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Using a multiphase transport (AMPT) model, we study the dependence on the specific shear viscosity of
the transverse momentum spectra, Hanbury Brown–Twiss parameters, and elliptic flow with a temperature-
independent shear viscous approach. The shear viscosity strengthens the transverse pressure gradients, raises the
transverse momentum spectra, and gives smaller values of Ro, Rl, and Ro/Rs, but increases value of Rs. The
transverse momentum dependence of v2 is suppressed with increasing η/s and can hold at finite η/s within a
partonic cascade approach in the AMPT model.
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I. INTRODUCTION

The main goal of ultrarelativistic heavy-ion collisions is to
understand collectivity in the strong interaction sector of the
standard model and determine the transport properties of the
quark-gluon plasma (QGP). Experiments at the BNL Relativis-
tic Heavy-Ion Collider (RHIC) and the CERN Large Hadron
Collider (LHC) have created the quark-gluon plasma and
demonstrated that the QGP is strongly coupled and behaves
as an almost perfect liquid with very small viscosity [1–4].
The specific shear viscosity η/s of QGP, which accelerates the
transverse expansion, is important to the strongly interacting
mediums viscous properties and transport evolution [5–7].
At finite temperature and zero chemical potential, the shear
viscosity to entropy density ratio of QGP approaches the
Kovtun-Starinets-Son (KSS) bound, η/s � 1

4π
, based on the

anti–de Sitter/conformal field theory (AdS/CFT) correspon-
dence [8]. Results from lattice QCD indicates that η/s is
approximately temperature-independent at RHIC energy [9].
The ratio of η/s is evaluated in the range 1

4π
� η/s � 2.5

4π
by

a hybrid model which couples the viscous fluid dynamics to
the ultrarelativistic quantum molecular dynamics (UrQMD)
model via a Monte Carlo interface [10]. The values are
η/s = 0.12 at RHIC and 0.2 at LHC via CGC saturation model
with a prethermal classical evolution of the glasma gluon fields
[11]. The specific shear viscosity is an important quantity to
evaluate the strongly coupled nature of the QGP and pinpoint
the location of the QGP phase transition which occurs in the
vicinity of the minimum in η/s [12–14].

A significant effect of the finite η/s around the lower
bound is shown within viscous hydrodynamics or cascade
approaches [5,7,15–20]. Most hydrodynamical simulations
assume a temperature-independent η/s, in order to describe
elliptic flow data which cannot be larger than 2.5 times the
lower KSS bound. The specific shear viscosity depends on
the temperature and increases in the high-temperature QGP.
The quantitative control of the temperature-independent η/s
within a multiphase transport (AMPT) model can be used to
study the effect of the finite η/s based on a partonic cascade
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approach which is different from the hydrodynamical simula-
tions. The approximate control approach of the temperature-
independent η/s in the AMPT model is also appropriate
for the temperature-dependent η/s at high-temperature and
convenient for setting arbitrary functional form of η/s(T )
at LHC energy. According to perturbative and lattice QCD,
the temperature dependence of η/s is weak over the range
explored in heavy-ion collisions at RHIC energy [21,22]. This
suggests constant η/s can be approximately used at RHIC
energy.

The AMPT model contains the evolution of partonic phase
within a partonic cascade approach modeled by the Zhang’s
parton cascade (ZPC) model and provides a convenient way
to study the specific shear viscosity of QGP. Based on the
kinetic theory, the temperature dependence of η/s can be
estimated by the QCD coupling constant αs and the screening
mass μ [23,24]. Using the screening mass depended on T ,
the effect of a constant (temperature-independent) ratio η/s

can be studied in the transport theory. In previous work [25],
we have studied the effect of approximate constant η/s on
the HBT parameters in the string melting version of AMPT
model with a rough assumption that the medium effect of
the partonic phase at proper time is only related to the
property of central medium and the spatial location effect
is neglected. The rough assumption, which only evaluates
the temperature and considers the effective average of η/s

in a central cell, transverse radius rT < 2 fm and space-time
rapidity |ηs| < 0.25, overestimates the value of energy density
away from the center and only can be used to study the
effects of the shear viscosity on the observables qualitatively.
The absence of the spatial anisotropy for the energy density
distribution makes the assumption inappropriate for describing
noncentral collisions or extracting η/s from the elliptic flow
quantitatively.

