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Consistent implementation of non-zero-range terms into hydrodynamics
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Non-zero-range interactions are often incorporated into mean field theories through gradient terms. Here, a
formalism is developed to incorporate such terms into hydrodynamics. These terms alter expressions for the
entropy, chemical potential, temperature, and the stress-energy tensor. The formalism respects local conservation
of energy, charge, and entropy. The formalism leads to static solutions where the temperature, chemical potential,
and hydrodynamic acceleration all vanish, even when the density profile might be nonuniform. Profiles for a
phase boundary and for correlation functions are calculated to illustrate the gradient modifications for various
thermodynamic quantities. Also, for hydrodynamic calculations that add thermal noise to generate density-density
correlations of the desired strength, an additional noise term is derived so that, at equilibrium, correlations are
generated with both the correct size and length scale.
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I. INTRODUCTION

Mean field theory, or Landau theory, for thermal systems
typically considers the free energy density to be a function of
the temperature, density, and density gradients [1]:

f (r) = f̄ (T ,ρ(r)) − κ

2
ρ∇2ρ. (1)

The gradient term is physically motivated by short but
non-zero-range attractive interactions. For a given particle,
the effective number of neighbors within the range of the
interaction differs from a uniform background, and if the
curvature, ∇2ρ, is positive the effective number of neighbors
increases relative to a uniform density profile and the free
energy is reduced. Mean field theory can be applied to
numerous systems, such as the liquid-gas transition, where
ρ is the density, or to problems in magnetization, where ρ is
replaced by the local magnetization. In nuclear physics, mean
field pictures have been applied to understanding the surface
profiles between phases. This includes the nuclear liquid-gas
phase transition [2], between the quark-gluon plasma and
hadronic phases at zero baryon density [3,4] (now known
not to exist as there is no first-order phase transition), and
between chirally restored and broken phases at high baryon
density and temperature [5] (hypothesized to exist [6]). In
general, such methods can be applied to describe correlations
near any critical point [1], and though the critical exponents
are not correct for three-dimensional systems at the critical
point, as can be seen by the Ginzburg criteria [1], should be
a good description away from the critical point and should
not differ qualitatively even close to the critical point. In
nuclear structure calculations gradient terms are also often
applied to density functional theory [7], where the potential
used for the Schrödinger equation becomes a function of both
the density and its gradients. Gradient terms have been applied
to hydrodynamic treatments of spinodal decomposition for the
chiral transition [8–11] and the liquid-gas transition [12,13],
but not in a way where all thermodynamic quantities are
consistently altered. Similar effects have been taken into

account in Boltzmann transport by using a non-zero range to
calculate the density used to generate local potentials [14–18].
Hybrid approaches have coupled hydrodynamics to mean field
dynamics, e.g., for scalar fields related to chiral symmetry, and
in those approaches gradient terms come into play for the fields
[19–21]. Larger gradient terms more strongly disfavor sharp
changes in the order parameter, and result in larger surface
energies, longer correlation lengths, larger nucleation barriers,
and larger damping for the growth of short wavelength unstable
modes in hydrodynamically unstable regions.

The goal is to incorporate these effects into a dynamic
theory, hydrodynamics, and to determine how to consistently
apply gradient modifications to all thermodynamic quantities:
temperature, entropy density, chemical potentials, and the
stress-energy tensor. Hydrodynamics plays a critical role in the
modeling of relativistic heavy-ion collisions [22]. Fluctuations
and related correlations have been measured at the BNL
Relativistic Heavy-Ion Collider (RHIC) and for heavy-ion
collisions at the CERN Large Hadron Collider (LHC) [23–32],
where they play an important role in understanding the phase
structure and chemistry of the highly excited matter created
in these collisions. For example, correlations driven by local
charge conservation [33,34] appear especially promising for
making comparison to charge fluctuations extracted from
lattice gauge theory [35–37].

Correlations of transverse energy and momentum provide
insight into thermodynamic properties, diffusion, and initial
state fluctuations such as those from jets [38–47]. Correlations
from charge conservation also play an important role for
understanding the background for measurements related to
the chiral magnetic effect [46,48,49]. As the field works to
consider the growth of thermal fluctuations, especially those
related to phase structure as near a critical point, gradient
terms are important in modeling both the size and spread of
correlations.

In hydrodynamics the evolution is driven by local conser-
vation of the stress energy tensor,

∂μT μν = 0. (2)
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In the fluid rest frame T 00 is the energy density ε, T 0i are the
momentum densities, and Tij represents the pressure tensor
and is typically a function of ε and the charge density ρ.
For ideal hydrodynamics Tij = Pδij in the fluid’s rest frame
(Roman indices indicate the spatial components), and the
pressure P is a function of ε and ρ. Nondiagonal terms then
appear when the tensor is viewed in a frame where the fluid
moves with a velocity v. Once the initial conditions are set, the
ensuing evolution is determined by P (ε,ρ). The entropy within
a comoving cell is fixed. Entropy and temperature are key
concepts of thermal systems, but do not necessarily appear in
the equations because the hydrodynamic equations of motion
involve only ε, ρ and the fluid velocity v.

Here, it is demonstrated how gradient terms can be
incorporated into the equations of hydrodynamics. Often,
mean-field theories assume a globally fixed quantity, usually
the temperature. In that case the system adjusts the density
to minimize the Helmholtz free energy, F = E − T S. If the
resulting density profile is stable, e.g., at a phase boundary,
the chemical potentials should be constant. Otherwise, the
entropy could be increased by moving charge from a region
of higher chemical potential to a region of lower chemical
potential. Further, an equilibrated profile must also have
vanishing hydrodynamic acceleration, ∂iTij = 0. This requires
adding gradient modifications to both the chemical potential
and stress-energy tensor. The principal goal of this paper is
to develop a formalism where all the gradient modifications
appear in a manner which is consistent with local entropy
conservation. A second consistency check of the formalism is
that in a density profile where the temperature and chemical
potentials remain constant, the stress-energy tensor should also
be free of acceleration.

General theoretical derivations are presented in the next
section, and a discussion of alternate formulations is presented
in Sec. III. After assuming a form for the entropy density with
gradient modifications, corrections for other quantities are
then uniquely determined. It is found that all the dependent
quantities, μ, T , and Tij , are uniquely altered to maintain
the consistencies described above. In Secs. IV and V, two
static examples are investigated, the phase boundary of the
liquid gas phase transition, and the form for density-density
correlations. In each case, the effect of the gradient terms are
illustrated. In Sec. VI, a consistent form for thermal noise in the
current-current correlation function, [47,50–53], is presented
that accounts for the gradient terms.

