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With the parameters fitted by the particle multiplicity, the energy density at chemical freeze-out, and the charged
particle elliptic flow, we have studied the effects of the hadronic mean-field potentials on the Hanbury-Brown and
Twiss (HBT) correlation in relativistic heavy-ion collisions based on a multiphase transport model. The hadronic
mean-field potentials are found to delay the emission time of the system and lead to large HBT radii extracted
from the correlation function. Effects on the energy dependence of R? — R? and R,/ R, as well as the eccentricity
of the emission source are discussed. The HBT correlations can also be useful in understanding the mean-field

potentials of protons, kaons, and antiprotons as well as baryon-antibaryon annihilations.
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I. INTRODUCTION

The Beam-Energy-Scan (BES) program at the BNL Rel-
ativistic Heavy-Ion Collider (RHIC) has been performing
lower-energy relativistic heavy-ion collisions in order to map
out the phase diagram of quantum chromodynamics (QCD)
at lower temperatures and finite baryon chemical potentials
[1]. At the center-of-mass (c.m.) energy from 39 to 7.7 GeV,
the hadronic evolution, which was traditionally treated as the
final-state interaction (FSI) of relativistic heavy-ion collisions,
is expected to become more and more important in the
whole dynamics of the collision. Based on the Boltzmann
transport framework, such FSI includes the "hard” process
of elastic and inelastic scatterings among hadrons, and the
“soft” process of the evolution of hadrons in their mean-field
potentials. For instance, the hadronic mean-field potentials
can be partially responsible for the splitting of elliptic flow
between particles and their antiparticles at RHIC-BES energies
[2]. Understanding the hadronic evolution and constraining
precisely the hadronic mean-field potentials are important in
describing the dynamics in relativistic heavy-ion collisions
at RHIC-BES energies and relevant for extracting reliable
information on the QCD phase diagram.

Particle interferometry serves as a useful tool in under-
standing the space-time and momentum correlations encoding
the dynamics as well as the interaction among particles. This
technique was first proposed by Hanbury-Brown and Twiss
(HBT) [3] in order to measure the angular diameter of bright
visual stars from coherent photon beams. Later, this method
was widely applied in many areas of elementary physics, such
as the electron correlations in semiconductors and insulators
[4] as well as the analysis of fermionic statistics of electrons
[5] and the Bose-Einstein condensation of ultracold atoms [6].
The HBT analysis method has also been applied in nuclear
physics studies especially for heavy-ion collisions (see, e.g.,
Refs. [7-12]). The interferometry of hadrons, especially that
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of pions, is important in understanding the evolution of the
quark-gluon plasma (QGP) formed in ultrarelativistic heavy-
ion collisions [13-17].

Mean-field potential is expected to affect the HBT cor-
relation in two ways. First, the mean-field potential, which
is related to the equation of state (EOS) of the medium,
affects the whole evolution of the system, and thus the size
of the emission source as well as the emission time of
particles at kinetic freeze-out. It was previously illustrated
by an ultrarelativistic quantum molecular dynamics model
that the HBT radii may change after introducing mean-field
potentials [18]. Second, since the HBT correlation represents
the correlation among space, time, and momentum at the
emission stage, particles affected by different mean-field
potentials are emitted at different times and are expected to
have different correlations. As shown by an isospin-dependent
Boltzmann-Uehling-Uhlenbeck transport model, correlation
functions of neutrons and protons are sensitive to their different
mean-field potentials [19].

Based on a multiphase transport (AMPT) model, we have
incorporated the mean-field potentials in the hadronic phase
[2]. In the present work, we study the effects of hadronic
mean-field potentials on the HBT correlation in relativistic
heavy-ion collisions at the RHIC-BES energies. We find that
both the HBT correlations and HBT radii are largely modified
by the mean-field potentials. It is thus suggested to include
the hadronic mean-field potential effects in order to extract
accurately the properties of the emission source in relativistic
heavy-ion collisions in transport model studies, especially at
RHIC-BES energies. On the other hand, the HBT correlations
for specific hadron species could be used to constrain their
mean-field potentials.

