperature and density.

0.0 0.2 0.4 0.6 0.8 1.0
1 10 7

5 10 7

1 10 8

5 10 8

1 10 9

5 10 9

1 10 10

b B Bc

T
K

N 10 30 cm 3

BEC

Free gas

0.0 0.2 0.4 0.6 0.8 1.0
1 10 7

5 10 7

1 10 8

5 10 8

1 10 9

5 10 9

1 10 10

b B Bc

T
K

N 10 32 cm 3

BEC

Free gas

FIG. 1. The phase diagram in the T -b plane for different values of particle density. The black dashed lines are the critical curves that
separates the region of T and b when there is condensate (light gray region) from the region in which there is not (dark gray region). Note that
the critical line also depends on the particle density.
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FIG. 2. The specific heat as a function of the temperature for
N = 1032 cm−3 and several values of the magnetic field.

B. Magnetization

We can obtain the magnetization of the system if we derive
Eq. (22) with respect to the magnetic field:

M = dN0 − ∂	st

∂B
− ∂	vac

∂B
. (31)

In Eq. (31), N0 is the number of particles in the condensate
and d is the effective magnetic moment, Eq. (9). This term has
to be added because in the low-temperature limit all the bosons
are aligned to the field and contribute to the magnetization, but
for temperatures under Tcond, 	st only accounts for the particles
that are out of the condensate.

For the statistical contribution to the magnetization, we
have the expression

Mst = dN0 − ∂	st

∂B
= κ

m
√

1 − b
N

− 2κmT 5/2

(4π )5/2(2 − b)2
(
m

√
1 − b

)1/2 Li5/2(eβμ′
), (32)

while the vacuum contribution is

Mvac = −κm3

72π
[7b(b2 − 6) + 3(2b2 + 2b − 7)(1 − b)

× log(1 − b) − 3(2b2 − 2b − 7)(1 + b) log(1 + b)].

(33)

It is possible to show that for T � m the second term in
Eq. (32) is negligible, and one can prove that the vacuum
magnetization in Eq. (33) is only relevant for low particle
densities at very high fields, so it can be also neglected. Finally,
the total magnetization of the NVBG is

M = κ√
1 − b

N = dN. (34)

The previous expression is expected because at T � m
all the particles are in the s = 1 state. It is nothing else but
the product of the effective magnetic moment by the particle
density. However, an increase in the field still augments the

magnetization because the effective magnetic moment d grows
with B and diverges when B → Bc (b → 1). Since d is strictly
positive for all values of B, the magnetization is always positive
and different from zero even if B = 0 [M(B = 0) = κN ]. This
is an evidence of ferromagnetic response of the NVBG at low
temperature. This behavior described for M is shown in the
left panel of Fig. 3.

In the search for one of our main objectives, astrophysical
magnetic field sources, we are interested in exploring if the
system reaches the self-magnetization condition; i.e., whether
or not the solid line in left panel of Fig. 3 intersects the curves
of the magnetization. To do that, we consider H = B − 4πM
with no external magnetic field H = 0, and solve the self-
consistent equation B = 4πM . This is a cubic equation due to
the nonlinear dependency of the magnetization on the field. In
the right panel of Fig. 3, its three solutions have been plotted
but only one of them is physically meaningful. For one of the
roots, the magnetic field is negative (see the dotted line), while
for another, it decreases with the increasing density, reaching
Bc when N goes to zero (dot-dashed line). These solutions
imply that the magnetization also decreases with N ; hence,
they are contrary to Eq. (34) and must be discarded. Therefore,
the only admissible solution of the self-magnetization equation
is the one given by the solid line. The points of this line are
the values of the self-sustained magnetic field. Nevertheless,
this solution becomes complex for densities higher than Nc =
7.14 × 1034 cm−3. Nc bounds the values of the particle density
for which self-magnetization is possible. The maximum field
that could be self-sustained by the gas corresponds to the
critical density and has a magnitude of 2/3 × Bc. The values
of B and N for which a self-magnetization may occur are in
the order of those typical of compact objects. The maximum
field that can be self-maintained by the NVBG is the same
as that obtained for a gas of charged vector bosons with the
same mass and magnetic moment, but in this case the critical
particle density is of the order of 1032 cm−3 [6].

C. Anisotropic pressures

We will consider the energy momentum tensor and the
anisotropic pressures of the system. The total energy momen-
tum tensor of matter plus vacuum will be obtained as a diagonal
tensor whose spatial part contains the pressures and the time
component is the internal energy density E. One gets from the
thermodynamical potential

T i
j = ∂	

∂ai,λ

aj,λ − 	δi
j , T 4

4 = −E, (35)

where ai denotes the boson or fermion fields [20]. For a
thermodynamical potential that depends on an external field,
Eq. (35) leads to pressure terms of form

T i
j = −	 − F i

k

(
∂	

∂F
j
k

)
, i = j. (36)

Computing the pressures along each direction makes the
anisotropy explicit:

P3 = T3 = −	 = −	st − 	vac,
(37)

P⊥ = T1
1 = T2

2 = T⊥ = −	 − BM = P3 − BM.
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FIG. 3. Magnetization as a function of magnetic field for several values of the particle density (left panel). We have also plotted the B/4π .
The solutions of self-magnetization equation as a function of particle density (right panel).

