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Constraining the K̄ N interaction from the 1S level shift of kaonic deuterium
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Motivated by the precise measurement of the 1S level shift of kaonic hydrogen, we perform accurate three-body
calculations for the spectrum of kaonic deuterium using a realistic antikaon-nucleon (K̄N ) interaction. In order
to describe both short- and long-range behaviors of the kaonic atomic states, we solve the three-body Schrödinger
equation with a superposition of a large number of correlated Gaussian basis functions covering distances up to
several hundreds of fm. Transition energies between 1S, 2P , and 2S states are determined with high precision.
The complex energy shift of the 1S level of kaonic deuterium is found to be �E − i�/2 = (670 − i 508) eV.
The sensitivity of this level shift with respect to the isospin I = 1 component of the K̄N interaction is examined.
It is pointed out that an experimental determination of the kaonic deuterium level shift within an uncertainty of
25% will provide a constraint for the I = 1 component of the K̄N interaction significantly stronger than that
from kaonic hydrogen.
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I. INTRODUCTION

In recent years, systems involving antikaons (K̄ = K−,K̄0)
have been widely explored in hadron and strangeness nuclear
physics. Studies of the �(1405), as a K̄N quasibound state
coupled to the π� continuum, suggested early on [1,2] that the
low-energy interaction between K̄ and nucleon (N ) is strongly
attractive. This implies the principal possibility of forming
K̄-nuclear quasibound states, or kaonic nuclei [3–7]. Many
experiments and theoretical calculations have been devoted
to search for such exotic nuclear systems (see, for example,
Refs. [8,9] for recent reviews).

The K̄NN three-body system, as the lightest prototype
of a kaonic nucleus, has been studied actively. A number of
theoretical works suggested the existence of this quasibound
state [4,5,10–19] and pointed to its possible signatures in
production reactions [20–23], but no consensus has been
reached so far; the quantitative results depend strongly on
the K̄N interaction employed in the calculations.

Experimentally, the existence of kaonic nuclei is contro-
versial as well. In some reports, a peak structure is observed
around 100 MeV below the K̄NN threshold [24–26]. But, if
interpreted as a K̄-nuclear bound state, such a large binding
energy could not be accounted for in any of the theoretical
studies [4,5,10–19]. On the other hand, measurements reported
in Refs. [27–29] did not find a corresponding prominent signal
in their spectra. Recently the J-PARC E15 experiment [30]
observed a peak structure near the K̄NN threshold in the
3He(K−,�p)n reaction, which awaits further analysis and
interpretation.

In the theoretical calculations of kaonic nuclei, the K̄N

interaction below the K̄N threshold energy is an essential
ingredient. Since the subthreshold energy region cannot be di-
rectly accessed by K̄N scattering experiments, extrapolations
are necessary in order to construct the scattering amplitude
below the K̄N threshold. Such extrapolations are subject to
uncertainties in the K̄N interaction itself.

A kaonic atom in which a K− is bound to an ordinary nu-
cleus by the Coulomb force is a useful object for investigating
the K̄N interaction just below threshold. In an ordinary atomic
systems, electrons are bound exclusively by the Coulomb
interaction. In a kaonic atom, the binding energy is determined
by both Coulomb and strong K̄N interactions. The purely
Coulombic energy of the 1S atomic orbit, EC

1S < 0, is shifted
to a complex energy E1S by the K̄N interaction and the
absorptive transitions to lower energy π� and π� channels.
This 1S level shift and width, �E − i�/2 = E1S − EC

1S ,
reflects the K̄N interaction at threshold. Actually, this level
shift is measured by the x-ray transition energy from 2P to
1S, assuming that the 2P state is not affected by the K̄N
interaction. A prominent example is the 1S level shift of kaonic
hydrogen, the K−-proton (p) atomic system, determined as
�E = 283 ± 36 ± 6 eV and � = 541 ± 89 ± 22 eV by the
SIDDHARTA experiment [31,32].

The SIDDHARTA data helped reduce significantly the
theoretical uncertainties of the scattering amplitude at and
below the K̄N threshold [33,34]. However, these data are not
sufficient in order to determine the full isospin dependence
of the K̄N interaction. The isospin I = 0 component is well
constrained by the properties of the �(1405) as a K̄N (I = 0)
state coupled to the strongly interacting π� continuum.
Kaonic hydrogen involves both isospin I = 0 and I = 1
components equally, but a large uncertainty still remains in
the I = 1 component of the K̄N interaction [35].

In order to extract further information on this I = 1
component, we consider kaonic deuterium, the K−-deuteron
(d) atomic system. In K−d, the ratio of I = 0 to I = 1 is
1 : 3; therefore kaonic deuterium is expected to be a more
sensitive probe than kaonic hydrogen for the I = 1 component
of the K̄N interaction. Its full isospin dependence can thus be
determined more precisely by combining data from kaonic
hydrogen and deuterium.

In the SIDDHARTA experiment [31], a kaonic deu-
terium run was performed simultaneously with the hydro-
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gen run but the statistics was not sufficient for a reli-
able separation of signal versus background. New exper-
iments are now being planned to measure kaonic deu-
terium: J-PARC E57 [36] and SIDDHARTA-2 [37,38].
The tentatively expected precision of these measurements
is 60 (30) eV for the shift and 140 (70) eV for
the width at J-PARC E57 (SIDDHARTA-2).