In this paper, temperature-independent η/s contains the
spatial location influence on the medium in the AMPT model
with a Gaussian smearing. The screening mass is rearranged
according to the energy density distribution calculated via
describing parton by a three-dimensional Gaussian distribution
of its total energy. In Sec. II, we consider a constant specific
shear viscous approach in the AMPT model. In Sec. III, the
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transverse momentum spectra, Hanbury Brown–Twiss (HBT)
radii and elliptic flow are discussed. We conclude in Sec. IV.

II. THE SPECIFIC SHEAR VISCOSITY
IN THE AMPT MODEL

In kinetic theory the shear viscosity can be expressed as [26]

η = 4〈p〉
15σtr

, (1)

where 〈p〉 is the mean momentum of partons and σtr is the
transport cross section, defined by

σtr =
∫

dt
dσ

dt
sin2 θ. (2)

The AMPT model is a hybrid model which contains partonic
and hadronic transport processes based on nonequilibration
transport dynamics [27]. The process of partonic cascade
included only two-body scatterings is calculated by the ZPC
model with the differential scattering cross section [28]

dσ

dt
≈ 9πα2

s

2(t − μ2)2
(3)

with t the standard Mandelstam variable. The partonic elastic
scattering cross section is σp ≈ 9πα2

s /(2μ2). Using the dif-
ferential scattering cross section, the transport cross section is
given from Ref. [24] as

σtr = 18πα2
s

E2

[(
1 + 2μ2

E2

)
ln

(
1 + μ2/E2

μ2/E2

)
− 2

]
, (4)

where E is the center of mass energy of the colliding parton
pair. By assuming quark-gluon plasma of massless quarks
at temperature T , the mean momentum is 〈p〉 = 3T , the
parton pair energy is E ∼ √

18T , and the energy density
is ε = 12(4 + 3Nf )T 4/π2 = 15.8T 4 when using Boltzmann
distributions with Nf = 3, where Nf is the number of relevant
quark flavors, if only up, down, and strange quarks are
considered [29]. The entropy density is s = (ε + P )/T =
4ε/(3T ). The shear viscosity to entropy density ratio is

η/s ≈ 27

79πα2
s

1(
9 + μ2

T 2

)
ln

( 18+μ2/T 2

μ2/T 2

) − 18
. (5)

Thus, for fixed value of αs , the screening mass depended
on temperature, μ = cT , leads to a temperature-independent
ratio η/s. The ratio is related to the value of c and the constant
ratios, η/s = 0.08,0.16, and 0.24, are corresponding to the c
value of 1.59, 2.37, and 2.82 with αs = 0.47. The screening
mass of medium at coordinates (x,y,z) and time t can be
approximately related to the energy density as follows:

μ(x,y,z,t) = cT (x,y,z,t) = c

[
ε(x,y,z,t)

15.8

] 1
4

. (6)

At evolution time t of the partonic phase within the ZPC model,
each pointlike parton is smeared with a three-dimensional
Gaussian distribution of its total energy and the distribution
function of energy density is given as [30,31]

ε(x,y,z) =
∑

Ni exp

[
− (x − xi)2 + (y − yi)2 + (z − zi)2

2σ 2

]
,

(7)
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FIG. 1. Partonic energy density distribution in z-x plane for
Au+Au central collisions at

√
sNN = 200 GeV in the AMPT model:

(a)–(d) correspond to t = 0.5,1.0,2.0,5.0 fm/c.

where Ni = ( 1
2π

)
3
2

1
σ 3 Ei provides the proper normalization,

(xi,yi,zi) and Ei are the position vector and energy of parton
i. The Gaussian width is set at σ = 0.5 fm. Larger (smaller)
value of σ leads to smaller (larger) fluctuations and hence
reduced (enhanced) numerical instabilities.

Figures 1 and 2 show the partonic energy density distribu-
tion in the z-x and x-y plane, calculated in the AMPT model,
for Au+Au collisions at

√
sNN = 200 GeV in a central event

with impact parameter b = 0 fm, where z is the beam axis and x
is the in-plane axis. The distribution is azimuthally anisotropic
and smooth stable, which indicates the calculated energy
densities contain the spatial dependence and fluctuations. The
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FIG. 2. Same as Fig. 1 but in x-y plane.
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FIG. 3. Proper time evolution of shear viscosity to entropy density
ratio for partonic phase.

time evolution of partonic energy density is consistent with
expectations that the energy density is highest in the center at
early stage and becomes increasingly dispersed.

