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High-mass twin stars with a multipolytrope equation of state
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We show that in the three-polytrope model of Hebeler et al. [Astrophys. J. 773, 11 (2013)] for the neutron star
equation of state (EoS) at supersaturation densities a third family of compact stars can be obtained which confirms
the possibility of high-mass twin stars that have coincident masses M1 = M2 ≈ 2M� and significantly different
radii |R1 − R2| > 2–3 km. We show that the causality constraint puts severe limitations on the maximum mass of
the third family sequence which can be relaxed when this scheme is extended to four polytropes thus mimicking
a realistic high-density matter EoS.

DOI: 10.1103/PhysRevC.96.045809

I. INTRODUCTION

Compact stars (CS) represent one possible endpoint of
stellar evolution with conditions of very high density in their
interiors for which the equation of state (EoS) is currently
unknown. In particular, the composition of CS interiors is
puzzling: are they composed of exotic forms of matter like
hyperonic matter or phases of quark matter which even may
be color superconducting [1]? In this connection arises the
question for the order of the transition to these exotic phases.
If it was to be a first-order transition, this would imply the
existence of at least one critical endpoint in the QCD phase
diagram, since we know from lattice QCD simulations that
at vanishing baryon density and finite temperatures the QCD
transition is a crossover [2].

In 2013, we suggested [3,4] that there was a possibility
to decide this question by CS observations following the
classification scheme [5] of mass-radius (M-R) diagrams for
hybrid star EoS in dependence on the characteristic features of
the transition, the jump in energy density �ε and the critical
pressure Pcrit at the onset of the transition. For instance, if
the M-R diagram of CS would feature the so-called third
family branch that is separated from the second family branch
of neutron stars (NS) as purely hadronic CS by a sequence
of unstable configurations, this would indicate the EoS of
CS matter has a phase transition with a sufficiently large
�ε. Since the conversion of the core matter to a phase with
higher density at the same pressure entails a compactification
of the star accompanied with a release of gravitational binding
energy and therefore a lowering of the gravitational mass, the
second and third family branches do overlap in a certain mass
window. This situation is called the mass twin phenomenon:
two stars of the same mass would be located in the second and
third family branches, respectively, having different radii and
internal composition. If this occurs at a high mass of ∼2M�

*alvarez@theor.jinr.ru
†blaschke@ift.uni.wroc.pl

one speaks of the high-mass twin (HMT) scenario. The most
prominent example being due to the hadron–to–quark-matter
phase transition resulting in hybrid CS composed of a hadronic
mantle and a quark matter core, see [6,7] and references
therein. The HMT scenario is, in principle, accessible to
observational verification, e.g., by satellite missions like
NICER [11] or ground-based programs as SKA [12]. All it
takes is to measure radii of NS with sufficiently similar high
masses such as PSR J0348 + 0432 with M = 2.01 ± 0.04M�
[8] and PSR J1614-2230 with M = 1.928 ± 0.017M� [9,10],
and to find out that their radii are significantly different.

In fact, the discussion of a third family branch in the M-R
diagram due to a phase transition in dense matter goes back to
Gerlach [13] and has subsequently been considered, e.g., by
Kämpfer [14] before Glendenning and Kettner [15] coined the
term neutron star twins in a work that used a Relativistic Mean
Field model for the hadronic phase together with a bag model
for the quark matter phase. Schertler et al. [16,17] considered
strange quark matter. However, due to the soft hadronic
equations of state used there, the resulting twin stars cannot
reach the M = 2.01M�, a measurement at that time unknown.
On the other hand, [5,18] feature a fixed hadronic EoS together
with a constant speed of light quark matter parametrization
and present a phase diagram for all masses and different
mass-radius topologies, namely, connected and disconnected
branches. Another alternative description is reported in [19]
where a SU(3) chiral-meson model [20] together with a bag
constant quark matter model is implemented and leads to very
large CS radii incompatible with the Hebeler constraints. Last
but not least, a few other realizations of HMTs have been
reviewed in [7] where the connection with heavy ion collision
experiments has been underlined.

Furthermore, as pointed out in [21], the HMT phenomenon
is of great relevance for the study of the NS EoS not
only because it can provide evidence for a first-order phase
transition and thus for the very existence of a critical endpoint
in the QCD diagram, but also because it provides a resolution
to several issues: the hyperon puzzle [22], the reconfinement
problem, and the masquerade case (see [21] and references
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therein). In addition, the HMT may be discussed in the context
of explaining the origin of fast radio bursts [23] as possible
intermediate metastable states due to a sudden change in the
internal structure of a fastly rotating supramassive neutron star
[24,25] created, e.g., in a NS merger event before its final
collapse to a black hole [26].