In the present work we investigate the level shifts and
decay widths of kaonic deuterium by performing a full
three-body calculation, aiming at a more stringent constraint
for the I = 1 component of the K̄N interaction. We use a
modern K̄N interaction, the Kyoto K̄N potential [39] that has
been constructed based on chiral SU(3) effective field theory.
Thanks to systematic improvements with inclusion of higher
order terms, this potential reproduces very well all available
low-energy K̄N empirical data (K−p total cross sections,
branching ratios at K−p threshold and the SIDDHARTA data)
with an accuracy of χ2/d.o.f. � 1 [33,34].

There are several theoretical studies of kaonic deuterium as
an approximate K−d two-body problem [40–42]. The relation-
ship between kaonic deuterium observables and K̄N two-body
scattering lengths has been discussed in Refs. [43–45]. Three-
body Faddeev calculations of kaonic deuterium also have their
own history; see, for example, Ref. [46]. Recently, advanced
Faddeev calculations with separable potentials constrained by
the SIDDHARTA kaonic hydrogen data have been performed
[47,48]. The 1S K−d atomic state was evaluated assuming
isospin symmetry for the K̄ and nucleon doublets.

Experimentally the 1S level shift is determined from the
transition between 2P and 1S states. It is thus important
to calculate the precise transition energy between these two
states. We perform highly accurate three-body calculations for
the 1S, 2P , and 2S energy levels using physical masses of all
particles involved, and examine how those levels are affected
by the strong K̄N interaction. Finally, we quantify the accuracy
requirement for a measurement of the kaonic deuterium level
shift and width aimed at improving constraints on the I = 1
components in the K̄N interaction.

The following section discusses first the properties of
the K̄N interaction by examining the kaonic hydrogen two-
body system. Details of the three-body calculation of kaonic
deuterium are explained in Sec. III. Section IV presents
numerical results of the full three-body calculations. In Sec.
IV A, the energy spectrum of kaonic deuterium is presented.
The impact of strong-interaction effects on the spectrum is
discussed by comparing spectra with and without the K̄N
interaction. In Sec. IV B, the sensitivity with respect to the
I = 1 component of the K̄N interaction is tested by changing
selectively its strength within presently existing uncertainties.
In Sec. IV C, we compare our results to the improved Deser
formula, a frequently used approximation to evaluate the 1S
level shift. A summary is given in Sec. V.

II. K̄ N INTERACTION and Kaonic hydrogen

In the present work, we employ the recently developed,
complex, and energy-dependent Kyoto K̄N potential [39] as
the basic antikaon-nucleon interaction. This potential repro-
duces the scattering amplitudes that were calculated previously

based on chiral SU(3) coupled-channels dynamics [33,34].
The potential in its original form is written in the isospin
basis, from which the particle basis potential is constructed as

V̂ K̄N
ij = 1

2

[
V̂

K̄N(I=0)
ij + V̂

K̄N(I=1)
ij

]
− 1

2

[
V̂

K̄N(I=0)
ij − V̂

K̄N(I=1)
ij

]
P ij

τ , (1)

where the Heisenberg operator P
ij
τ = (1 + τi · τj )/2 ex-

changes the ith and j th particles in the isospin wave function.
In the particle basis, which is going to be used in the
following, the exchange operator acts as P

ij
τ |K−n〉 = |K−n〉,

P
ij
τ |K−p〉 = −|K̄0n〉, and P

ij
τ |K̄0n〉 = −|K−p〉. The charge

exchange channel coupling between K−p and K̄0n occurs
through the isospin dependence of the K̄N interaction.

Effects of the decay processes into π� and π� channels
are encoded in the imaginary part of the K̄N potential. The
strength of the interaction depends on the energy EK̄N being
treated self-consistently in the Schrödinger equation in order
to reproduce the coupled-channels scattering amplitudes.

Before proceeding to the calculation of kaonic deuterium,
it is mandatory to check the applicability of the Kyoto K̄N
potential for the present study. We recall that the fitting to
the kaonic hydrogen data in Refs. [33,34] was performed
making use of the improved Deser formula [60], whereas
in the present work we solve the Schrödinger equation to
evaluate the level shift and width. Moreover, the threshold
energy difference between the K−p and K̄0n channels is
about 5 MeV and should properly be taken into account in the
level shift calculation. While the amplitudes in Refs. [33,34]
were calculated using physical hadron masses, the Kyoto
K̄N potential of Ref. [39] has originally been formulated in
the isospin basis with isospin-averaged masses, and so this
potential is converted to the particle basis with physical masses
for the application reported in the present work.

As a first test, the energy of kaonic hydrogen is computed
by solving the coupled-channels Schrödinger equation(

T̂ + V̂ K̄N + V̂ C V̂ K̄N

V̂ K̄N T̂ + V̂ K̄N + �m

)(|K−p〉
|K̄0n〉

)

= E

(|K−p〉
|K̄0n〉

)
(2)

with the kinetic energy T̂ , the Coulomb interaction V̂ C, and the
Kyoto K̄N potential in the particle basis, using the following
physical masses: Mp = 938.272 MeV, Mn = 939.565 MeV,
MK− = 493.677 MeV, and MK̄0 = 497.648 MeV for protons,
neutrons, and antikaons, respectively [49]. �m denotes the
mass difference of the K−p and K̄0n channels. The kaonic
hydrogen wave function is expressed as a superposition of a
large number of square-integrable Gaussian basis functions
reaching out to far distances. In the Coulomb-bound state the
K−p channel is closed and the K̄0n channel with its higher
physical mass is closed as well, and so the relevant matrix
elements are accurately determined.