The rest of the paper is organized as follows. In Sec. II
we briefly describe the model and formalism used in the
present study, i.e., the multiphase transport model, the
hadronic mean-field potentials, and the femtoscopic for-
malism. The corresponding analyses and results are dis-
cussed in detail in Sec. III. A summary is given in
Sec. IV.

©2017 American Physical Society


https://doi.org/10.1103/PhysRevC.96.044907

CHUN-JIAN ZHANG AND JUN XU

II. MODEL AND FORMALISM
A. AMPT model

In the following, we briefly review the basic structure of
the string-melting AMPT model [20] used in the present
study. The initial phase-space information of partons is
generated from melting hadrons produced by the heavy-ion
jet interaction generator (HUING) model [21] through the
Lund string fragmentation model, with the fragmentation
function f(z) ox z7'(1 — 2)” exp(—bm? /z), where a and b
are parameters, and z is the light-cone momentum fraction
of the produced hadron of transverse mass m with respect to
that of the fragmenting string. The evolution of the partonic
phase is then modeled by Zhang’s parton cascade (ZPC) model
[22], where the interaction between quarks or antiquarks is
effectively described by two-body elastic scatterings with the

2

total cross section o ~& 92”%, where o is the strong coupling
constant, and p is the screening mass in the partonic matter.
The freeze-out time of each parton is in principle determined
by its last scattering, while in the present work we stop the
partonic evolution artificially in order to reproduce the energy
density near the quark-hadron phase transition, or presumedly,
that at chemical freeze-out. When the partonic evolution ends,
a spatial coalescence is used for hadronization, where a quark
and antiquark pair close in coordinate space can form a meson,
three quarks (antiquarks) close in coordinate space can form
a baryon (antibaryon), and the hadron species is determined
by the flavors of its valence quarks and their invariant mass.
After hadronization, the hadronic evolution is described by
a relativistic transport (ART) model [20,23], where elastic
and inelastic scatterings among hadrons including baryon and
antibaryon productions and annihilations as well as resonance
decays of hadrons are properly treated. We have applied
the recent corrections [24] to the inelastic channels in the
ART model and ensure charge conservation during the whole
hadronic evolution. The hadronic mean-field potentials in the
ART model are incorporated through the test-particle method
[2,25],1.e., the local phase-space distribution is calculated from
averaging parallel events with the same impact parameters, and
the mean-field potentials for baryons, kaons, and pions as well
as their antiparticles will be detailed in the next section. A
hadron is considered as kinetically frozen-out if the distance
between its current position and the expected position from
free streaming is less than 0.01 fm, and the femtoscopic
analysis is based on the freeze-out phase-space distribution
of hadrons. Note that the criterion for hadron freeze-out is
the same as the last scattering if there are only scatterings
among hadrons. Since the soft mean-field potentials can further
affect the hadron momentum after its last scattering, the hadron
freeze-out times are expected to be later.

B. Hadronic mean-field potentials
The mean-field potentials for nucleons and antinucleons are
taken as those from the relativistic mean-field model [26], i.e.,
Un.x(p3:p5) = B5(pp,p5) £ ,(0p.0B); M

in terms of the nucleon scalar self-energy X,(pp,p03) and
the time component of the vector self-energy X(pg,03)
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in hadronic matter of baryon density pp and antibaryon
density pz. The “+” and “—" signs are for nucleons
and antinucleons, respectively. The detailed form of X, and
23 can be found in Ref. [26]. It should be noted that
nucleons and antinucleons contribute both positively to X but
positively and negatively to £, respectively, as a result of the
G-parity invariance. Since only the light quarks in baryons and
antibaryons contribute to the scalar and vector self-energies
in the mean-field approach, the potentials of strange baryons
and antibaryons are reduced relative to those of nucleons
and antinucleons according to the ratios of their light-quark
numbers.

The mean-field potentials for kaons and antikaons in the
nuclear medium can be obtained based on the chiral effective
Lagrangian [27] through Uk g = wg g — wp, with

2

2
Wk.k = \/m%( + p* —ak i ps + (bxpEY)” £ brog' (2)

and wy = «/m% + p?, where myg is the kaon mass
and ag = 0.22 GeV*fm?, agz = 0.45 GeV?fm®, and by =
0.33 GeV fm? are empirical parameters taken from Ref. [27].
In the above, the “+” and “—" signs are for kaons and
antikaons, respectively, p, is the scalar density determined
from pp and pp through the effective Lagrangian used for
describing the properties of nuclear matter [26], and pj' =
pp — pj is the net baryon density.