II. IMPLEMENTING GRADIENT TERMS
INTO HYDRODYNAMICS

For hydrodynamics, the natural quantities to describe the
system are the energy density ε, the charge density ρ, and
the collective velocity v. For the purpose of this paper, the
Eckart frame is used, where the velocity defines the movement
of charge, i.e., when v = 0 the charge current vanishes, and
ε = T 00 in that frame, while ρ = j 0, the component of the
four-current in that same frame. For fixed ε and ρ, the natural
thermodynamic quantity to consider is the entropy density,
which for a uniform system would have a form s̄(ε,ρ). Given
that hydrodynamic cells have fixed energy and charge, the

system adjusts toward maximizing entropy. Here, gradient
modifications are added to the expression for the entropy
density with the form

s = s̄(εκ,ρ), εκ = ε + κ

2
ρ∇2ρ. (3)

Here, all quantities with the bar, e.g., s̄, refer to the value one
would have with uniform density. The form is motivated by
considering the potential energy of a particle a position δr
relative to its neighbors. The contribution from an attractive
potential, v(r − r ′), with other charges is

V = 1

2

∫
d3rd3r ′ρ(r)v(r − r ′)ρ(r ′)

= 1

2

∫
d3rρ(r)

∫
d3δrv(δr)

[
ρ(r) + (δr)2

6
∇2ρ|r=0

]
,

(4)

�V = −1

2

∫
d3rκρ∇2ρ,

κ = −1

6

∫
d3rr2v(r). (5)

Here, �V is the change in energy due to the fact that
neighbors are not at a uniform density. These assumptions
ignore correlations between the particles, which would suggest
a density or temperature dependence for κ . Adding potential
energy to a neighborhood of particles should not strongly
affect the entropy, so the entropy should mainly be a function
of the energy one would have without this correction, εκ =
ε + κρ∇2ρ/2, hence the form for Eq. (3).

A more general form for Eq. (3) would allow κ to depend
on ε and ρ, but for the sake of simplicity, those dependencies
are neglected here given the phenomenological nature of this
treatment where κ will be treated as an adjustable parameter.
Additional terms are neglected, such as

εκ = ε + 1
2κρρρ∇2ρ + 1

2κεεε∇2ε + 1
2κερ(ε∇2ρ + ρ∇2ε).

(6)

For a charge-neutral system, there are only terms with
gradients of ε, and a complete delineation of second-order
terms can be found in [54]. An exhaustive list of such terms is
not the goal of this study, but rather to consider the simplest
expression that captures the physics necessary for studying
phenomena related to phase transitions, especially critical
fluctuations, phase boundaries and phase separation. For a
quark-gluon plasma with zero net charge one could envision
an attractive interaction between induced color dipoles. If such
effects were strong, they might help create the conditions for
a first-order phase transition and there would be a surface
energy at the interface [3,4]. There is no such transition, thus
such effects are probably small, so only the simple form of
Eq. (3) is used and terms with gradients of ε are ignored for
the remainder of this paper.

One can quickly calculate corrections to the temperature
and chemical potential from Eq. (3) by considering changes
to the total entropy due to changes in the energy density and
charge density. First, the condition for the entropy S being
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maximized relative to small corrections in δε is applied:

S =
∫

d3rs̄(ε + κρ∇2ρ/2,ρ),

δS =
∫

d3rβδε,

β = ∂s̄

∂ε

∣∣∣∣
ε=εκ

= β̄(εκ,ρ). (7)

Here, β = 1/T is the inverse temperature. This differs from the
inverse temperature calculated for a uniform system, β̄(ε,ρ).
Similarly, one can find the alterations to the chemical potential
by considering small changes in charge density,

δS =
∫

d3r[β̄(εκ,ρ)κ(δρ)∇2ρ/2 + β̄(εκ,ρ)κρ∇2(δρ)/2

+ ᾱ(εκ,ρ)(δρ)]. (8)

Here, α is related to the chemical potential by the relation
α = −βμ. The function ᾱ(εκ,ρ) represents the chemical
potential for the case of uniform charge and energy density.
After integrating by parts, one finds the chemical potential,

δS =
∫

d3rδρ

[
β̄(εκ,ρ)κ

2
∇2ρ

+ κ

2
∇2(β̄(εκ,ρ)ρ) + ᾱ(εκ,ρ)

]
,

α = ᾱ + β̄κ

2
∇2ρ + κ

2
∇2(β̄ρ),

ᾱ(εκ,ρ) = ∂s

∂ρ

∣∣∣∣
ε=εκ

. (9)

In this expression, and in the following derivations, the
quantities with bars, e.g., ᾱ and β̄ are evaluated at εκ and
ρ, unless explicitly shown to be evaluated at ε.

The next, and more difficult, goal is to discern how the
gradient terms affect the stress-energy tensor. The change
in entropy density during an expansion is considered, i.e.,
in the presence of a velocity gradient. In that case, entropy
conservation gives

Dts = −s∇ · v, (10)

where here it is implied that the entropy current vanishes at
v = 0 and is sv for small v. Here, Dt = ∂t + v · ∇ is the
comoving derivative, i.e., it is ∂t when in the frame where
v = 0.

Following through with the calculation for entropy conser-
vation,

Dts = β̄
[
Dtε + Dt

(κ

2
ρ∇2ρ

)]
+ ᾱDtρ. (11)

Next, the conservation of energy and charge is enforced:

Dtρ = −ρ∇ · v,
(12)

Dtε = −ε∇ · v − Tij ∂ivj − ∂iMi,

where M is the momentum density, and represents the com-
ponents of the stress-energy tensor Mi = T 0i . Equations (10)
and (12) are based on the physical picture where the charge
density and entropy density move together, whereas the energy

might have some additional current M , even in the frame where
v = 0. This is not the case in ideal hydrodynamics, where
there is no heat conduction or charge diffusion. However,
here there are terms from non-zero-range interactions. Because
these interactions extend over a non-zero distance between two
charges, it is somewhat ambiguous to assign the position of this
portion of the potential energy. Movement of charge outside a
given small comoving fluid cell can affect the energy within
that cell, and therefore the energy might move, represent to the
cell even though the thermal motion of matter within the cells is
unchanged. Such currents should only exist in the presence of
velocity gradients, and should be proportional to κ . In contrast,
the position of charge is well defined, and because the entropy
should not be affected by changes in the potential energy, the
entropy current should also vanish in the frame where the
charge current vanishes. Thus, there are no additional terms
on the right-hand sides of the expressions for Dts and Dtρ.