The purpose of this work is to point out that the HMT case
is not the result of the construction of a rather exotic case of an
EoS but may be obtained even within the rather conservative
scheme of Hebeler et al. [27]. It consists of a multi-polytrope
description of the NS EoS [28] in line with constraints derived
from a chiral effective field theory describing nuclear few- and
many-particle systems at densities up to nuclear saturation.

II. PIECEWISE POLYTROPE EOS WITH A FIRST-
ORDER PHASE TRANSITION

We would like to investigate the question whether in the
scheme of Hebeler et al. [27] with a piecewise polytrope EoS
at supersaturation densities it would be possible to describe the
HMT phenomenon. To this end one should define one of the
polytropes as a constant pressure region with P = Pcrit with a
jump in energy density �ε due to a first-order phase transition
that would fulfill the Seidov constraint [29]

�ε

εcrit
� 1

2
+ 3

2

Pcrit

εcrit
(1)

for the occurrence of an instability in the M-R relation of
compact stars. Such a sequence of unstable configurations is
precondition for a disconnected (third family) branch of stable
hybrid stars that would furthermore require a sufficiently stiff
high density EoS to allow for a maximum mass fulfilling the
constraint from the measurement of the mass M = 2.01 ±
0.04M� for the pulsar PSR J0348 + 0432 [8]. According
to [27], the supersaturation density region is split into three
regions

i = 1 : n1 � n � n12, i = 2 : n12 � n � n23,

i = 3 : n � n23, (2)

where n1 = 1.1n0 is just above the nuclear saturation density
n0 = 0.15 fm−3 and the polytrope EoS pieces fulfill

Pi(n) = κin
�i (3)

in the corresponding regions. For our setting of the problem,
in all our EoS models the first region is taken from the Hebeler
et al. paper [27] and corresponds to a polytrope fit to the stiffest
EoS (n > 1.1n0) of their Table V together with an intermediate
homogeneous phase in β equilibrium (0.5n0 < n < 1.1n0),
presented in their section III, and the BPS EoS for the outer NS
crust (n < 0.5n0) of their Table VII. Therefore, the resulting
fit gives polytrope parameter values for this density region of
�1 = 4.92 and κ1 = 17906.60 MeV fm3(�1−1). Furthermore,
the region i = 2 shall correspond to the phase coexistence
region of the first-order phase transition with constant pressure,
so that �2 = 0 and P2 = κ2 = Pcrit. The boundaries of this
region shall be obtained from a Maxwell construction [30]
which requires the pressure as a function of the chemical
potential μ. To facilitate this construction for a pair of

polytropes at zero temperature, we utilize the formulas given
in the Appendix of Ref. [31],

P (n) = n2 d(ε(n)/n)

dn
, (4)

ε(n)/n =
∫

dn
P (n)

n2
=

∫
dn κn�−2 = κ n�−1

� − 1
+ C, (5)

μ(n) = P (n) + ε(n)

n
= κ �

� − 1
n�−1 + m0, (6)

where the integration constant C is fixed by the condition that
ε(n → 0) = m0 n. Now we have for the polytrope EoS

n(μ) =
[

(μ − m0)
� − 1

κ�

]1/(�−1)

, (7)

so that the pressure as a function of the chemical potential for
the polytrope EoS (3) is

P (μ) = κ

[
(μ − m0)

� − 1

κ�

]�/(�−1)

. (8)

With EoS in the form (8) one can perform the Maxwell
construction of a first-order phase transition.

III. HIGH MASS TWINS FROM MULTI-POLYTROPE
EQUATIONS OF STATE

Now we can apply these general relations to the case of a
transition from nuclear matter in region 1 (with m0,1 being the
nucleon mass) to high density matter in region 3. That may
correspond, e.g., to hyperon matter or quark matter. From the
Maxwell construction

P1(μcrit) = P3(μcrit) = Pcrit, (9)

μcrit = μ1(n12) = μ3(n23), (10)

follow the two conditions

κ3 = κ1 n
�1
12/n

�3
23 , (11)

Pcrit = (m0,1 − m0,3)

[
�1

n12(�1 − 1)
− �3

n23(�3 − 1)

]−1

= κ1 n
�1
12 . (12)