The mean-field potentials for pions are related to their self-
energies IT20 according to Uy = M12%/(2m ), where m is
the pion mass. The contribution of the pion-nucleon s-wave
interaction to the pion self-energy is taken from Ref. [28] up
to the two-loop order in chiral perturbation theory. In isospin
asymmetric nuclear matter of proton density o, and neutron
density p,, the resulting self-energies for 7, 7*, and 70 are
expressed respectively by

H;(Pp,pn) = pn[TJ;N - T;N] - Pp[T,;N + TJTJrN]

+ o (0p, o) + T (0p, ), 3)
Hj(pp’pn) = H;(pn’pp)’ 4
H?(Pp&n) = _(pp + pn)Tﬂ+N + H(C)or(ﬁ’p,ﬂn)- (5)

In the above, T* are the isospin-even and isospin-odd
pion-nucleon s-wave scattering matrices, I1_; is due to the
relativistic correction, and I_, and I1°  are the contributions
from the two-loop order in chiral perturbation theory. Their
detailed expressions can be found in Ref. [28]. For nucleon
resonances and strange baryons in hadronic matter, we simply
extend the above result by treating them as neutron- or
proton-like according to their isospin structure and light-quark
numbers. The contributions of antiprotons and antineutrons in
hadronic matter are similar to those of neutrons and protons,
respectively, as a result of the G-parity invariance. Only the
pion-nucleon s-wave mean-field potential is incorporated in
the present study, while the studies of pion-nucleon p-wave
interaction and the effects in heavy-ion collisions can be found
in Refs. [29-32].

The mean-field potential in the baryon- and neutron-rich
hadronic matter formed in relativistic heavy-ion collisions
at RHIC-BES energies is strongly attractive for antibaryons,
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weakly attractive for baryons, strongly attractive for antikaons,
weakly repulsive for kaons, slightly attractive for 7+ and
70, and slightly repulsive for 7. In the dominating low-
density phase, the potentials for baryons and pions are mostly
attractive. For quantitative values of the mean-field potentials
for nucleons, kaons, and pions as well as their antiparticles,
we refer the reader to Fig. 1 of Ref. [2].

C. Femtoscopic analyses

To obtain the HBT correlation, we use the CRAB (Cor-
relation After Burner) model [33] and the Lednicky and
Lyuboshitz analytical model [34] to analyze the phase-space
distribution of hadrons at their kinetic freeze-out obtained
by AMPT. Both models include FSI which serves as the
“afterburner” effect after kinetic freeze-out, and the for-
malisms to obtain the correlation function are detailed in
the Appendix. In the present study, the CRAB model is
used to evaluate the direction-averaged and three-dimensional
correlation functions for pions, in order to extract the bulk
properties of the system at kinetic freeze-out, while the
Lednicky and Lyuboshitz analytical model is used to analyze
the HBT correlations for protons, kaons, and their antiparticles,
in order to compare their different correlation functions due to
different mean-field potentials.

The direction-averaged properties of the emission source
can be extracted by fitting the HBT correlation function as

C(gin) = (1 = 1) + AKeou(giny) (1 + e~ % Fi) . (6)

where giyy is the magnitude of the relative momentum, A is the
parameter characterizing the degree of chaotic or coherent
emission [35], and the function K ou(giny) represents the
Coulomb correction [36,37]. In the three-dimensional analysis,
the relative momentum g of particle pairs is decomposed
according to the Bertsch-Pratt “out-side-long” (o0-s-1) conven-
tion [36], i.e., g; along the beam direction, g, parallel to the
transverse momentum of the pair k7 = (Pir + por)/2 with
P17 and por being the transverse momenta of the two particles,
and g, perpendicular to ¢; and g,. The relative momentum
is expressed in the longitudinal comoving system in which
the longitudinal component of the pair velocity vanishes. The
three-dimensional properties of the emission source can be
extracted by fitting the correlation function as

C(@) = (I = 1) + 2K cou(Ginv)
x (1+ e—q§R§—43R3—43Rf—2q{,qsli’§s—Zq(,q:Riz). (7

The R? term vanishes in the analysis for midrapidity
particles, while the RZ% term vanishes in the azimuthal-
integrated analysis. In azimuthal-differential analysis, their
dependence on the azimuthal angle ® for a given k7 can be
expanded as

R (kr,®) = R, o(kr)

+2 Y R}, (kr)cos(n®) (i =o.5.L0l),
n=2,4,6,...