Expanding Eq. (11),

Dts = −β̄Tij ∂ivj − [ᾱρ + β̄ε]∇ · v

+ β̄Dt

(κ

2
ρ∇2ρ

)
− β̄∇ · M. (13)

Next, one can commute Dt with ∇2,

[Dt,∇2] = −2(∂ivj )∂j ∂i − (∇2vi)∂i, (14)

and find

Dts = −β̄Tij ∂ivj − [ᾱρ + β̄ε]∇ · v − β̄∇ · M

− β̄κ
{
ρ(∇2ρ)(∇ · v) + ρ(∂i∂jρ)∂ivj + ρ(∂iρ)

× (∂i∇ · v) + 1
2ρ(∂iρ)(∇2vi) + 1

2ρ2(∇2∇ · v)
}
. (15)

Again, β̄ and ᾱ are implicitly evaluated at εκ and ρ. The last
three terms include higher derivatives of the velocity. Because
the goal is to find Tij and because derivatives of the form
β̄∇ · (· · · ) can be absorbed into the expression for M, the last
three terms are rewritten so that they appear as a combination
of total derivatives or only include first-order derivatives of the
velocity. For example the last term can be written as

−1

2
κρ2(∇2∇ · v)

= −A∂i

{κ

2
ρ2(∂i∇ · v)

}
− (1 − A)∂i

{κ

2
ρ2(∇2vi)

}

+A(∂i∇ · v)∂i

{κ

2
ρ2

}
+ (1 − A)(∇2vi)∂i

{κ

2
ρ2

}
. (16)

Here, A is an arbitrary constant. The first two terms, which
are total derivatives, can be canceled in the equation for
entropy conservation, Eq. (15), by an equivalent term in M.
The latter two terms include second-order derivatives in the
velocity rather than third order. Similar manipulations can
then reduce these terms with second-order derivatives of the
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velocity to terms with first-order derivatives, along with other
total derivatives. This yields

T̄ Dts = −Tij ∂ivj − (μ̄ρ + ε)∇ · v

+ κ

2
∂i[ρ∂jρ − (1 − A)(∂j (ρ2))]∂ivj

+B(∂i(ρ∂iρ))∇ · v − κ

2
AC(∇2(ρ2))∇ · v

+ (1 − B)κ(∂i(ρ∂jρ))∂jvi − A(1 − C)
κ

2

× (∂i∂j (ρ2))∂jvi − κρ(∇2ρ)∇ · v

− κρ(∂i∂jρ)∂ivj . (17)

Terms of form of total derivatives, ∇(· · · ), were eliminated by
defining the momentum density as

Mi = −A
κ

2
ρ2∂i∇ · v − (1 − A)

κ

2
ρ2∇2vi

− κ

2
ρ(∂jρ)∂ivj + (1 − A)

κ

2
(∂j (ρ2))∂ivj

−Bκρ(∂iρ)∇ · v + AC
κ

2
(∂i(ρ

2))∇ · v

− (1 − B)ρ(∂jρ)∂ivj − A(1 − C)
κ

2
(∂j (ρ2))∂jvi .

(18)

Here, A,B, and C are all arbitrary constants. Only terms with
first-order derivatives in the velocity remain in Eq. (17), so Tij

can be determined by inspection.
The additional momentum density M refers only to that

part of that momentum density that exists in the frame v = 0.
Further, M has no terms proportional to v. Those terms
are generated by boosting the entire stress-energy tensor,
which generates a contribution εδvi + Tij δvj . If there were
terms in M linear in δv, they would violate the expected
behavior of the stress-energy tensor under boosts. Another
class of transformations that leaves the relative density profile,
and thus the gradient modification to the energy density
unchanged, is rotation, δv = r × δω. Rotations should also
not generate momentum density from the gradient term, aside
from contribution from rotating the stress-energy tensor. To
satisfy this constraint the expression for M must avoid terms
that depend on ωi = εijk∂j vk . Thus, all velocity gradients must
appear either as the symmetric combination, ∂ivj + ∂jvi , or as
∇ · v. This requires

A = 1, B = 1
2 , C = 1. (19)

The momentum density is then

Mi = −κ

2
ρ(∂jρ)(∂ivj + ∂jvi) − κ

2
ρ2∂i∇ · v

+ κ

2
ρ(∂iρ)∇ · v. (20)

For an expanding or contracting system, i.e., one with velocity
gradients, the potential energy of a constituent charge changes
due to the changing relative positions of its neighbors. Energy
moves from cell to cell, but the net energy is unchanged.

The equation for entropy conservation, Eq. (10), then
becomes

−β̄Tij ∂ivj − ᾱρ∇ · v − β̄ε∇ · v

+ κβ̄

2
(∂i(ρ∂jρ))(∂ivj + ∂jvi) + κβ̄

2
(∂i(ρ∂iρ))∇ · v

− κβ̄

2
(∇2(ρ2))∇ · v − β̄κρ(∇2ρ)∇ · v

−β̄κρ(∂i∂jρ)∂ivj = −s∇ · v. (21)

Using the fact that s = s̄ and s̄ − ᾱρ − β̄εκ = P̄ , where P̄ is
also evaluated at εκ , one finds

β̄Tij ∂ivj = β̄P̄∇ · v − β̄κ

2
ρ(∇2ρ)∇ · v

+ κβ̄

2
(∂i(ρ∂jρ))(∂ivj + ∂jvi)

+ κβ̄

2
(∂i(ρ∂iρ))∇ · v − κβ̄

2
(∇2(ρ2))∇ · v

− β̄κρ(∂i∂jρ)∂ivj ,

Tij = δij

{
P̄ − κ

2
ρ∇2ρ + κ

2
(∂i(ρ∂iρ)) − κ

2
(∇2(ρ2))

}

+ κ

2
∂i

(
ρ∂jρ

) + κ

2
∂j (ρ∂iρ) − κρ(∂i∂jρ)

= P̄ δij − κ

[
ρ∇2ρ + 1

2
(∇ρ)2

]
δij + κ(∂iρ)∂jρ.

(22)

Thus, Tij is not purely proportional to δij , and one cannot
express the change to the stress-energy tensor by only altering
the pressure.

In Sec. IV the example of a surface profile between two
phases at equilibrium was considered. For entropy to be
maximized both β and α must be uniform. Also, if entropy
is maximized there should be no hydrodynamic acceleration.
Thus, if the temperature is uniform and if v = 0, ∂iTij , must
vanish if ∂iμ = 0. Otherwise, charge or energy could be moved
from one point to another while increasing entropy. Using
the expression for the stress-energy tensor in Eq. (22), at
equilibrium

∂iT
(equil)
ij = 0 = ∂j P̄ − κρ∂j∇2ρ. (23)

For uniform temperature, the pressure gradient can be related
to the chemical potential gradient

∂iP̄ = ∂P̄

∂μ̄
∂iμ̄ = ρ∂iμ̄, (24)

and from Eqs. (9) and (23),

∂iT
(equil)
ij = ρ∂j (μ̄ − κρ∇2ρ) = ρ∂jμ. (25)

Thus, if a profile has a uniform chemical potential and
temperature, even if the density is nonuniform, hydrodynamic
acceleration vanishes. Because uniform μ and T should be
sufficient to maximize entropy, the system should also be free
of acceleration and Eq. (25) represents a test of the consistency
of the formalism.
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Finally, the gradient terms also affect the expressions
for diffusion, or equivalently, the conductivity. Diffusion is
essential to include if a treatment is to reproduce equilibrium
quantities, e.g., for a phase boundary. At equilibrium, one
must satisfy the relations ∂iTij = 0, ∂iβ = 0, and ∂iμ = 0.
Hydrodynamically, a system can expand (with damping) until
the acceleration disappears, but this would not necessarily
lead to a uniform temperature and chemical potential, because
hydrodynamic equations would maintain a uniform entropy
to baryon ratio. In contrast, the entropy per baryon varies
significantly across a phase boundary. By allowing charge to
diffuse between neighboring hydrodynamic cells, the system
can equilibrate and eliminate gradients of all three quantities.
Thus, if a model is designed to study dynamics related to
either reaching equilibrium, or moving toward equilibrium,
both hydrodynamic motion and diffusion should be included,
and in a manner consistent with thermodynamics.