The above equations (11) and (12), allow for determination
of κ3 and m0,3 once the values of n12, n23, m0,1, and �3 are
fixed. In order to fulfill the compact star mass constraint, we
may demand that upon solving the corresponding compact
star sequence, the mass at the onset of the transition fulfills
M(n12) � 2 M� which fixes the value n12, allowing to deter-
mine Pcrit and μcrit from the Maxwell construction. Moreover,
since the EoS just above nuclear saturation is fixed according
to the stiff limit of Hebeler et al. [27], the constants �1 and
κ1 are also fixed. So we are then left with the three equations
(11), (12), and (1) for the four unknowns κ3, �3 and n23, and
m0,3. We fix n23 such that the equality sign holds in the Seidov
criterion (1). Therefore, in order to close the system, we dial
�3 as a free parameter. Its maximal value is determined so that
the speed of sound shall not exceed the speed of light up to
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TABLE I. Parameter values for sets 1, 2, 3, and 4. The EoS in this
set share the following properties: Pcrit = 63.177 MeV fm−3, εcrit =
318.26 MeV fm−3, �ε = 253.89 MeV fm−3. The second polytrope
with P2 = Pcrit and �2 = 0 lies between the densities n12 = 0.32 fm−3

and n23 = 0.53 fm−3. For set 4 the high-density region has been
divided in two polytrope branches: set 4a for densities n23 � n � n34

and set 4b for densities n � n34 = 0.75 fm−3.

�3 κ3 m0,3 MNS
max MHS

max MHS
min

[MeV fm3(�3−1)] [MeV] [M�] [M�] [M�]

set 1 2.50 302.56 991.75 2.01 – –
set 2 2.80 365.12 1004.88 2.01 1.910 1.909
set 3 3.12 447.16 1014.87 2.01 1.991 1.934
set 4a 4.00 774.375 1031.815
set 4b 2.80 548.309 958.553 2.01 2.106 1.961

the density values reached in the very center of the maximum
mass star configurations.

With the above scheme, we are thus able to compute the EoS
of hybrid compact stars. Next, we obtain the corresponding
star sequences by solving the Tolman-Volkoff-Oppenheimer
(TOV) equations describing a static, nonrotating, spherically
symmetric star [32,33]

dP (r)

dr
= −G(ε(r) + P (r))(M(r) + 4πr3P (r))

r(r − 2GM(r))
, (13)

dM(r)

dr
= 4πr2ε(r) (14)

with P (r = R) = 0 and Pc = P (r = 0) as boundary condi-
tions for a star with mass M and radius R. The complete

NS sequence is determined by increasing the chosen central
pressure Pc up to a maximum mass.

The enclosed baryonic mass is obtained by integrating

dNB(r)

dr
= 4πr2

(
1 − 2GM(r)

r

)−1/2

n(r). (15)

It plays an important role in the description of the dynamics
of CS evolution scenarios that conserve the baryonic mass, like
spinning down into the hybrid twin configuration [25]. In our
numerical calculations, we vary the values of the polytrope
index �3 in order to discuss the effect of the stiffness of the
high-density EoS using sets 1–4 of model parameters given in
Table I.

The hybrid star EoS corresponding to sets 1–4 share the
same hadronic branch, onset, and density jump at the phase
transition, see panel (a) of Fig. 1. In panel (b) of Fig. 1 we
demonstrate that the causality constraint is fulfilled for all
these sets. Increasing the quark matter stiffness through the
parameter �3 results in an increase of the maximum mass on
the hybrid star branch. The EoS for set 3 reaches the causality
limit just at the maximum mass of the hybrid star sequence,
which is denoted by the plus symbols on panels (b) and (c) of
that figure. It shows that a third family of stable hybrid stars
can be obtained within the multi-polytrope scheme of Hebeler
et al. [27] using just three polytropes. This is the main result
of this paper. The hybrid star branch is more compact than the
purely hadronic one by about 2–3 km. In Fig. 2 we illustrate
the case of HMT stars by showing for set 3 the energy density
profiles of two stars with the same mass of 1.99M�, one from
the hadronic branch and one from the hybrid star branch. The
latter has an extended quark matter core and is more compact
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FIG. 1. EoS [(a)—P vs. ε; (b) - c2
s vs. ε] and sequences of compact stars [(c)—M vs. R; (d) - MB vs. R] for sets 1–4 of Table I. The EoS

have the same onset density and density jump of the phase transition, but different stiffness of the high density (quark matter) phase. The plus
symbols denote values for the maximum mass configurations.

045809-3



D. E. ALVAREZ-CASTILLO AND D. B. BLASCHKE PHYSICAL REVIEW C 96, 045809 (2017)

0 2 4 6 8 10 12 14
r [km]

1.00×10
11

1.00×10
12

1.00×10
13

1.00×10
14

1.00×10
15

1.00×10
16

ε 
[g

/c
m

3 ]

hadronic star
hybrid star

     1.99M
sun

FIG. 2. High mass twins internal energy density profile. The
dashed curve corresponds to the pure hadronic star whose radius
exceeds the hybrid star by about 3 km.

than its hadronic twin by about 3 km. This is a potentially
observable effect.