The results for the K−-hydrogen shift and width are listed
in Table I. As shown in the first line of this table, the
self-consistent solution of the Schrödinger equation using
physical masses reproduces the experimental SIDDHARTA
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TABLE I. Level shifts and decay widths of the 1S atomic state of
the kaonic hydrogen with physical masses and with isospin averaged
masses. Results by setting EK̄N = 0 in the K̄N interaction are also
shown.

Mass E dependence �E (eV) � (eV)

Physical Self-consistent 283 607
Isospin Self-consistent 163 574
Physical EK̄N = 0 283 607
Expt. [31,32] 283 ± 36 ± 6 541 ± 89 ±22

result [31,32] within its uncertainties. The Kyoto K̄N potential
in the particle basis thus proves to be a valid input even though
the original construction of the potential was not optimized
for this purpose. On the other hand, when calculating kaonic
hydrogen with isospin-averaged masses of the antikaon and
nucleon doublets, we obtain the result shown in the second
(“Isospin”) row of Table I. One observes a quantitative
change of the energy shift by more than 100 eV, exceeding
by far the uncertainty of the measurement [31,32]. While
it is common practice in strong-interaction calculations to
assume that isospin breaking effects are not very significant,
these effects can be kinematically enhanced in near-threshold
observables. To elucidate the difference, we show in Table II
the K̄N scattering lengths calculated with physical masses and
with isospin-averaged masses. The isospin averaging implies
an upward shift of the K−p threshold by 2.6 MeV from its
physical location. As a consequence, the real part of the K−p
scattering length aK−p is reduced in magnitude by 0.26 fm (i.e.,
by about 40%). The more detailed discussion of the resulting
kaonic hydrogen energy shift and width follows in Sec. IV C
featuring the improved Deser formula. Hence, it is obvious
that precise physical masses must be used in the level shift
computation.

Next we examine the effect of the energy dependence of the
Kyoto K̄N potential. This energy dependence is essential in
determining the binding energies (several tens of MeV) of K̄-
nuclear systems with few to several nucleons [19]. However,
the atomic states are located in the near neighborhood of the
threshold. Their binding energies are as small as a few keV.
To study the effect of the energy dependence, we perform the
same calculation as previously described, but setting EK̄N = 0
in the potential. As shown in the third row of Table I, the self-
consistent and fixed EK̄N = 0 results turn out to be numerically
identical. Therefore, in the level shift calculation of the atomic
states, the energy dependence of the K̄N potential can be
safely neglected, and this is how we shall proceed hereafter,
setting EK̄N = 0 throughout.

III. THREE-BODY APPROACH TO KAONIC DEUTERIUM

A. Three-body Hamiltonian

We start from the following three-body Hamiltonian for
kaonic deuterium:

Ĥ =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑
i=2

(
V̂ K̄N

1i + V̂ EM
1i

)
, (3)

where T̂i denotes the kinetic energy of the ith particle (i =
1 for an antikaon and i = 2, 3 for two nucleons), including
physical masses of p, n, K−, and K̄0. The center-of-mass
kinetic energy, T̂cm, is properly subtracted.

We use the Minnesota potential [50] as the NN interaction,
V̂ NN . This potential is technically convenient for three-body
computations. It operates with a central force only but repro-
duces the binding energy and radius of the deuteron. In fact,
what matters primarily in the kaonic deuterium calculation
is a deuteron density distribution, ρd (r). We checked that
r2ρd (r) deduced from the Minnesota potential agrees perfectly
and quantitatively with the radial density profile generated by
realistic NN interactions such as the CD-Bonn potential [51].

For the antikaon-nucleon interaction, V̂ K̄N (E), we employ
the Kyoto K̄N potential [39]. As just pointed out, the
choice of the two-body antikaon-nucleon energy at threshold,
E ≡ EK̄N = 0, is justified for kaonic hydrogen. For kaonic
deuterium, this issue requires further discussion. The energy
of the K̄N two-body subsystem within the K−d three-body
system is not a well-defined concept. Different prescriptions
[13,14,17,19] are available to take into account the motion of
the bound nucleons while they interact with the antikaon. In
the present work, we use the prescription of Refs. [13,14,19],
where EK̄N is proportional to the kaon binding energy.
This amounts to setting EK̄N = 0 in the two-body potential
V̂ K̄N also for kaonic deuterium, the choice we take as
our default input in the following three-body calculations.
Leading corrections to this minimal choice are discussed in
the appendix and numerically estimated using the resummed
Deser formula in Sec. IV C.

The electromagnetic (Coulomb) interaction is denoted by
V̂ EM . The effect of higher order QED corrections will be
discussed in Sec. IV C. The explicit three-body coupled-
channels equation is written as(

ĤK−pn V̂ K̄N
12 + V̂ K̄N

13

V̂ K̄N
12 + V̂ K̄N

13 ĤK̄0nn

)(|K−pn〉
|K̄0nn〉

)

= E

(|K−pn〉
|K̄0nn〉

)
(4)

with

ĤK−pn =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑
i=2

(
V̂ K̄N

1i + V̂ EM
1i

)
, (5)

ĤK̄0nn =
3∑

i=1

T̂i − T̂cm + V̂ NN
23 +

3∑
i=2

V̂ K̄N
1i + �M, (6)

with �M denoting the mass difference of the K−pn and K̄0nn
channels. In the following subsection, we describe how the
coupled-channels three-body equation is solved in practice.