R (kr,®) =2 Z R, ,(kr)sin(n®) (u=os).  (8)
n=2,4,6,...
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FIG. 1. Pseudorapidity distributions of charged particles in cen-
tral Au+Au collisions at /syy = 39, 27, 19.6, 11.5, and 7.7 GeV
from the string-melting AMPT model, compared with the PHOBOS
data for Au + Au collisions at \/syy = 19.6 GeV and centrality of
0—6% taken from Refs. [38,39].

In the above, RIZM is the nth-order Fourier coefficients, which
can be obtained by averaging the ® dependence as

(R2(ky, @) cos(n®)) (1 = 0,5.1),

R? (kr)= 9
wankr) {(Ri(kr,@sin(ncp)) (11 = 05). ®

The zeroth-order Fourier coefficients are expected to be
nearly identical to the radii extracted from an azimuthal-
integrated analysis. In the present analysis, the & angle is
calculated from ® = ¢y, — V2, where ¢py; is the azimuthal
angle of the average pair transverse momentum vector l_c},
and v, is the azimuthal angle of the second-order event
plane.

III. RESULTS AND DISCUSSIONS
A. Parameter settings

In the present study, we investigate the hadronic mean-field
potential effects on the HBT correlation based on the hadron
phase-space distribution at their kinetic freeze-out generated
by the string-melting AMPT model. To have a reliable
description of the dynamics in '’ Au 4+ 7 Au collisions at
RHIC-BES energies, we fit the parameters to reproduce the
particle multiplicity, the energy density at chemical freeze-out,
and the elliptic flow.

We first reproduce the pseudorapidity distribution of
charged particles by choosing suitable Lund string fragmen-
tation parameters. As shown in Fig. 1, we found that the
parameters a = 2.2 and b = 0.5 GeV 2 reproduce reasonably
well the pseudorapidity distribution within || < 5 in central
Au+Au collisions at /syxv = 19.6 GeV measured by the
PHOBOS Collaboration. On the other hand, the pseudora-
pidity distribution is found to be insensitive to the parton
scattering cross section. For the pseudorapidity distributions
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FIG. 2. Time evolution of the energy density (left column), the
reduced baryon density (middle column), and the reduced antibaryon
density (right column) in the central region of the hadronic phase in
midcentral (20 — 30%) Au+Au collisions at \/syy =7.7,11.5,19.6,
27, and 39 GeV.

t (fm/c)

at other collision energies, there are no available experimental
data so far.

The peak values of the energy density in the hadronic
phase and the final elliptic flows of charged particles from
the string-melting AMPT are fitted by the lifetime of the
partonic phase and the parton scattering cross section. Using
the baryon chemical potential and the temperature extracted
from the statistical model [40], the energy densities at chemical
freeze-out at /syny = 7.7, 11.5, 19.6, 27, and 39 GeV are
0.49, 0.62, 0.68, 0.69, and 0.69 GeV/fm3, from the hadron
resonance gas model with the particle species evolved in
the hadronic evolution of the AMPT model. By stopping
the partonic phase at 2.75, 2.4, 2.15, 2.25, and 2.45 fm/c,
respectively, we reproduce the peak values of the energy
density in the central region of the hadronic phase as those
from the hadron resonance gas model, as seen from the left
column of Fig. 2. It is also seen in Fig. 2 that the baryon
density decreases with increasing collision energy, while the
antibaryon density increases with increasing collision energy.
Based on our model both the baryon and antibaryon densities
are mostly lower than the saturation density py = 0.16 fm™.
To reproduce the charged particle elliptic flow at various
RHIC-BES energies, we use the isotropic parton scattering
cross sections of 3 mb for 7.7 GeV, 3 mb for 11.5 GeV,
6 mb for 19.6 GeV, 6 mb for 27 GeV, and 10 mb for 39
GeV. With the same event-plane method as applied in the
experimental analysis [41,42], we reproduce reasonably well
the charged hadron elliptic flow at midpseudorapidities in
midcentral Au+-Au collisions, as shown in Fig. 3. We note that
the HBT correlation is sensitive to the parton scattering cross
section [43], or equivalently, the shear viscosity of the partonic
phase [44]. Also, in reality partons may also be affected
by their mean-field potentials [24,45]. The well-fitted parton
lifetime and the parton scattering cross section compensate
other effects, since the energy density at chemical freeze-out
and the experimental elliptic flow results need to be reproduced
anyway.
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FIG. 3. Transverse momentum (pr) dependence of charged
hadron elliptic flow (v;) at midpseudorapidities (|n| < 1.0) in
midcentral (20 — 30%) Au+-Au collisions at \/syy = 7.7 to 39 GeV,
compared with the STAR data taken from Ref. [41].