Another important result is obtained when going beyond the
three-polytrope scheme of Hebeler et al. [27] by introducing a
fourth polytrope at high densities in order to prevent a causality
breach. With set 4 of our study we achieve an increase in the
hybrid star maximum mass which now even reaches ∼2.1M�.

Actually, the physical motivation for adopting a change in
the polytrope index �3 of the high-density matter comes from
the fact that there can be a sequence of phase transitions in
CS matter at high densities [37], which may even lead to the
occurrence of a fourth family of CS [38]. Recently we could
show that also a fifth family solution is possible for the case
of three sequential transitions in CS matter [39], as discussed
in [37].

Lowering �3 we obtain a value for which barely a stable
hybrid star sequence can be obtained (set 2), and lowering �3

further (set 1) no stable hybrid stars are possible. The four
parameter sets for which the EoS and compact star sequences
are illustrated in Fig. 1 are given in Table I. Note that for set
4 the high-density region has been divided in two polytrope
branches: set 4a for densities n23 � n � n34 and set 4b for
densities n � n34 = 0.75 fm−3.

It is interesting to discuss the present parametrizations of
the multi-polytrope EoS in the classification scheme of Ref. [5]
where a phase diagram for hybrid CS sequences with a phase
transition has been introduced that is spanned by the plane of
�ε and Pcrit, both measured in units of εcrit, see Fig. 3. By
construction all our parametrizations have the same Pcrit, εcrit,
and �ε. Therefore, they are represented by one and the same
point in the phase diagram of Fig. 3, which also by construction
lies on the Seidov border line (1). Changing the stiffness of the
high-density phase by increasing the value of �3 moves the
border that divides regions for disconnected (D) and absent
(A) stable hybrid star branches so that for set 1 our model lies
in the domain A, while for the stiffer sets 2–4 it is in region D.
The fact that the point representing our parametrizations lies
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FIG. 3. “Phase diagram” of hybrid star sequences following
Ref. [5] for parameter sets 1–4 of this work. For details, see text.

on the Seidov border is merely of academic interest here. It
indicates that at the onset of the phase transition, if �ε were
just a little smaller, there would be a small connected branch
of hybrid stars with a tiny quark matter core before the onset of
the unstable branch, which makes out the difference that one
has now B and C instead of D and A. If one would disregard
this tiny “academic” detail, then the regions just below the
Seidov line should also be called D and A, respectively.

All the EoS models in this work are causal and fall inside
the EoS region that was given in Hebeler et al. [27] for the
case supporting a 1.97M� NS, see Fig. 4.
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FIG. 4. All multi-polytrope EoS for sets 1–4 from Table I fall
within the region given in Hebeler et al. [27] for the case supporting
a 1.97M� NS (grey shaded region). These EoS share the hadronic
branch EoS, the onset density and jump in energy density at the
transition but vary in the stiffness of the high-density phase. The plus
symbols denote the pressure and energy density values at the center
of the compact star configuration with the maximum mass.
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IV. CONCLUSIONS

In this work we have shown that within the multi-polytrope
approach by Hebeler et al. [27] we can obtain high mass twins
in the M-R diagram for compact stars. We have also shown
that going beyond the three-polytrope scheme one can achieve
an increase in the maximum mass on the third family branch
of compact hybrid stars. This feature is of particular interest
for scenarios of NS-NS merger events where in the spin-down
evolution of the supermassive compact star a phase transition
can occur.

The EoS parametrizations presented here obey causality
and fall in the constraint region derived in [27] for the condition
that a mass of 1.97M� has to be reached.

In concluding, we mention that the multi-polytrope ap-
proach can of course not replace a realistic EoS. While we have
shown that extending the three-polytrope scheme to four poly-
tropes gives already a significant improvement of the maxi-
mum mass for the hybrid star configurations on the third family
branch solutions, the most promising strategy shall be to em-
ploy microscopic approaches to high-density quark matter like,
e.g., the NJL model with higher order repulsive interactions
[6] or the relativistic string-flip model [34] do not have this
problem of multi-polytropes. The multi-polytrope scheme can
give, however, interesting heuristic guidance along this path.

Finally, we would like to emphasize the importance of
the HMT phenomenon detection and its relation to the QCD
critical point [4,35]. If a first-order phase transition exists in the
QCD diagram it should feature a critical end up that borders the

crossover region. Thus, this transition shall extend into isospin
asymmetric matter covering the low temperature region where
compact star matter is located. As we have presented in this
work, if the strength of this transition satisfies the Seidov
conditions and quark matter is sufficiently stiff, the high mass
twins phenomenon shall occur. Potential detection relies on
accurate radius measurements which, for the models presented
here, should be capable of resolving a 2–3 km difference
with confidence. Bayesian techniques that utilize astronomical
measurements can provide model parameter estimation useful
to probe the compact star equation of state [36].
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