In the left panel of Fig. 4, the perpendicular and parallel
pressures are depicted as function of the field [Eqs. (37)] for
T = 109 K and N = 1033 cm−3. We also show the statistical
and the vacuum parts of the parallel pressure in dashed
and dot-dashed lines respectively. The values of the parallel
pressure and its statistical part (−	st) coincides for B = 0,
but their behavior is different when the field grows. Both are
always positive but the total parallel pressure increases with
the field and tends to the vacuum contribution −	vac, while its
statistical part decreases and goes to zero for B = Bc: When
all the particles are in the condensate they exert no pressure.
We would like to remark that the parallel pressure remains
different from zero due to the vacuum contribution.

On the contrary, the perpendicular pressure decreases
(dotted line in left panel of Fig. 4) with the magnetic field
and eventually reaches negative values. This is because the
main contribution to P⊥ comes from the term −MB, which
is always negative and diverges in the critical field. A similar
result is obtained for fermion gases in a magnetic field [20–22].

In this frame, negative pressure can be interpreted as the system
becoming unstable. Because the effect of the negative perpen-
dicular pressure is to push the particles inward to the magnetic
field axis, we could be in the presence of a transversal magnetic
collapse [21].

Whether the transversal pressure is negative or not depends
on the field but also on the temperature and the particle density.
This can be seen if we examine this pressure in more detail for
the self-magnetized NVBG. To do that, we substitute in P⊥ the
solution of the self-magnetization condition B = 4πM and
plot the perpendicular pressure as a function of the particle
density for several values of T (right panel of Fig. 4). If
we start from the lower values of N , adding particles to the
system increments the parallel pressure, but it also increases
the self-produced magnetic field and Tcond. Once Tcond becomes
higher than the gas temperature, the BEC phase appears and the
pressure diminishes because a fraction of the particles fall in
the condensate. Besides, as the self-generated field becomes
higher, the contribution to P⊥ of the negative term −MB
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FIG. 4. The pressure as a function of the magnetic field for several values of temperature (left panel); the statistical and the vacuum
contributions to the pressure are also plotted in dashed and dot-dashed lines. The perpendicular pressure of the self-magnetized gas as a
function of the particle density for several values of temperature (right panel).
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becomes more relevant until eventually adding more particles
makes the system unstable. A decrease in the temperature
lowers the value of particle density where the instability starts.

When the gas is not self-magnetized but subject to an
external magnetic field, a continuous increment in the density
also leads the system to the instability. In this case, the increase
of N does not augment the field, but it still increments the
magnetization and the condensation temperature. Therefore,
the NVBG will be unstable depending on the values of the
temperature, the density and the magnetic field, regardless of
whether the field is self-produced or not.

The arising of an instability in the magnetized NVBG might
be relevant in the description of some phenomena, as jets,
that are related to the exertion of mass and radiation out of
astronomical objets [6].

IV. CONCLUSIONS

Starting from the Proca formalism [17,18], we computed
the spectrum of a gas of neutral vector bosons in a constant
magnetic field. The effective rest energy Eq. (8) turns out to
be a decreasing function of the magnetic field that becomes
zero when it reaches certain critical value Bc = m

2k
. As a

consequence, the phase transition of the neutral vector boson
gas to the BEC depends not only on the temperature or the
particle density but also on the magnetic field, in a way
that increasing the field drives the system to the condensate.
When the magnetic field reaches its critical value, the gas is
condensed for any temperature and density.

The magnetization of the gas is a positive quantity that
increases with the field and diverges when B = Bc. For particle
densities under a critical value Nc

∼= 7.14 × 1034 cm−3, the
self-magnetization condition is fulfilled and the gas can
maintain a self-generated magnetic field. The maximum field
that can be reached by self-magnetization turns out to be
2/3 × Bc ∼ 1013G.

The change from spherical to axial symmetry induced by
the magnetic field is explicitly manifested in the spectrum
of the NVBG (through the asymmetry in the momentum
components) and also in the splitting of the pressures in
the parallel and perpendicular directions to the field. For
low values of the field, the pressure exerted by the particles
has the main role in both components. However, when the
magnetic field grows, the increasing parallel pressure is
dominated by the positive vacuum pressure term, while
the decreasing perpendicular pressure is determined by
the negative magnetic pressure term −MB. For magnetic
fields and particle densities high enough, or sufficiently low
temperatures, the perpendicular pressure becomes negative
and an instability emerges in the system that turns out to be
susceptible to suffer a transversal magnetic collapse.