Compared to the frame where the entropy current is fixed,
diffusion moves the charge density via Fick’s law:

J (D) = σT ∇α = −σT ∇(μ/T ). (26)

Here, aside from powers of the charge, σ is the conductivity.
This can be related to the diffusion constant,

∇ρ = ∂ρ

∂ᾱ
∇ᾱ = −χ∇ᾱ, (27)

where χ is the susceptibility, or charge fluctuation,

χ = T
∂ρ

∂μ

∣∣∣∣
T

= 1

V
〈(Q − 〈Q〉)2〉. (28)

The diffusion constant D is then related to the conductivity
through the relation

j = −D∇ρ, D = σT

χ
. (29)

From the gradient modification to the chemical potential,
Eq. (9),

�J (D) = σT ∇
(

ᾱ + β̄κ

2
∇2ρ + κ

2
∇2(β̄ρ)

)

= −σT

χ
∇ρ + σκT

2
∇[β̄∇2ρ + ∇2(β̄ρ)]

= −D∇ρ + κχD

2
∇[β̄∇2ρ + ∇2(β̄ρ)]. (30)

Thus, there are higher-order gradient modifications to Fick’s
law.

Summarizing the results of this section, gradient terms
affect every thermodynamic quantity:

s = s̄(εκ,ρ),

β = β̄(εκ,ρ),

α = ᾱ(εκ,ρ) + β̄κ

2
∇2ρ + κ

2
∇2(β̄ρ),

Mi = −κ

2
ρ(∂jρ)(∂ivj + ∂jvi) − κ

2
ρ2∂i∇ · v

+ κ

2
ρ(∂iρ)∇ · v,

Tij = P̄ δij − κ

[
ρ∇2ρ + 1

2
(∇ρ)2

]
δij + κ(∂iρ)(∂jρ),

J (D) = −D∇ρ + κχD

2
∇[β̄∇2ρ + ∇2(β̄ρ)]. (31)

Each of the quantities with bars are those for uniform energy
and charge density, but are evaluated at an energy density εκ =
ε + κρ∇2ρ/2, and at a charge density ρ. Once the entropy
density is defined in the first line of Eq. (31), all the other
relations are uniquely determined.

Because the ansatz for the entropy density in the first line
of Eq. (31) has κ being independent of ε and ρ, and because
terms involving derivatives of the energy density are ignored,
these relations are far from completely general. However, the
form is justifiable in many circumstances, especially given the
phenomenological nature of most studies based on Landau
field theory. The forms are consistent with thermodynamics
even in dynamical situations where the temperature, stress-
energy tensor, and chemical potentials vary with both position
and time.

III. ALTERNATE FORMS

The equations from the previous section, summarized in
Eq. (31), all derived from Eq. (3). If this original ansatz is
changed, then the resulting equations also change. For exam-
ple, in the studies [8–11], a choice is made for the pressure,
P = P̄ + κρ∇2ρ, which gives a diagonal form to the stress-
energy tensor in the fluid frame, and is much simpler than what
is seen in Eq. (31). However, it is difficult to reconcile this form
with the form for the chemical potential for a system at uniform
temperature, μ = μ̄ − κ∇2ρ. Even at uniform temperature,
this form fails to provide the consistency demonstrated in
Eq. (25). To understand these difficulties, one can consider a
phase boundary at equilibrium, or for that matter fluctuations at
equilibrium. The temperature and chemical potentials must be
constant across the profile. Otherwise, charge or energy could
be transferred in such a way as to increase the net entropy. The
system must also be simultaneously stable to hydrodynamic
acceleration, ∂iTij = 0. The gradient modifications to the
stress-energy tensor at uniform temperature might have a
general form,

Tij = P̄ δij + Aδijρ∇2ρ + Bδij (∇ρ)2

+C(∂iρ)∂jρ + Dρ∂i∂jρ. (32)

Given that ∇P̄ = (∂P/∂μ)∇μ̄ = ρ∇μ̄, if ∂iTij is to vanish
any time that ∂jμ vanishes, one must have

∂iTij = ρ∂jμ,

∂i{Aδijρ∇2ρ + Bδij (∇ρ)2 + C(∂iρ)∂jρ + Dρ∂i∂jρ}
= −κρ∂j∇2ρ,

ρ(∂j∇2ρ)(A + C) + (∂iρ)(∂i∂jρ)(2B + C + D)

+ (∂jρ)(∇2ρ)(A + D) = −κρ(∂j∇2ρ). (33)
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This determines three of the four parameters. In terms of C,

A = −κ − C, B = −κ + 2C

2
, D = κ + C. (34)

This constraint was indeed satisfied by the relations in Eq. (31).
In that derivation C was zero in order to enforce proper
behavior of the entropy current under rotation. From this
exercise, it is clear that the stress-energy tensor needs to have
off-diagonal terms, because both C and D cannot be set to zero.
This suggests that it would be problematic to build a consistent
set of gradient modifications to all thermodynamic quantities
if one wishes to use a simple form for the stress-energy tensor
with no gradient modifications to off-diagonal terms.

IV. THE LIQUID-GAS PHASE INTERFACE

Here, the effect of gradient modifications are illustrated by
considering the static density profile between liquid and gas
phases at equilibrium, similarly as was done in [2]. The system
is assumed to be at a uniform fixed temperature, then solve
for the density profile by requiring the chemical potential to
be constant, or equivalently requiring that diffusion vanishes.
After finding the density profile, the stress-energy tensor
profile, temperature and chemical potential are compared to the
values one would have ignoring gradient terms, T̄ij = P̄ δij , β̄,
and ᾱ, evaluated at the energy density ε instead of εκ .