B. Basis functions

The three-body Schrödinger equation is solved using a
variational method with basis expansion. The generic basis
function is expressed as


 = A[ψ (space) ⊗ ψ (spin) ⊗ ψ (isospin)], (7)
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TABLE II. K̄N scattering lengths with physical masses and with isospin averaged masses.

Mass aK−p (fm) aK−p-K̄0n (fm) aK̄0n (fm) aK−n (fm)

Physical −0.66 + i0.89 −0.85 + i0.26 −0.40 + i1.03 0.58 + i0.78
Isospin −0.40 + i0.81 −0.99 + i0.04 −0.40 + i0.81 0.58 + i0.77

where A is the antisymmetrizer for two nucleons.
Since the Hamiltonian considered in this paper does not

change the total orbital angular momentum, L, and the total
spin, S, of the particles, we can introduce an L = 0 and
S = 1 state with isospin-3 component MT = − 1

2 as a basis
to describe kaonic deuterium. The spin wave function S = 1
is given explicitly as

ψ (spin) = 1√
2

(|↑↓〉 + |↓↑〉), (8)

where the first (second) arrow indicates the spin of the
nucleon with index i = 2 (i = 3). The isospin part, ψ (isospin),
of the wave function written in the particle basis includes the
following two channels:

|K−pn〉 = |↓↑↓〉, |K̄0nn〉 = |↑↓↓〉. (9)

For the radial part of the wave function, we use correlated
Gaussian (CG) basis functions [52,53]. This method is suffi-
ciently flexible so that it enables us to describe both short-
and long-range behaviors of the wave function accurately,
a necessary condition when dealing with systems such as
kaonic deuterium in which the very different distance scales
characteristic of Coulomb and strong interactions must be
treated simultaneously. (See recent reviews, Refs. [54,55], for
many applications of the CG method.)

Let x denote a two-dimensional column vector whose ith
element is a usual three-dimensional coordinate vector, xi . The
spatial part of the wave function in Eq. (7) is written in the
form [56]

FLML
(u,v,A,x) = exp

(− 1
2 x̃Ax

)
[YL1 (ũx)YL2 (ṽx)]LML

,

(10)

with solid spherical harmonics

Ylm(r) = rlYlm(r̂). (11)

In Eq. (10), A is a 2 × 2 positive-definite symmetric matrix,
and a tilde stands for the transposed matrix. The product x̃Ax is
a short-hand notation for A11x

2
1 + A22x

2
2 + 2A12x1 · x2. The

off-diagonal element, A12, induces correlations between the
coordinates x1 and x2. The global vector (GV), ũx = u1x1 +
u2x2, describes rotational motion of the system, with u and
v being two-dimensional column vectors which specify the
rotation axes.

One of the advantages of the combined CG+GV method is
that its functional form does not change under linear coordinate
transformations. Suppose that the matrix A and the vectors
u and v are defined in the x coordinate set. Defining a
transformation matrix T as y = T x, we can work equivalently
with the y coordinate set, simply replacing A, u, and v by
T̃ AT , T̃ u, and T̃ v, respectively.

Consider two sets of Jacobi coordinates:

x1 = r2 − r3,

x2 = m2

m2 + m3
r2 + m3

m2 + m3
r3 − r1, (12)

and

y1 = r1 − r2,

y2 = m1

m1 + m2
r1 + m2

m1 + m2
r2 − r3, (13)

where r i stands for the single-particle coordinate of the ith
particle. Both of these sets are equally suitable for the three-
body calculation. However, when dealing with the channel
coupling between systems of different mass, the coordinates
x2 and y2 are not common to the K−pn and K̄0nn channels.
We therefore use the following integral coordinates which do
not depend on any particle masses:

z1 = r1 − r2,

z2 = r2 − r3, (14)

for evaluating the off-diagonal matrix element between the
K−pn and K̄0nn channels.

C. Energy convergence

In this work, short-range strong interactions as well as
the long-range Coulomb interactions have to be treated
simultaneously with high precision. To extract the detailed
effects of the K̄N interaction from the spectrum of kaonic
deuterium, we need to calculate the binding energy with an
accuracy of a few eV. This is a computational challenge that
demands great care. In this subsection, we discuss how to meet
this challenge of calculating wave functions with the required
precision.

The wave function is expanded in a large set of basis
functions, Eq. (7), and the generalized eigenvalue problem

K∑
j=1

(Hij − EBij )Cj = 0, (15)

is solved to determine the coefficients Ci and eigenenergy
E, with the Hamiltonian matrix Hij = 〈
i |H |
j 〉 and the
overlap matrix Bij = 〈
i |
j 〉. Here K is the number of basis
functions. To achieve energy convergence for the kaonic atom,
it turns out that we need to include basis functions reaching
over distance scales from one tenth to several hundreds of
fm. Given the large number of nonorthogonal basis functions,
we cannot solve the generalized eigenvalue problem due to
round-off errors in the double-precision computation [57]. To
avoid this problem, we reconstruct a new orthonormal basis set
from the prepared basis functions by diagonalizing the overlap
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TABLE III. Cutoff parameter λcut, number of basis
functions N , and the real part of the energy of the 1S

state of kaonic deuterium.

log10 λcut N Re[E] (MeV)

16 1677 −2.211689436
17 2194 −2.211722964
18 2377 −2.211732072
19 2511 −2.211735493
20 2621 −2.211737242
21 2721 −2.211737609
22 2806 −2.211737677
23 2879 −2.211737682

matrix Bij :

φμ = 1√
μ

K∑
i=1

c
(μ)
i 
i. (16)

The number of new basis functions {φμ} is again K , and each
function is labeled by its eigenvalue μ. The Hamiltonian is
then diagonalized with this set of basis functions, omitting
those which give very small μ. If a whole set of basis functions
emerges with very small μ, we discard this set altogether and
try another one. In practice, a cutoff parameter is introduced,
defined by the ratio of minimum to maximum eigenvalues
μ as λcut = μmax/μmin. Basis functions with μ < μmin are
discarded. The cutoff parameter is taken as large as possible
within significant digits of the double-precision computation.