In order to check the approximate results of η/s, we
calculate the energy-momentum tenser T μν by averaging over
events in a volume V [32],

T μν = 1

V

∑
i

p
μ
i pν

i

Ei

, (8)

where p
μ
i and Ei are the four-momentum and energy of

particle i in the central cell and specifically, the longitudinal
momentum p′

z in the local rest frame needs to be calculated
from energy E and momentum pz by p′

z = (tpz − zE)/τ . For
the dissipative hydrodynamics in the boost-invariant Bjorken
expansion, the ratio η/s can be calculated [5,9,33],

η = τ

4
(T 11 + T 22 − 2T 33), (9)

and s ≈ 4n, where n is the number density of partons. The
AMPT model is not satisfied with the Bjorken expansion, but
the medium in the central cell is approximate satisfied with
the boost-invariant and the shear viscosity is appropriately
estimated by Eq. (9).

Figure 3 shows the proper time evolution of the specific
shear viscous ratio in the central cell for Au+Au central
collisions at

√
sNN = 200 GeV. The calculated ratios η/s

are close to the expected constant ratio. The curves of η/s
has a slow drop which is more obvious with larger η/s
after 5 fm/c. The drop of curve with large shear viscosity
is due to the η/s calculation in Eq. (9) which assume
a one-dimensional Bjorken expansion. The boost-invariant
character is satisfied when partons are close to the center. We
calculate η/s in a particular central cell and the longitudinal
size and cell volume increase with time evolution. The shear
viscosity accelerates the transverse expansion and restrains
the longitudinal expansion. The longitudinal restrain increases
the deviate from the boost-invariant expansion with increasing
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FIG. 4. The transverse momentum spectra of midrapidity pions
for Au+Au central collisions at

√
sNN = 200 GeV. PHENIX data

from Ref. [34].

longitudinal size and leads to the drop of η/s at large proper
time.

III. TRANSVERSE MOMENTUM SPECTRA,
HBT RADII, AND ELLIPTIC FLOW

The default Lund string fragmentation parameters in the
HIJING model, a = 0.5 and b = 0.9 GeV−2, work well
for p + p collisions. The parameters, a = 2.2 and b =
0.5 GeV−2, in the default version of the AMPT model are used
in order to fit the charged particle yield in Pb+Pb collisions
at CERN Super Proton Synchrotron (SPS). For heavy-ion
collisions at RHIC energies, the AMPT model with default
parameters overestimates the charged particle yield while
underestimates the slopes of the transverse momentum spectra.
In Ref. [29], setting the values of the Lund string fragmentation
parameters to a = 0.55 and b = 0.15 GeV−2 at RHIC energy
enable the results of the transverse momentum spectra and
elliptic flow to fit the experimental data. The parameters are
used in the AMPT model with αs = 0.33 in this paper.

Figure 4 shows the transverse momentum spectra of
pions at midrapidity compared with PHENIX data from cen-
tral Au+Au collisions at

√
sNN = 200 GeV. The transverse

momentum spectra result with η/s = 0.16 is close to the
experimental data. It can be seen that η/s has significant
effect on the transverse momentum spectra. The shear viscosity
raises the transverse momentum spectra of pions. The reason is
that larger shear viscosity strengthens the transverse pressure
gradients and leads to larger radial flow.

The HBT correlation function, which is calculated by
the correlation after burner (CRAB) program without the
final state interactions, can be fitted by the Bertsch-Pratt
parametrization in the ‘out-side-long’ coordinate system
[35,36],

C(q) = 1 + λ exp
(−q2

oR2
o − q2

s R2
s − q2

l R2
l

)
, (10)
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FIG. 5. Two-pion HBT radii Ro, Rs, Rl and the ratio Ro/Rs for
Au+Au central collisions at

√
sNN = 200 GeV. STAR data from

Ref. [37].

where qo, qs, ql are three components of the relative momen-
tum difference q = p1 − p2 of a pair of pions. Fitting the
correlation function can obtain size parameters Ro, Rs, and Rl

which are so-called HBT radii.
Figure 5 shows the HBT radii Ro, Rs, Rl and the ratio Ro/Rs

as a function of average transverse momentum KT in Au+Au
central collisions at

√
sNN = 200 GeV. η/s reduces the values

of radii Ro and Rl, but increases value of Rs. Thus, η/s gives
smaller values of Ro/Rs, which has similar results with the
viscous hydrodynamic prediction and indicates that the shear
viscosity accelerates the transverse expansion.