Assuming the Van der Waals equation of state,

P̄ = ρT̄ (εκ,ρ)

1 − ρ/ρs

− aρ2. (35)

The critical temperature for this equation of state is Tc =
(8/27)aρs . As stated before, P̄ and T̄ are the pressure and
temperature for a uniform system. At equilibrium, T̄ can
be treated as a constant. The chemical potential, μ = μ̄ −
κρ∇2ρ/2, is then also constant. For the fixed temperature, T̄ ,
one can solve for the liquid and gas coexistence densities by
requiring

μ̄(T̄ ,ρL) = μ̄(T̄ ,ρG),

P̄ (T̄ ,ρL) = P̄ (T̄ ,ρG),

μ̄ = ∂(P̄ − μ̄ρ)

∂ρ

= −2aρ + T

1 − ρ/ρs

− T ln((ρs/ρ) − 1). (36)

The last relation was derived via the Maxwell relation,
ρ∂μ/∂ρ = ∂P/∂ρ. Minimizing the entropy per surface area,
relative to moving particles to the heat bath, gives the condition

T δS/A=0 (37)

= δ

∫
dx

[
P0 − P + (μ − μ0)ρ + κ

2
(dρ/dx)2

]

=
∫ ρL

ρG

dρδ

[
P0 − P + (μ− μ0)ρ + (κ/2)(dρ/dx)2

dρ/dx

]
,

(38)

where the phase interface is parallel to the x axis. Here, P0 =
PG = PL and μ0 = μG = μL are the coexistence values. The

FIG. 1. In the upper panel (a), the density profile is displayed
for the liquid-gas interface. Including gradient modifications, the
temperature (b), chemical potential (c), and the stress-energy tensor
element Txx (d) are all constant, as is required for an equilibrated
system. The quantities evaluated as a function of the local energy
density and local momentum density, T̄ (ε,ρ), μ̄(ε,ρ), and P̄ (ε,ρ) all
vary substantially across the interface. The element Tyy (a) also varies,
but because it does not depend on y does not affect the constraint
∂iTij = 0. To make all quantities dimensionless, densities are in units
of ρs , the temperature and chemical potential are in units of aρs , and
the pressure is in units of aρ2

s . The coordinate x is in units of
√

κ/a.

density gradient is then

dρ

dx
=

√
2[P0 − P (ρ) + (μ(ρ) − μ0)ρ]/κ. (39)

This expression can be integrated numerically to give x(ρ) and
thus determine the density profile.

Figure 1 shows the density profile and local thermody-
namic quantities for the case where the two phases are at
a temperature T = 2Tc/3, and for a = 1, κ = 1, and ρs =
1. The temperature, T = T̄ (εκ,ρ) and chemical potential,
μ = μ̄(εκ,ρ) − κρ∇2ρ/2, indeed turn out to be constant as
expected. With the surface normal being the x direction,
Txx = P̄ (εκ,ρ) − κρ∇2ρ + κ(∂xρ)2/2 is also constant. Even
though Tyy varies as a function of x, it does not violate the
constraint that ∂iTij = 0 for an equilibrated system.
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V. DENSITY-DENSITY CORRELATIONS

Another example of equilibrated density profiles is that for
the density-density correlation function,

Cρρ(r) ≡ 〈δρ(r = 0)δρ(r)〉,
δρ(r) ≡ ρ(r) − 〈ρ(r)〉. (40)

This integrates to the susceptibility. For a large volume �,∫
d3rCρρ(r) = 1

�

∫
d3rd3r ′Cρρ(r − r ′)

= 1

�
〈(Q − 〈Q〉)2〉 = χ. (41)

An array of correlation functions can be considered:

Cρα(r) = 〈δρ(r = 0)δα(r)〉,
Cρβ(r) = 〈δρ(r = 0)δβ(r)〉,

Cρ,T ij (r) = 〈δρ(r = 0)δTij (r)〉,
Cρᾱ(r) = 〈δρ(r = 0)δᾱ(ε(r),ρ(r))〉,
Cρβ̄ (r) = 〈δρ(r = 0)δβ̄(ε(r),ρ(r))〉,
CρP̄ (r) = 〈δρ(r = 0)δP̄ (ε(r),ρ(r))〉. (42)

The latter three correlations involve the chemical potential,
temperature and pressure as functions of the local energy
density and charge density without gradient modifications.
Unlike the implicit assumption used Sec. II of the barred
quantities being evaluated at εκ = ε + κ∇2ρ/2, they are
evaluated at ε.

For stability as a function of time,

d

dt
Cρρ(r,t) =

〈(
d

dt
δρ(r = 0,t)

)
δρ(r,t)

〉

+
〈
δρ(r,t)

(
d

dt
δρ(r = 0,t)

)〉
. (43)

Here, it is assumed the system is at constant temperature,
and that the density changes only due to diffusion. From
Eq. (30) and current conservation one finds a modified
diffusion equation,

d

dt
δρ(r,t) = D∇2δρ − �2D(∇2)2δρ(r,t),

(44)
�2 = βκχ,

and the correlation function obeys the relation,

d

dt
Cρρ(r,t) = 2D∇2[(1 − �2∇2)Cρρ(r,t)]. (45)

For the correlation to be stable, (d/dt)Cρρ = 0, which requires

(1 − �2∇2)Cρρ(r,t) = 0, r 	= 0. (46)

The last three relations only apply for r 	= 0 because Eq. (44)
should not be applied to δρ within the correlation unless the
two positions, r and r ′, are separated sufficiently so that they
evolve separately in the correlation function 〈δρ(r ′)δρ(r)〉. En-
capsulating the short-distance behavior with a delta function,

the correlation function then has a form

Cρρ(r) = (χ − χ0)
e−r/�

4π�2r
+ χ0δ

3(r). (47)

This form satisfies the constraint that the correlation integrates
to the susceptibility and describes any short-distance structure
to the correlation with a parameter χ0. As κ → 0, when
gradient modifications disappear, both terms become delta
functions and all the correlation is short-range. One example
of short-range correlation is a gas, where the only correlation
is between a particle and itself.

From Eq. (31), at constant temperature the chemical
potential obeys the relation

δα = δᾱ + βκ∇2δρ

= ∂ᾱ

∂ρ
δρ + βκ∇2δρ

= − 1

χ
(1 − �2∇2)δρ = 0, (48)

where the last relation used Eq. (44). This implies that all
the correlation functions with δα vanish for r 	= 0 because α,
like the temperature, does not fluctuate even though the density
does fluctuate. However, the chemical potential, ᾱ(ε,ρ), which
ignores the gradient modifications, does fluctuate as does
β̄(ε,ρ) and P̄ (ε,ρ). Assuming small fluctuations [only one
power in δρ from Eq. (31)], the various correlations listed
previously can be determined from Cρρ ,

Cρα(r) = Cρβ(r) = 0,

δTij = ∂P̄

∂ᾱ

∂ᾱ

∂ρ
δij − βκρ∇2δρδij ,

Cρ,T ij = δij

ρ

χ
[1 − βκχ∇2]Cρρ(r) = 0,

Cρᾱ(r) = Cρρ(r)
∂ᾱ

ρ
= 1

χ
Cρρ(r),

Cρβ̄(r) = Cρρ(r)
∂β̄

∂ρ
= 1

χQE

Cρρ(r),

χQE = 1

V
〈(Q − 〈Q〉)(E − 〈E〉)〉,

δP̄ = ∂P̄

∂ᾱ

∂ᾱ

∂ρ
δρ = ρ

βχ
δρ,

CρP̄ = ρ

βχ
Cρρ(r). (49)

These expressions only consider the lowest order terms in δρ.
As was the case for the density profile, expressions involving
gradient-corrected thermodynamic quantities vanish, while
those calculated assuming uniform densities did not.