To generate the elements of the matrix A (the variational
parameters), we use a geometric progression [58] for diagonal
matrix elements of A with the x coordinates defined in Eq. (12).
For the global vectors, we simply take ũ = (1,0) and ṽ =
(0,1) to define an angular momentum for each coordinate.
Intermediate angular momenta up to L1 + L2 � 4 are taken
into account.

For the diagonal elements of the matrices A, u, and
v, the variational procedures can actually be optimized by
suitably combining a representation using the coordinates x
of Eq. (12) with the equivalent representation in the so-called
rearrangement channel, using the coordinates y of Eq. (13).
The evaluation of the Hamiltonian matrix elements is then
performed in x coordinates applying the transformations
A → T̃ AT , u → T̃ u, and v → T̃ v where appropriate.

With one-by-one inclusion of those channels just men-
tioned, several sets of variational parameters are prepared
covering distance scales from 0.1 fm to 300–1000 fm, in
a search for the lowest energy. We need more than 30
Gaussian basis functions for each coordinate to achieve energy
convergence within a few eV. After a careful examination of
the energy convergence by introducing the cutoff parameter
λcut, the total number of basis functions K is 4096 and 8192
for the S and P states, respectively.

Table III shows the cutoff dependence of the real part of
the energy of the kaonic deuterium 1S state measured from
the three-body break-up threshold. N denotes the number of
basis functions that actually appear in the diagonalization.
The number of primary basis functions, K = 4096, is reduced
with decreasing λcut. It turns out that we cannot diagonalize

the Hamiltonian for λcut � 1023 due to round-off errors in the
double-precision calculations. Finally we reach convergence
within eV accuracy for λcut � 1020, in which case the number
of basis functions becomes approximately half of the number
of primary basis functions. For the 2P state, we take λcut �
1028, and N � 3508 basis functions are actually needed in the
diagonalization.

IV. RESULTS AND DISCUSSION

A. Spectrum and level shifts

Table IV lists binding energies, measured from the K−d
threshold, and decay widths of kaonic deuterium. The three-
body calculation with Coulomb interaction only is shifted
slightly from the energy levels produced in the K−d two-body
calculations with point charge, by 8 and 1 eV for the 1S and
2S states, respectively. The 2P energy remains unchanged
in the three-body calculation because the P -wave function
around the origin is suppressed by the centrifugal barrier. This
behavior is consistent with the K−d two-body estimate of the
energy shift, assuming a uniform charge distribution as listed
in the table.

With inclusion of the K̄N interaction, the 1S state is shifted
by ∼670 eV from the K−d Coulomb (point charge) 1S level.
The level shift and width of the 2S level are an order of
magnitude smaller than those of the 1S state because the 2S
wave function has a smaller amplitude around the origin than
the one of the 1S state. The 2P energy remains unchanged
and its decay width is found to be less than 1 eV; the K̄N
interaction has virtually no effect on the 2P state of kaonic
deuterium because of the presence of the centrifugal barrier.
We can therefore safely extract the 1S level shift from the
2P → 1S transition energy. In summary, the 1S level shift
and decay width resulting from the full three-body calculation
are predicted as

�E − i
�

2
= (670 − i 508) eV, (17)

namely, (�E,�) = (670,1016) eV using the Kyoto K̄N
potential. These values are roughly consistent with those
found in a recent Faddeev calculation [48], although the basic
interactions used in that approach are different from ours.

For comparison, a full three-body computation of the
level shift and width has also been performed using isospin-
averaged meson and baryon masses, with the result �E −
i�/2 = (672 − i 509) eV. The small deviation, by just a
few eV, from the corresponding calculation using physical
masses is of some interest here, as this is in unexpected contrast
to the relatively large isospin-breaking effects seen in kaonic
hydrogen. Some insight into the origin of this difference can
be gained by a closer look into the multiple scattering series
and the improved Deser formula which relates the level shift
and width to the pertinent scattering lengths; see Subsec. IV C.

Up to this point, the determination of the width � in-
corporates the decay channels K̄N → πY , where Y stands
for � and � hyperons. The question arises about possible
additional contributions to the width from antikaon absorption
on two nucleons, with the coupled K−pn and K̄0nn channels
decaying into �n + �0n + �−p. Early measurements at
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TABLE IV. Energy spectrum of kaonic deuterium. Three- and two-body calculations with Coulomb
interaction only (omitting the strong K̄N interaction) are listed in the first three rows. Energy levels
resulting from the three-body calculation are measured relative to the calculated K−d threshold. For the
K−d two-body calculations, the deuteron mass Md = 1875.613 MeV has been used [49].