Elliptic flow is defined as one half of the second Fourier
coefficient of the particle transverse momentum distribution
on the azimuthal angle and can be calculated as [39,40]

v2 =
〈
p2

x − p2
y

p2
x + p2

y

〉
, (11)

where 〈· · ·〉 indicates an average over all particles in all events.
Figure 6 shows the dependence of the differential elliptic

flow v2 on η/s for charged pions obtained in minimum-bias
Au+Au collisions at

√
sNN = 200 GeV. Different values of

η/s lead to a significantly difference of v2 and change
its transverse momentum dependence. Larger specific shear
viscosity leads to a stronger suppression of v2 which is due
to the viscous suppression of anisotropic flow. The v2 and
transverse momentum spectra results suggest the average value
of η/s ∼ 0.16. v2 is not only dependent on the transport
properties of medium but also proportional to the initial
spatial anisotropy of the collision region and affected by
the temperature dependence of η/s [10,18,41,42]. These
influences will be studied in a separate article.

In Ref. [25], we also estimated the shear viscosity by Eq. (9)
and studied the effect of η/s on the observables with a rough
assumption calculated the energy density in a central cell. In
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FIG. 6. The dependence of the differential elliptic flow v2 on η/s

for charged pions obtained in minimum-bias Au+Au collisions at√
sNN = 200 GeV. PHENIX data from Ref. [38].

this paper, the estimated η/s with time evolution in Fig. 3
is close to our previous results, because the averaged energy
densities in the region of the central cell are similar, which
lead to similar effects of η/s on the system evolution. But
it is obvious that the difference, between the energy density
calculated by Eq. (7) and the averaged value in the central cell,
increases with increasing distance from center in Figs. 1 and 2.
The averaged energy density in the central cell overestimates
the value of energy density away from the center, which leads
to an overestimated specific shear viscosity and strengthens
the transverse expansion, and does not contain the spatial
anisotropy of the energy density distribution for noncentral
collisions. The overestimated η/s unreasonably increases the
transverse momentum spectra and suppresses the value of
elliptic flow. It is reasonable to replace the averaged energy
density with the distribution function of energy density.

The results of the transverse momentum spectra and the
elliptic flow from the normal AMPT model, where η/s is not
forced to be constant and the parton cross section σp = 3 mb is
used, are shown in Figs. 4 and 6. The AMPT model naturally
provides a temperature dependent η/s which decreases as
the temperature increases for fixed values of σp and αs . The
usual intrinsic temperature dependent η/s of the AMPT model
is inconsistent with the results of perturbative and lattice
QCD. η/s of the normal AMPT model is close to the KSS
bound at high-temperature and rises rapidly to 10 times the
bound as the temperature drops to the critical temperature
Tc. The unreasonable temperature dependent η/s significantly
increases the transverse momentum spectra in Fig. 4 and
suppresses the elliptic flow in Fig. 6. Compared with the
temperature-independent shear viscous results, the transverse
momentum spectra and the elliptic flow from the normal
AMPT model deviate far from the experimental data.

IV. SUMMARY

Based on the AMPT model, we consider an approach of
the temperature-independent shear viscosity with a Gaussian
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smearing function and study the dependence on the specific
shear viscosity of the pion transverse momentum spectra,
HBT parameters, and differential elliptic flow for Au+Au
collisions at RHIC energy

√
sNN = 200 GeV. The shear

viscosity strengthens the transverse pressure gradients and
raises the transverse momentum spectra. η/s gives smaller
values of Ro, Rl, and Ro/Rs, but increases value of Rs, which
indicates that Ro and Rl are sensitive to the transverse and
longitudinal expansion, respectively, and Rs is most related to
the source size. The effect of the shear viscosity on the HBT
radii and Ro/Rs is gradually diminished with increasing η/s.
For temperature-independent η/s, the suppression effects of
the elliptic flow increase monotonically with shear viscosity.

The results of v2 are qualitative similar with viscous hydrody-
namics and suggest the value of η/s ∼ 0.16 which is close to
the PHENIX data. The transverse momentum dependence of
v2 advocated as a signature of the perfect hydrodynamical
behavior can hold at finite η/s within a partonic cascade
approach in the AMPT model.
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