VI. GRADIENT TERMS AND NOISY HYDRODYNAMICS

The equations of hydrodynamics do not include any corre-
lation functions. Nonetheless, correlations can be calculated
within those equations by adding random noise terms to
the equations [43,47,50,52,53]. The noise generates event-by-
event fluctuations, where each event involves an independent
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hydrodynamic calculation. One can add a noise term, j (n), to
the current in such a way that for a static system noise generates
correlations consistent with the the charge susceptibility χ . In
the standard method, the generated correlation is short-range,
at a scale set by the noise in the correlation. Here, it is
demonstrated how a local noise term, combined with the
gradient modifications presented here, can lead to correlations
with the length scale � = √

βκχ , see Eq. (44). This length
scale diverges at the critical point in mean field theory.
The modifications to the noise term derived here not only
reproduces the desired mean field correlations, but does not
require fine-tuning the strength of the noise at Tc. Rather, the
divergences appear due to χ diverging, which is a function
of the equation of state, rather than from adjusting the noise
terms.

One can define a correlation function and solve for its time
dependence,

C(r) = 〈ρ(0)ρ(r)〉,
(50)

∂tC(r) = 2D∇2C(r) − 2σκ(∇2)2C(r) + [∂tC](n),

where the last term comes from adding the ∇ · j (n) term to
the expression for ∂tρ. The ∇ terms refer to derivatives with
respect to the relative coordinate r . Motivated by the Kubo
relation for the conductivity [47,50,53]〈

j
(n)
i (0)j (n)

k (r)
〉 = 2σT δikδ

4(r) + 2B∂i∂kδ
4(r). (51)

This last term does not appear in standard noise treatments.
It integrates to zero, and is being multiplied by a currently
unconstrained parameter B.

The time evolution of the noise term above then becomes

[∂tC](n)(r) = 1

�t

∫ 0

−�t

dt1dt2〈∇1 · j (n)(r1)∇2 · j (n)(r2)〉

= −2σT ∇2δ3(r) + 2B∇2∇2δ3(r). (52)

Next, solutions are found for the steady-state case of the
form

C(r) = χ0δ
3(r) + (χ − χ0)

e−r/�

4π�2r
. (53)

This ensures that the correlation integrates to the susceptibility,
and χ0 is the strength of the short-range correlation. Using the
fact that (

∇2 − 1

�2

)(
e−r/�

r

)
= −4πδ3(r), (54)

one can plug everything into Eq. (50), using the facts that
σ = βDχ and �2 = βκχ , to obtain

∂tC(r) = 0 = −2(σκχ0 − B)(∇2)2δ3(r). (55)

These determines the parameter B,

B = σκχ0. (56)

Thus, the noise as described in Eq. (51) is perfectly smooth
near the phase transition if χ0 is smooth. The susceptibility χ
diverges near Tc, which causes �2 = βκχ to diverge and forces
the diffusion constant, D = σT/χ , to vanish. The correlation

function from Eq. (53) becomes

C(r) = C(r) = χ0δ
3(r) + (χ − χ0)T

κχ

e−r/�

4π
. (57)

Thus, as one approaches the critical point the magnitude
of the correlation approaches a constant, Tc/(4πκ), and the
correlation length diverges. The correlation length is also
proportional to κ , which from the introduction is proportional
to the range of the attractive interaction. If κ is small, all the
correlation is short-range.

One can separate out the part of the correlation that is not
short-range:

C ′(r) ≡ C(r) − χ0δ
3(r), (58)

i.e., it is not the part of the correlation of a particle with itself,
or some additional very-short-range correlation. Plugging this
into Eqs. (50) and (52),

∂tC
′(r,t) − 2D∇2C ′(r,t) + 2σβκ(∇2)2C ′(r,t)

= −2D(χ − χ0)∇2δ3(r) − δ3(r)∂tχ0(t),

∂tC
′(r,t) − 2D∇2(1 − �2∇2)C ′(r,t)

= −2D(χ − χ0)∇2δ3(r) − δ3(r)∂tχ0(t). (59)

Integrating the correlation

d

dt

∫
d3rC ′(r,t) = − d

dt
χ0. (60)

This emphasizes that the integrated correlation is constant
in time, and the rate of change of the short-range part of
the susceptibility serves as a source term for a modified
diffusion equation for C ′(r,t), similar to [47], but with gradient
terms modifying the diffusion equation. If the evolution is
pursued indefinitely, the part of the correlation that cancels the
equilibrium portion will spread over an infinitely large volume.

VII. SUMMARY AND OUTLOOK

Gradient terms have commonly appeared in dynamical
theories of heavy-ion collisions, both in microscopic pictures
where the mean field is altered, and even in hydrodynamic
treatments where the pressure is altered. Here, a framework
is presented providing consistent gradient terms for the
stress-energy tensor, temperature, chemical potential, entropy
density, and entropy current for a hydrodynamic treatment.
This also determines how diffusion should be altered by
gradient terms. The gradient terms in Eq. (31) are determined
by one additional parameter κ , which accounts for the non-
zero-range attractive interaction between charged particles.
These relations all resulted from the assumption of the form
for the entropy density in Eq. (3).

Here, a single kind of charge has been considered, whereas
in a serious model of heavy-ion collisions one would expand
the definition of charge density to include baryon, strangeness,
and isospin, or equivalently up, down, and strange charge.
It would not be difficult to expand the relations to include
multiple charges. It would be more difficult to expand the
expressions if the gradient terms were to include gradients of
the energy density or if κ were no longer a constant. For these
more complicated considerations one would still begin with
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the assumption of a form for the entropy density as suggested
in Eq. (6). For example, at zero baryon density one might
expect a dipole-dipole attractive interaction in the quark-gluon
plasma with a non-zero range between regions of higher energy
density. This would motivate a term κεεε∇2ε/2. However, such
terms are not likely to be as strong as the term involving only
the charge, because those interactions involve charges directly
rather than induced dipole moments. Surely, the parameter
κρρ considered here could have some dependence of energy
or charge density. If such terms were deemed important, the
general approach applied here could be expanded.

The treatment of correlations from Secs. V and VI is based
on the same assumption used to describe critical phenomena
in Landau mean field theory. Hence, its validity near the
critical point is questionable given that a three-dimensional
system does not satisfy the Ginzburg criteria [1]. If one is
sufficiently close to the critical point, fluctuations of 〈(δρ)3〉
or 〈(δρ)4〉 overwhelm the corrections of 〈(δρ)2〉 considered
here. However, this failure is only in the immediate region of
the critical point, and even then does not qualitatively affect
the behavior. More importantly, once inside the coexistence
region, the seeding of fluctuations remains an open question,
as the length scale of thermal noise, as in Sec. VI, may play a
role. Currently, theory cannot rule out the possibility there is
no phase transition, i.e., no coexistence region or critical point.
If that is the case, but if susceptibility is large, significant non-
zero-range correlations could develop and should be reason-
ably addressed with approaches similar to what is shown here.