B. Pion femtoscopy and bulk properties of emission source

With the string-melting AMPT calibrated above, we first
investigate the effects of the hadronic mean-field potentials
on the bulk properties of the emission source. Using the
“free—streaming” criterion for the kinetic freeze-out of
hadrons as mentioned in Sec. Il A, we found that freeze-out
times for hadrons are generally much later with mean-field
potentials compared to the case without mean-field potentials,
as shown in Fig. 4. This is understandable since the soft
attractive mean-field potentials at lower densities, especially
for pions and baryons, delay the emission of these particles,
so the system freezes out kinetically at a much later time
on average. In addition, the mean-field potentials lead to
broader windows of the emission time and presumedly weaker
correlations.

Pion interferometry is a useful tool to investigate bulk
properties of the hot and dense matter formed in relativistic
heavy-ion collisions. The HBT correlations for charged pions
(r*—m*) with and without mean-field potentials are com-
pared in Fig. 5. It is seen that the correlation functions have

% w/o mean-field potentials (@) with mean-field potentials (P 3
30t 39 GeV {30
. 27 GeV
E®r 19.6 GeV] 25
S 20k 11.5 GeV oo
= 7.7 GeV
T 15 15
pd
T 10 10
5 5
0

0
0O 10 20 30 40 0 10 20 30 40 50
t (fm/c)

FIG. 4. Distributions of hadron freeze-out time with (right) or
without (left) mean-field potentials in Au+Au collisions at \/syy =
7.7,11.5,19.6, 27, and 39 GeV.
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FIG. 5. HBT correlation of charged pions at midpseudorapidities
with and without mean-field potentials in central Au+Au collisions

at /syy = 7.7 GeV.

the same peak while it is sharper with mean-field potentials,
since the correlation at larger gi,y is suppressed, as a result
of later and longer duration of the emission. From the fit by
Eqg. (6), the direction-averaged radius of the emission source
Riny 1s expected to be larger with mean-field potentials due
to the sharper correlation function compared to that without
mean-field potentials. In the former case, the larger radius of
the emission source is also consistent with the later emission
as shown in Fig. 4. We note that the difference between the
-t correlation and the 7 ~-7 ~ correlation is found to be
small due to the small isospin asymmetry in the hadronic phase.

In the three-dimensional HBT analysis, we apply the x>
fit to Eq. (7) and obtain the chaoticity parameter A and the
outward, sideward, and longitudinal HBT radii, i.e., R,, Ry,
and R;. Table I compares the resulting HBT parameters with
and without mean-field potentials and those from STAR data
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analyses [46]. It is found that the values of A from AMPT
are generally larger than the STAR results, with or without
mean-field potentials. With mean-field potentials, the values
of R; are more consistent with STAR results, while the values
of R, and Ry are overestimated. As is well known [10,12,47], a
stronger transverse flow reduces the homogeneity lengths and
thus the HBT radii. Since the AMPT model underestimates the
transverse flow due to the massless partons, incorporating the
hadronic mean-field potentials and enhancing the transverse
flow are promising to reproduce better the radii of the emission
source extracted from experimental measurements.