E1S(keV) E2P (keV) E2S(keV)

Coulomb −10.398 −2.602 −2.600
Uniform charge (2-body) −10.401 −2.602 −2.601
Point charge (2-body) −10.406 −2.602 −2.602
Coulomb + K̄N −9.736 − i 0.508 −2.602 − i 0.000 −2.517 − i 0.067

Brookhaven with K− stopped on liquid deuterium in the BNL
bubble chamber [59] demonstrated that these processes are
strongly suppressed as compared to the leading single-nucleon
channels, K̄N → πY . The ratio of two-nucleon absorption
reactions to the single-nucleon processes was found to be as
small as (1.2 ± 0.1)% [59]. Taking this value for orientation,
the kaonic deuterium 1S width would increase through
two-nucleon absorption by only about 10 eV, a correction
that can be safely neglected within an uncertainty range of
approximately 10 % assigned to the calculated width of about
a keV. The smallness of the two-body absorptive width can
be understood as follows. Kinematical conditions for the
K̄NN → YN process require a large momentum transfer of
order 1 GeV/c to be provided by the initial deuteron wave
function at short distances. The probability for this to take
place in a weakly bound, dilute system like the deuteron is
small. Similar considerations hold, for example, in the analysis
of the 3He(K−,�p)n reaction [30]. Background simulations
performed for this experiment pointed out that two-nucleon
absorption is strongly suppressed in the vicinity of the K−pp
threshold, whereas three-nucleon reactions dominate.

B. Constraining the I = 1 component of K̄ N interaction

To quantify the sensitivity of the kaonic deuterium level
shift with respect to the I = 1 component of the K̄N
interaction, we vary its strength within the uncertainties of
the SIDDHARTA kaonic hydrogen measurement [31,32]. This
uncertainty range can be simulated by simply multiplying a
constant, β, to the real part of the I = 1 component of the
K̄N potential. Within the SIDDHARTA constraint [31,32], the
control parameter β can range from −0.17 to 1.08. Evidently
this constraint is quite weak: Even β = 0, i.e., a vanishing
real part of the I = 1 K̄N potential, would still be acceptable.
Theoretical considerations based on chiral SU(3) dynamics
would exclude such a possibility, but it cannot be ruled out by
just looking at the SIDDHARTA data.

Table V lists the results of the two- and three-body
calculations performed with limiting values of β compared
to the standard case, β = 1. It is interesting to observe that the
sensitivity with respect to the I = 1 K̄N interaction strength
shows different patterns for �E and � in kaonic hydrogen as
compared to kaonic deuterium. In the K−p system, a variation
of β within its upper and lower limits changes �E by less than
10%, whereas � changes by more than 30%. On the other hand,
the same variation of β in the K−pn system induces a change
�E by 170 eV while � remains stable around 1 keV.

One concludes that an accuracy of about 25% in a
measurement of the 1S shift in kaonic deuterium would already
improve the determination of the I = 1 K̄N interaction
considerably over the kaonic hydrogen result. The 30–60 eV
precision to be expected in the planned experiments [37,38]
falls well within that range.

C. Improved Deser formulas for kaonic deuterium

The improved Deser formula [43,60], derived from nonrel-
ativistic effective field theory (EFT), is frequently used in the
investigation of strong-interaction effects in hadronic atoms.
The 1S level shift �E and width � of a kaonic atom can be
estimated by the relation [43,60]

�E − i�

2
= −2μ2α3a[1 − 2μα(ln α − 1)a], (18)

where μ is the kaon-nucleus reduced mass, α is the fine struc-
ture constant, and a is the K−-nucleus scattering length. The
logarithmically enhanced correction term can be resummed to
all orders [61], providing a “double-improved” Deser formula:

�E − i�

2
= − 2μ2α3a

1 + 2μα(ln α − 1)a
. (19)

In this section, we compare our full three-body calculation
results with the results obtained from Eqs. (18) and (19). But let
us first examine the shift and width of kaonic hydrogen in this
context. The K−p scattering length obtained by solving the
two-body Schrödinger equation with the Kyoto K̄N potential
is shown in Table II. Using Eqs. (18) and (19), one finds the
results shown in Table VI. It is evident that the improved Deser
formula works reasonably well for kaonic hydrogen and the
resummed version indeed improves the accuracy further.

TABLE V. Level shifts and decay widths (in eV) of
kaonic hydrogen and deuterium computed with different I =
1 strengths of the K̄N interaction. The experimental level
shift data of kaonic hydrogen is (�E,�) = (283 ± 36 ± 6,
541 ± 89 ± 22) eV [31,32].

β K−p K−d

�E � �E �

1.08 287 648 676 1020
1.00 283 607 670 1016
−0.17 310 430 506 980
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TABLE VI. Level shift and width of kaonic hydrogen obtained
by solving the Schrödinger equation with the Kyoto K̄N potential
and by using the improved Deser formula and its resummed version.