The formalism here suffers from serious issues regarding
causality. The stress-energy tensor has contributions propor-
tional to ∇2δρ, which clearly leads to the frequency of sound
waves, ω, obeying dispersion relations at high wave number
k, with ω2 ∼ k4, which at some point becomes superluminal.
This would be important for systems with small-scale density
inhomogeneities characterized by high wave numbers. Israel-

Stewart hydrodynamics successfully addresses similar issues
that occur when adding viscosity to ideal hydrodynamics
[55,56]. Similar ideas might prove successful for non-zero-
range corrections. Another place where causality plays a role is
with the treatment of diffusion, Eq. (44). Even without gradient
modifications, the diffusion equation is parabolic, ω ∼ k2, and
gives acausal behaviors at short times where the spread from a
point source extends a distance,

√
2Dt , which is greater than

ct for short times. A number of approaches have addressed
this issue [44,45,50,57–59]. In Eq. (44), ω ∼ k4 for large k,
which suggests even more unphysical behavior for short times.
Similar tactics should be developed to limit the diffusive spread
at small times.

Despite the issues listed above, the formalism developed
here should prove useful. In a dynamic environment, such
as a heavy-ion collision, density correlations develop and
grow both hydrodynamically and diffusively, and both forms
of growth are necessary for a system to equilibrate. This
formalism allows the simultaneous and consistent treatment
of both. In future work, the author plans to apply these
techniques to study the growth of fluctuations, and discern
whether the features of the phase diagram near the critical
point might manifest themselves in final-state measurements.
Given the rapid nature of the expansion of the fireball in
heavy-ion collisions, it is not clear that sufficient time exists
for the development of correlations that can be detected
experimentally. Thus, it is critical to develop dynamic models
for the growth of fluctuations.

ACKNOWLEDGMENTS

This work was supported by the Department of Energy
Office of Science through Grant No. DE-FG02-03ER41259.
The author thanks Chris Plumberg, Joe Kapusta, Volker Koch,
Marcus Bluhm, and Yi Yin for stimulating discussions.

[1] K. Huang, Statistical Mechanics, 2nd ed. (John Wiley and Sons,
New York, 1987), Chap. 17.

[2] D. G. Ravenhall, C. J. Pethick, and J. M. Lattimer, Nucl. Phys.
A 407, 571 (1983).

[3] L. P. Csernai and J. I. Kapusta, Phys. Rev. D 46, 1379 (1992).
[4] L. P. Csernai, J. I. Kapusta, and E. Osnes, Phys. Rev. D 67,

045003 (2003).
[5] B. W. Mintz, R. Stiele, R. O. Ramos, and J. Schaffner-Bielich,

Phys. Rev. D 87, 036004 (2013).
[6] A. Bazavov, H.-T. Ding, P. Hegde, O. Kaczmarek, F. Karsch, E.

Laermann, Y. Maezawa, S. Mukherjee, H. Ohno, P. Petreczky,
H. Sandmeyer, P. Steinbrecher, C. Schmidt, S. Sharma, W.
Soeldner, and M. Wagner, Phys. Rev. D 95, 054504 (2017).

[7] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
[8] J. Steinheimer, J. Randrup, and V. Koch, Phys. Rev. C 89, 034901

(2014).
[9] J. Steinheimer and J. Randrup, Phys. Rev. C 87, 054903

(2013).
[10] J. Steinheimer and J. Randrup, Phys. Rev. Lett. 109, 212301

(2012).

[11] J. Randrup, Phys. Rev. C 82, 034902 (2010).
[12] H. Heiselberg, C. J. Pethick, and D. G. Ravenhall, Ann. Phys.

(NY) 223, 37 (1993).
[13] H. Heiselberg, C. J. Pethick, and D. G. Ravenhall, Phys. Rev.

Lett. 61, 818 (1988).
[14] P. Napolitani, M. Colonna, and V. de la Mota, EPJ Web Conf.

88, 00003 (2015).
[15] P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263

(2004).
[16] B. Borderie et al. (INDRA Collaboration), Phys. Rev. Lett. 86,

3252 (2001).
[17] M. Colonna, P. Chomaz, and S. Ayik, Phys. Rev. Lett. 88, 122701

(2002).
[18] A. Guarnera, M. Colonna, and P. Chomaz, Phys. Lett. B 373,

267 (1996).
[19] K. Paech, H. Stocker, and A. Dumitru, Phys. Rev. C 68, 044907

(2003).
[20] K. Paech and A. Dumitru, Phys. Lett. B 623, 200 (2005).
[21] M. Nahrgang, S. Leupold, C. Herold, and M. Bleicher, Phys.

Rev. C 84, 024912 (2011).

044903-9

https://doi.org/10.1016/0375-9474(83)90667-X
https://doi.org/10.1016/0375-9474(83)90667-X
https://doi.org/10.1016/0375-9474(83)90667-X
https://doi.org/10.1016/0375-9474(83)90667-X
https://doi.org/10.1103/PhysRevD.46.1379
https://doi.org/10.1103/PhysRevD.46.1379
https://doi.org/10.1103/PhysRevD.46.1379
https://doi.org/10.1103/PhysRevD.46.1379
https://doi.org/10.1103/PhysRevD.67.045003
https://doi.org/10.1103/PhysRevD.67.045003
https://doi.org/10.1103/PhysRevD.67.045003
https://doi.org/10.1103/PhysRevD.67.045003
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.87.036004
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevD.95.054504
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.5.626
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.89.034901
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevC.87.054903
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevLett.109.212301
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1103/PhysRevC.82.034902
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1006/aphy.1993.1026
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1103/PhysRevLett.61.818
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1051/epjconf/20158800003
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1016/j.physrep.2003.09.006
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.86.3252
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1103/PhysRevLett.88.122701
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1016/0370-2693(96)00152-9
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1103/PhysRevC.68.044907
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1016/j.physletb.2005.08.006
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912
https://doi.org/10.1103/PhysRevC.84.024912


SCOTT PRATT PHYSICAL REVIEW C 96, 044903 (2017)

[22] P. F. Kolb and U. Heinz, in Quark Gluon Plasma 3, edited by
R. C. Hwa and X.-N. Wang (World Scientific, Singapore, 2003),
pp. 634–714.