The quantity R2 — R? is of special interest because it
is related to the emission duration Af¢ in the limit of a
static source through the empirical relation R2 — R? ~ 7 At?,
where By = kp/my is the particle speed in the source rest
frame with my = vk +m2. It was argued [48] that the
finite-size scaling analysis on the peak of R2 — R? as a function
of the c.m. energy /sy at various centralities may reveal the
critical point in the QCD phase diagram. The ratio R,/ R, was
first proposed in Ref. [17], and it has the advantage of removing
the overall scale of the system. Based on the hydrodynamics
calculation [17], R,/R, exhibits a peak near the onset of
deconfinement. Figure 6 compares the ,/syy dependence of
R? — R?and R,/ R, with or without mean-field potentials with
that from the STAR results. It is seen that the peaks around
VSvn A 20 GeV for both R2 — R? and R, /R, are reproduced
with mean-field potentials, but there is no such peak without
mean-field potentials. Furthermore, results of R2 — R? with
mean-field potentials reproduce better the STAR data, while
results of R,/R; are generally underestimated from AMPT
calculations compared with the STAR data.

From both hydrodynamics [49] and transport model [50]
studies, the eccentricity of the emission source is related to
the equation of state and the order of quark-hadron phase
transition, and it can be obtained from the HBT analysis
through the relation €, ~ 2R322 / RS2 o [47], where R, and
R; > are respectively the zeroth- and second-order coefficients

TABLE I. Comparison of HBT parameters obtained by the three-dimensional fit of Eq. (7) without mean-field potentials (Cascade), with
mean-field potentials (Mean field), and those from STAR data analyses (Expt.) [46] at various collision energies.

/Syn (GeV) A R, (fm) R, (fm) R; (fm)

7.7 Cascade 0.673 £ 0.007 5.58 4+ 0.03 4.75 £ 0.03 4.39 £+ 0.03
Mean field 0.719 £ 0.007 6.16 + 0.04 5.53 +£ 0.04 5.51 £ 0.04

Expt. 0.532 £+ 0.007 5.57 £ 0.13 493 £ 0.10 5.01 £+ 0.11

11.5 Cascade 0.663 £+ 0.007 5.59 + 0.03 4.72 £ 0.03 4.39 + 0.03
Mean field 0.704 £+ 0.007 6.33 + 0.04 5.54 + 0.04 5.67 £ 0.04

Expt. 0.508 £ 0.004 5.68 + 0.07 479 + 0.05 543 £+ 0.07

19.6 Cascade 0.656 £ 0.007 5.60 £+ 0.03 4.78 + 0.03 443 + 0.03
Mean field 0.698 + 0.008 6.39 + 0.04 548 + 0.04 5.76 £+ 0.04

Expt. 0.498 £ 0.002 5.84 + 0.05 4.84 £+ 0.03 5.80 + 0.05

27 Cascade 0.651 £+ 0.007 5.60 + 0.03 4,78 £+ 0.03 449 + 0.03
Mean field 0.689 £ 0.008 6.41 + 0.04 5.51 + 0.04 5.88 £ 0.04

Expt. 0.492 £+ 0.002 5.82 + 0.03 4.89 £+ 0.02 5.99 + 0.04

39 Cascade 0.655 £ 0.007 5.63 £+ 0.03 479 + 0.03 4.55 + 0.03
Mean field 0.678 £+ 0.008 6.42 + 0.04 5.53 + 0.04 5.95 £ 0.04

Expt. 0.491 £ 0.004 5.86 + 0.07 497 £ 0.05 6.18 £ 0.08
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FIG. 6. Collision energy dependence of R? — R? and R,/R;
extracted from freeze-out charged pions with and without mean-field
potentials in central Au+Au collisions compared with those extracted
from STAR measurements [46].

from fitting R, at azimuthal angles ® = 7 /4, 7 /2, 37 /4, and
m according to Eq. (8) up to the second order. Figure 7
compares the c.m. energy ,/syny dependence of €, with and
without mean-field potentials with that from STAR analyses.
The €, values at various collision energies are smaller with
mean-field potentials as a result of later freeze-out of the
system as shown in Fig. 4, and the STAR results are in
between the €, values with and without mean-field potentials.
The seemingly constant € from ,/syy = 11.5 to 19.6 GeV
from the STAR result is also observed in the scenario with
mean-field potentials.