�E (eV) � (eV)

Full Schrödinger equation 283 607
Improved Deser formula (18) 293 596
Resummed formula (19) 284 605

Estimates of the level shift and width of kaonic deuterium
using the Deser formulas require the K−d scattering length
aK−d as input. In the fixed center approximation (FCA) for
the nucleons, aK−d derived from a multiple scattering series is
given as [43,62]

aK−d = μK−d

mK−

∫
d3r ρd (r) ãK−d (r), (20)

ãK−d (r) = ãp + ãn + (
2ãpãn − ã2

ex

)/
r − 2ã2

exãn

/
r2

1 − ãpãn

/
r2 + ã2

exãn

/
r3

, (21)

with the K−-deuteron reduced mass μK−d , and ρd (r) is the
nucleon density distribution in the deuteron, obtained in the
present case using the Minnesota potential. The scattering
lengths are defined as ãp ≡ ãK−p, ãn ≡ ãK−n and ã2

ex ≡
ã2

K−p-K̄0n
/(1 + ãK̄0n/r), and the scattering lengths ãK̄N in

the laboratory frame are given as ãK̄N ≡ mK

μK̄N
aK̄N with the

K̄N reduced mass μK̄N . Using the Kyoto K̄N potential,
the resulting two-body K̄N scattering lengths are shown in
Table II. These scattering lengths are defined by the scattering
amplitudes at the threshold energy for the diagonal channels
and at the average of the threshold energies for the off-diagonal
K−p-K̄0n channel. Their real and imaginary parts agree well
with the original amplitudes [33,34] within their uncertainties.
The K−d scattering length is then calculated from Eqs. (20)
and (21) as

aK−d = (−1.42 + i 1.60) fm. (22)

This result remains unchanged when we adopt a realistic
deuteron wave function (including the D-wave component)
generated from the CD-Bonn potential [51].

Next we apply the improved Deser formulas (18) and
(19) to kaonic deuterium. The results are summarized in
Table VII together with those from the full three-body
calculation. The logarithmic correction term is now increased
as |μK−d aK−d/(μK−p aK−p)| ∼ 1.3, so the difference between
Eqs. (18) and (19) becomes larger than that in kaonic hydrogen.

TABLE VII. Level shift and width of kaonic deuterium obtained
by solving the three-body Schrödinger equation with the Kyoto K̄N

potential and by using the improved Deser formula and its resummed
version.

�E (eV) � (eV)

Full Schrödinger equation 670 1016
Improved Deser formula (18) 910 989
Resummed formula (19) 818 1188

In addition, the deviation from the full three-body calculation
is of the order of �100 eV.

Note, however, that the K−d scattering length in Eq. (22) is
estimated in the FCA limit. Hence, it can be different from the
exact value. For instance, the importance of recoil corrections,
naturally included in the full three-body calculation but
neglected in FCA, is discussed in Refs. [61,63]. In addition,
the determination of the precise energy of the two-body K̄N
system is subject to some uncertainties.

Another source of small deviations are higher order QED
corrections such as electron vacuum polarization. This effect
can be included as an effective potential, modifying the
Coulomb interaction in the form [64]

V (r) = −α

r

[
1 + 2α

3π

∫ ∞

1
due−2meru

(
1 + 1

2u2

)√
u2 − 1

u2

]
,

where me is the electron mass. The first term is the ordinary
Coulomb potential, and the second term (the Uehling potential)
takes into account the vacuum polarization effect, which is
found to be small: The 1S level shift and width of the kaonic
deuterium including this correction is �E − i�/2 = (670 −
i 519) eV. While the level shift is unchanged, the decay width
increases slightly by about 10 eV because the Uehling potential
is attractive at very short distances.

In summary, the improved Deser formulas work well for
kaonic hydrogen but estimates based on these formulas appear
to be less accurate for kaonic deuterium, which does require
a three-body treatment beyond fixed nucleons if the aim is to
reach a precision at the 10-eV level.

At this point, we can add a comment on the previously
mentioned surprising fact that isospin-breaking effects, using
physical masses of antikaons and nucleons, are large in kaonic
hydrogen but turn out to be small in the full three-body cal-
culation of kaonic deuterium. One can trace this phenomenon
by examining the improved Deser formulas together with the
multiple scattering relation (21). The prime source of the strong
effect in kaonic hydrogen is a substantial change of the real
part of the K−p scattering length when using isospin-averaged
instead of physical masses. In kaonic deuterium, on the other
hand, the whole set of scattering lengths in Table II enters
Eq. (21), including aK−n with its positive real part, so that
the leading effect from aK−p is largely compensated. As a
consequence, real parts of aK−d calculated with physical or
isospin-averaged masses now differ only by less than 5 %, and
this difference is averaged out further in the full three-body
approach beyond fixed-scatterer approximation.

Finally we examine possible uncertainties related to the
energy dependence of the K̄N potential, V̂ K̄N (EK̄N ). In the
present study, we have set EK̄N = 0 at threshold, following
Refs. [13,14,19]. The binding of the nucleons in the deuteron
may cause a shift of EK̄N toward the subthreshold region.
In fact, the prescription in Ref. [17] gives a large negative
value for EK̄N . Our estimate, derived and discussed in the
appendix, suggests instead a small average shift, EK̄N =
−Bd/2 ∼ −1.1 MeV, involving the deuteron binding energy
Bd . With this value, we calculate the level shift and width
of kaonic deuterium using the resummed Deser formula (19)
and find (�E,�) = (869,1310) eV, compared to (�E,�) =
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(818,1188) eV with EK̄N = 0 (see Table VII). Thus the
changes induced by correcting the energy dependence in
V̂ K̄N (EK̄N ) for deuteron binding tend to increase the width
of kaonic deuterium by about 10%, while the corresponding
energy shift changes only marginally.

V. CONCLUSIONS

Precise three-body calculations have been performed for
the spectrum of kaonic deuterium and the evaluation of the
1S level shift and width. The K̄NN three-body wave function
is expressed by a superposition of a large set of correlated
Gaussian basis functions. In order to describe both short-range
strong interactions and the long-range Coulomb interaction
simultaneously, a large model space needs to be considered
covering all distance scales ranging from 0.1 fm to several
hundreds of fm.