All these phenomena that NVBG undergo (BEC, self-
sustained magnetic field, and the collapsing of the transverse
pressure) appear for typical values of densities and magnetic
fields in compact objects. Therefore, they could be relevant in
modeling jets as well as the mechanism that sustain the strong
magnetic field in compact objects. These models deserve a
separated treatment which is in progress.
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APPENDIX A: CALCULATION OF I

In order to compute the integral of the second term of
Eq. (17),

I =
∫ ∞

z0

dz
z2

√
z2 + α2

K1(yz), (A1)

let us introduce the following form for K1(yz):

K1(yz) = 1

yz

∫ ∞

0
dte−t− y2z2

4t . (A2)

If we substitute (A2) in (A1), the integration over z can be
carried out:

I =
√

π

y2

∫ ∞

0
dt

√
te−t+ y2α2

4t erf c

(
y
√

z2 + α2

2
√

t

)
. (A3)

To integrate over t in (A3), we replace the complementary
error function erfc(x) by its series expansion:

erfc(x) � e−x2

√
πx

[
1 −

∞∑
w=1

(−1)w(2w − 1)!!

(2x2)w

]
. (A4)

After the replacement and integration, I3 can be written as

I = z2
0

y

√
z2

0 + α2
K2(yz0) − z2

0

y

√
z2

0 + α2

∞∑
w=1

(−1)w(2w − 1)!!

(z2
0 + α2)w

×
(

z0

y

)w

K−(w+2)(yz0). (A5)

APPENDIX B: VACUUM THERMODYNAMICAL
POTENTIAL

To obtain Eq. (21) for the vacuum contribution to the
thermodynamical potential, we start from its definition

	vac =
∑

s=−1,0,1

∫ ∞

0

p⊥dp⊥dp3

(2π )2
ε,

where ε(p⊥,p3,B,s) =
√

p2
3 + p2

⊥ + m2 − 2κsB

√
p2

⊥ + m2.

To integrate over p3 and p⊥, we use the equivalence

√
a = − 1

2
√

π

∫ ∞

0
dyy−3/2(e−ya − 1) (B1)

and introduce the small quantity δ as lower limit of the integral
to regularize the divergence of the a-dependent term and
eliminate the term that does not depends on a:

√
a(δ) = − 1

2
√

π

∫ ∞

δ

dyy−3/2e−ya. (B2)
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Now, let us make a(δ) = ε2 = p2
3 + p2

⊥ + m2 − 2κsB

√
p2

⊥ + m2. Consequently,

ε = − 1

2
√

π

∫ ∞

δ

dyy−3/2e−y(p2
3+p2

⊥+m2−2κsB
√

p2
⊥+m2). (B3)

By substituting Eq. (B3) in Eq. (B1), we obtain for the vacuum thermodynamical potential:

	vac = − 1

8π5/2

∑
s=−1,0,1

∫ ∞

δ

dyy−3/2
∫ ∞

0
dp⊥p⊥

∫ ∞

−∞
dp3e

−y(p2
3+p2

⊥+m2−2κsB
√

p2
⊥+m2) (B4)

After doing the Gaussian integral over p3, Eq. (B4) reads

	vac = − 1

8π2

∑
s=−1,0,1

∫ ∞

δ

dyy−2
∫ ∞

0
dp⊥p⊥e−y(p2

⊥+m2−2κsB
√

p2
⊥+m2). (B5)

If we introduce the new variable z =
√

m2 + p2
⊥ − sκB, Eq. (B5) becomes

	vac = − 1

8π2

∑
s=−1,0,1

{∫ ∞

δ

dyy−3e−y(m2−2msκB) + sκB

∫ ∞

δ

dyy−2
∫ ∞

z1

dze−y(z2−s2κ2B2)

}
, (B6)

where z1 = m − sκB.
Equation (B6) admits a further simplification if we perform a second change of variables w = z − z1 in its last term, sum over

the spin, and remember that b = B/Bc with Bc = m/2κ:

	vac = − 1

8π2

{∫ ∞

δ

dyy−3e−ym2
(1 + 2 cosh [m2by]) + mb

∫ ∞

δ

dyy−2
∫ ∞

0
dwe−y(m−w)2

sinh[mb(m − w)y]

}
. (B7)

To take the limit δ → 0, we subtract from 1 + 2 cosh [m2by] and sinh[mb(m − w)y] the first terms in their series expansion
and obtain for the vacuum thermodynamical potential the expression

	vac = − 1

8π2

∫ ∞

0
dyy−3e−ym2{2 cosh [m2by] − 2 − m4b2y2} − − mb

8π2

∫ ∞

0
dyy−2

∫ ∞

0
dwe−y(m−w)2

×
{

sinh[mb(m − w)y] − mb(m − w)y − [mb(m − w)y]3

6

}
that leads to Eq. (21) after integration.
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