C. HBT correlations of protons, kaons, and antiprotons

The HBT correlation is not only useful for extracting bulk
properties of the emission source but also valuable in obtaining
information on the mean-field potentials for particles such
as protons or kaons as well as their antiparticles. The left
panel of Fig. 8 displays the proton-proton correlation with and
without mean-field potentials in central Au+Au collisions at

0.14 Au+Au, 10-30%, 4
ly|<0.5, kT=0.15-0.6GeV/C
0.12 s
" 0.10 | 1
0.08 —=— STAR data i
—e— w/o0 mean-field potentials
0.06 - —a— with mean-field potentials 4
10 20 30 40
Vs, (GeV)

FIG. 7. Freeze-out eccentricity €, extracted from the HBT
correlation of charged pions with and without mean-field potentials as
a function of the c.m. energy /syy in midcentral Au + Au collisions
compared with those extracted from STAR measurements [46].
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FIG. 8. Proton-proton HBT correlation (left) and charged kaon
HBT correlation (right) at midpseudorapidities with and without
mean-field potentials in central Au+4-Au collisions at ./syy =
7.7 GeV.

/Sy = 1.7 GeV. The peak at about k* = 0.02 GeV/c is due
to the strong final-state s-wave attraction, while the correlation
is suppressed at smaller £* as a result of the Coulomb repulsion
between two protons and the antisymmetrized wave function
of the identical particle pair. With mean-field potentials, the
proton-proton correlation function is suppressed at smaller
k* but enhanced at larger k*, indicating a suppression of
energetic emissions but an enhancement of thermal emissions.
From fitting the proton-proton HBT correlation according to
Eq. (6), we found that the direction-averaged emission radius
for proton is also larger with mean-field potentials compared
to that without mean-field potentials. Kaons are not much
affected by resonance decays, so their correlation function has
advantages over pions in some aspects [51,52]. As shown in
the right panel of Fig. 8, kaon interferometry is affected by
their mean-field potentials. Typically, the correlation is much
suppressed at intermediate k* with kaon potentials due to the
later and longer duration of the emission, and the splitting of
the K*-K* and K ~-K~ correlation is clearly observed due to
their different mean-field potentials in baryon-rich hadronic
matter. We have further found that the kaon correlation
function is sensitive to kaon potentials but rather insensitive to
the potentials for protons or pions.

In the afterburner part after kinetic freeze-out, the baryon-
antibaryon annihilation has been taken into account in the
HBT analysis [34], and used in the experimental studies
of baryon-antibaryon correlations [53,54]. In the hadronic
evolution described by the ART part of the AMPT model, the
baryon-antibaryon annihilation cross sections are related to
their branching ratios to different multipion states [20,55], and
the inverse processes are incorporated by the detailed balance
condition. It will be interesting to investigate the proton-
antiproton correlation from the interplay of their mean-field
potentials and annihilation effect in transport simulations. To
illustrate the two effects independently, we display in Fig. 9
the event-by-event proton-antiproton correlation by turning on
and off their mean-field potentials as well as the annihilation
and inverse process separately. The strong correlation at lower
k* (k* < 0.015 GeV/c) is due to the attractive Coulomb in-
teraction. By comparing the correlation in different scenarios,
although it s still difficult to reproduce the experimental results
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FIG. 9. Proton-antiproton HBT correlation with and/or without
mean-field potentials and baryon-antibaryon annihilations in mid-
central Au+Au collision at \/syy = 39 GeV.

quantitatively, we can draw a qualitative conclusion that the
attractive potential between protons and antiprotons as well as
the larger emission source due to mean-field potentials leads
to a weaker anticorrelation, while the annihilation leads to a
stronger anticorrelation.