The K̄N strong interaction is treated in terms of a
complex potential that accurately reproduces previous results
of coupled-channels calculations based on chiral SU(3) dy-
namics. We have calculated the energy levels of 1S, 2S, and
2P kaonic deuterium states and find that the K̄N strong
interaction affects only the S states, inducing energy shifts
from the levels characteristic of the pure Coulomb and point
charge limit of the K−d atomic system. No energy shift is
found for the 2P state, so that the 1S level shift can be directly
associated with the transition energy from the 2P to the 1S
state. The calculated 1S level shift of kaonic deuterium is
�E − i�/2 = (670 − i 508) eV, corresponding to a 2P →
1S transition energy of 7.134 keV. Following our previous
discussions, we assign uncertainties of about 10% to � and
less than 10% to �E (not counting the approximately 20%
uncertainties in the empirical SIDDHARTA kaonic hydrogen
constraints).

In view of upcoming experimental investigations, we have
also performed a test of the sensitivity of kaonic deuterium
observables with respect to the I = 1 component in the
K̄N interaction, by varying selectively the real part of the
I = 1 K̄N potential strength within the uncertainty limits
deduced from the kaonic hydrogen data. One can conclude
from this test that the 1S level shift of kaonic deuterium is
indeed expected to provide a significantly improved constraint
on the I = 1 component, as compared to the SIDDHARTA
kaonic hydrogen measurement [31,32], if the deuterium level
shift can be determined within ∼25% accuracy (corresponding
to ∼2% in the 2P → 1S transition energy). This sets the
physics focus on the yet basically unknown K− neutron sector
of the K̄N interaction.
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APPENDIX: TWO-BODY K̄ N ENERGY AND DEUTERON
BINDING CORRECTION

Here we consider the average energy EK̄N of a two-
body K̄N subsystem in kaonic deuterium. In general, the
energy of a two-body subsystem within a three-body bound
state is not a well-defined notion. An estimate of EK̄N

is nevertheless needed in order to determine the variation
of strength of the energy-dependent K̄N potential close to
threshold. Prescriptions for such estimates have been discussed
in several previous works. In the present paper, we have argued,
following Refs. [13,14,19], that choosing EK̄N = 0 is a good
approximation. Deuteron binding corrections introducing a
subthreshold shift, EK̄N = −Bd/2 with the deuteron binding
energy Bd ∼ 2.2 MeV, imply uncertainties in the kaonic
deuterium width of about 10% and smaller effects on the
energy shift. The following considerations are intended to
provide a basis for this estimate.

A different prescription is given in Ref. [17], where
a considerably larger subthreshold shift, EK̄N = −Bd/2 −
MN/(MN + mK )〈TN :N 〉/2, is suggested, involving the pair-
wise NN kinetic energy 〈TN :N 〉 ∼ 20 MeV. In this case, the
effective two-body energy turns out to be EK̄N ∼ −7 MeV,
mostly coming from the kinetic energy term. Such a large
subthreshold shift in the K̄N potential V (EK̄N ), when applied
in combination with the resummed Deser formula (19), would
produce a massive (∼60%) increase of the kaonic deuterium
width � together with an increase of the energy shift �E by
about 30%.

The expression for EK̄N in Ref. [17] is deduced from an
ad hoc ansatz for the average energy of each individual K̄N
subsystem within the K̄-nuclear many-body system:

√
sav = 1

A

A∑
i=1

√
(EK + Ei)2 − (q + pi)2 (A1)

with the antikaon four-momentum (EK,q ) and the ith nucleon
four-momentum (Ei, pi). The number of nucleons is A = 2 in
the present case.

We argue instead that the starting point for a discussion
of EK̄N should be a well-defined quantity, namely the total
invariant center-of-mass energy of the K̄A system:

√
stot =

√√√√(EK + EA)2 −
(

q +
A∑

i=1

pi

)2

. (A2)

For the kaonic atom case considered here, the Coulomb energy
is supposed to be included in EA. Equation (A2) is understood
in combination with the constraint of conserved total three-
momentum,

P = q +
A∑

i=1

pi = const. (A3)

with P = 0 in the rest frame of the kaonic atom. A decom-
position of

√
stot into two-body subsystems is then guaranteed
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to satisfy all kinematic constraints. Note that there is no such
systematic link between Eqs. (A2) and (A1).

For kaonic deuterium, Eq. (A2) becomes
√

stot =
√

(EK + Ed )2 − (q + p1 + p2)2, (A4)

where p1 and p2 now refer to proton and neutron three-
momenta within the deuteron. For the purpose of estimating
deuteron binding effects, the small Coulomb energy can be
dropped. We set, approximately, EK = mK at threshold and
Ed = Mp + Mn − Bd . Three-momentum conservation reads

q + p1 + p2 = 0 (A5)

in the kaonic deuterium rest frame. In this frame, we have
√

stot ≈ mK + Mp + Mn − Bd = √
sth − Bd. (A6)

When we identify an average K̄N energy per nucleon as

EK̄N = 1
2 (

√
stot − √

sth) (A7)

with EK̄N = 0 at threshold, the subthreshold energy shift per
nucleon is simply EK̄N = −Bd/2 � −1.1 MeV. The P = 0
constraint implies that there is no additional strong downward
shift from a kinetic energy term, as would emerge from
applying Eq. (A1).
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