IV. CONCLUSIONS

In the present work, we have studied effects of hadronic
mean-field potentials, which always exist in the hadronic phase
of relativistic heavy-ion collisions, on the HBT correlation
based on the framework of a multiphase transport model,
with parameters calibrated in order to reproduce the particle
multiplicity, the energy density at chemical freeze-out, and
the charged particle elliptic flow at RHIC-BES energies.
Generally, the hadronic mean-field potentials delay the kinetic
freeze-out of the system and enlarge the HBT radii, and they
may affect the collision energy dependence of R? — R? and
R,/R; as well as the eccentricity of the emission source
extracted from pion interferometric analyses. On the other
hand, the HBT correlations for protons, kaons, and antiprotons
can be useful in extracting information on their mean-field
potentials in the baryon-rich hadronic matter as well as
understanding baryon-antibaryon annihilations. Our study is
useful in understanding the dynamics in relativistic heavy-ion
collisions at RHIC-BES energies relevant for mapping out the
QCD phase diagram.
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APPENDIX: FEMTOSCOPY THEORY

In this Appendix, we briefly remind the reader of the
main formulas given by Lednicky and Lyuboshitz [34,56-58],
which are used in the calculation of the HBT correlation and
relevant for the understanding of physics in the present work.
In such framework, the particle correlations at small relative
velocities are sensitive to the space-time characteristics of
the production processes on a femtometer scale owing to
the effects of quantum statistics and final-state interactions.
Effects of the Coulomb interaction are expected to dominate
the correlations of charged particles at the relative momenta
in the two-particle rest frame smaller than the inverse Bohr
radius of the two-particle system, suppressing or enhancing
the production of particles with like or unlike charges, respec-
tively. The correlation function is then given by a square of the
properly symmetrized Bethe-Salpeter amplitude representing
the continuous spectrum of the two-particle states, averaging
over the four coordinates of the emitters and the total spin of
the two-particle system. In femtoscopy theory, an assumption
is made that the FSI of the particle pairs is independent of their
production.

The two-particle correlation function can be written as

[ SO k)| W (1) 2d*r

& = J S Kk )d*r ' (AD

In the above, r* = x; — X; is a relative space-time separation
of the two particles at their kinetic freeze-out, k* is the
momentum of the first particle in the pair rest frame, S(r*,k*)
is the source emission function interpreted as the probability
to emit a particle pair with given r* and k*, and Wy« (r*) is the
Bethe-Salpeter amplitude.

In the region of interest with small k*, the short-range parti-
cle interaction that introduces the correlation is dominated by
the s-wave interaction, whose interaction range is usually small
compared with the distance r* between the particle pair in their
c.m. system but large compared to the strong interaction range.
In this limit, the asymptotic solution of the wave function of
the two charged particles can be approximately written as

Wi (1) = e \/A(n)

x [e—”‘*f*F(—in,Lié)+ﬂ(k*)@].

In the above, Ac(n) =2rnlexp 2mn) — 177! is
the Coulomb penetration factor, with 75 = (k*a.)~!
where a. is the two-particle Bohr radius including
the sign of the interaction, §, = argl'(1+in) is
the Coulomb s-wave phase shift, F(—in,1,i§)=
1+ (=i &)1 + (—in)(—in + 1)(i&)* /212 4 -+ is the
confluent hypergeometric function with & = k*r* + k*r*,
and G(p.,n) = V/A[Go(p,n) + i Fo(p,n)] is a combination
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of regular [Fy(p,n)] and singular [Go(p,n)] s-wave
Coulomb functions, whose detailed forms can be
found in Refs. [57,59], with p=k*r*. f.(k*)=

[% + Ldok** — ~h(n) — ik* ()] is the amplitude of the
s-wave elastic scattering due to the short-range interaction
renormalized by the long-range Coulomb forces, with h(n) =
Y%, [n(n? + ;72)]71 — C —In|n| where C =0.5772 is
the Euler constant, fj being the scattering length, and d; being

PHYSICAL REVIEW C 96, 044907 (2017)

the effective radius of the strong interaction. Both f; and d
are essential parameters characterizing the main properties of
the final-state strong interaction, and can be extracted from
the correlation function measured experimentally [60]. The
imaginary part of f; corresponds to the annihilation process
[54,61], while the interaction cross section can be expressed in
terms of the scattering amplitude as o = 47| fc(k*)|2 [57,62]
in the effective range approximation mentioned above.
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