[23] J. Adams et al. (STAR Collaboration), J. Phys. G 32, L37 (2006).
[24] M. Sharma (STAR Collaboration), Nucl. Phys. A 830, 813c

(2009).
[25] J. Adams et al. (STAR Collaboration), J. Phys. G 34, 451 (2007).
[26] B. B. Abelev et al. (ALICE Collaboration), Eur. Phys. J. C 74,

3077 (2014).
[27] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 110,

152301 (2013).
[28] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 87,

064902 (2013).
[29] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103,

092301 (2009).
[30] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. C 79,

024906 (2009).
[31] T. J. Tarnowsky (STAR Collaboration), J. Phys. G 38, 124054

(2011).
[32] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 88,

064911 (2013).
[33] S. Pratt, Phys. Rev. Lett. 108, 212301 (2012).
[34] S. Pratt, W. P. McCormack, and C. Ratti, Phys. Rev. C 92, 064905

(2015).
[35] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K.

Szabo, J. High Energy Phys. 01 (2012) 138.
[36] R. Bellwied, S. Borsanyi, Z. Fodor, S. D. Katz, A. Pasztor, C.

Ratti, and K. K. Szabo, Phys. Rev. D 92, 114505 (2015).
[37] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. K.

Szabo, Phys. Rev. Lett. 113, 052301 (2014).
[38] S. Caron-Huot and O. Saremi, J. High Energy Phys. 11 (2010)

013.
[39] Y. Akamatsu, A. Mazeliauskas, and D. Teaney, Phys. Rev. C 95,

014909 (2017).

[40] L. G. Pang, Q. Wang, X. N. Wang, and R. Xu, Phys. Rev. C 81,
031903(R) (2010).

[41] S. Gavin and M. Abdel-Aziz, Phys. Rev. Lett. 97, 162302
(2006).

[42] S. Gavin and G. Moschelli, Phys. Rev. C 86, 034902 (2012).
[43] S. Gavin, G. Moschelli, and C. Zin, Phys. Rev. C 94, 024921

(2016).
[44] S. Gavin, G. Moschelli, and C. Zin, J. Phys. Conf. Ser. 736,

012020 (2016).
[45] S. Gavin, G. Moschelli, and C. Zin, Phys. Rev. C 95, 064901

(2017).
[46] S. Pratt, S. Schlichting, and S. Gavin, Phys. Rev. C 84, 024909

(2011).
[47] S. Pratt and C. Young, Phys. Rev. C 95, 054901 (2017).
[48] B. I. Abelev et al. (STAR Collaboration), Phys. Rev. Lett. 103,

251601 (2009).
[49] S. Schlichting and S. Pratt, Phys. Rev. C 83, 014913 (2011).
[50] J. I. Kapusta and C. Young, Phys. Rev. C 90, 044902 (2014).
[51] J. I. Kapusta, B. Mueller, and M. Stephanov, Nucl. Phys. A 904,

499c (2013).
[52] C. Young, J. I. Kapusta, C. Gale, S. Jeon, and B. Schenke, Phys.

Rev. C 91, 044901 (2015).
[53] B. Ling, T. Springer, and M. Stephanov, Phys. Rev. C 89, 064901

(2014).
[54] P. Romatschke, Class. Quant. Grav. 27, 025006 (2010).
[55] A. Muronga, Phys. Rev. C 69, 034903 (2004).
[56] A. Muronga, Phys. Rev. Lett. 88, 062302 (2002); 89, 159901(E)

(2002).
[57] G. Cattaneo, Atti. Sem. Matem. e Fisico Univ. Modena 3, 83

(1948).
[58] M. E. Gurtin and A. C. Pipkin, Arch. Ration. Mech. Anal. 31,

113 (1968).
[59] D. D. Joseph and L. Preziosi, Rev. Mod. Phys. 61, 41

(1989).

044903-10

https://doi.org/10.1088/0954-3899/32/6/L02
https://doi.org/10.1088/0954-3899/32/6/L02
https://doi.org/10.1088/0954-3899/32/6/L02
https://doi.org/10.1088/0954-3899/32/6/L02
https://doi.org/10.1016/j.nuclphysa.2009.10.074
https://doi.org/10.1016/j.nuclphysa.2009.10.074
https://doi.org/10.1016/j.nuclphysa.2009.10.074
https://doi.org/10.1016/j.nuclphysa.2009.10.074
https://doi.org/10.1088/0954-3899/34/3/004
https://doi.org/10.1088/0954-3899/34/3/004
https://doi.org/10.1088/0954-3899/34/3/004
https://doi.org/10.1088/0954-3899/34/3/004
https://doi.org/10.1140/epjc/s10052-014-3077-y
https://doi.org/10.1140/epjc/s10052-014-3077-y
https://doi.org/10.1140/epjc/s10052-014-3077-y
https://doi.org/10.1140/epjc/s10052-014-3077-y
https://doi.org/10.1103/PhysRevLett.110.152301
https://doi.org/10.1103/PhysRevLett.110.152301
https://doi.org/10.1103/PhysRevLett.110.152301
https://doi.org/10.1103/PhysRevLett.110.152301
https://doi.org/10.1103/PhysRevC.87.064902
https://doi.org/10.1103/PhysRevC.87.064902
https://doi.org/10.1103/PhysRevC.87.064902
https://doi.org/10.1103/PhysRevC.87.064902
https://doi.org/10.1103/PhysRevLett.103.092301
https://doi.org/10.1103/PhysRevLett.103.092301
https://doi.org/10.1103/PhysRevLett.103.092301
https://doi.org/10.1103/PhysRevLett.103.092301
https://doi.org/10.1103/PhysRevC.79.024906
https://doi.org/10.1103/PhysRevC.79.024906
https://doi.org/10.1103/PhysRevC.79.024906
https://doi.org/10.1103/PhysRevC.79.024906
https://doi.org/10.1088/0954-3899/38/12/124054
https://doi.org/10.1088/0954-3899/38/12/124054
https://doi.org/10.1088/0954-3899/38/12/124054
https://doi.org/10.1088/0954-3899/38/12/124054
https://doi.org/10.1103/PhysRevC.88.064911
https://doi.org/10.1103/PhysRevC.88.064911
https://doi.org/10.1103/PhysRevC.88.064911
https://doi.org/10.1103/PhysRevC.88.064911
https://doi.org/10.1103/PhysRevLett.108.212301
https://doi.org/10.1103/PhysRevLett.108.212301
https://doi.org/10.1103/PhysRevLett.108.212301
https://doi.org/10.1103/PhysRevLett.108.212301
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1103/PhysRevC.92.064905
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1007/JHEP01(2012)138
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevD.92.114505
https://doi.org/10.1103/PhysRevLett.113.052301
https://doi.org/10.1103/PhysRevLett.113.052301
https://doi.org/10.1103/PhysRevLett.113.052301
https://doi.org/10.1103/PhysRevLett.113.052301
https://doi.org/10.1007/JHEP11(2010)013
https://doi.org/10.1007/JHEP11(2010)013
https://doi.org/10.1007/JHEP11(2010)013
https://doi.org/10.1007/JHEP11(2010)013
https://doi.org/10.1103/PhysRevC.95.014909
https://doi.org/10.1103/PhysRevC.95.014909
https://doi.org/10.1103/PhysRevC.95.014909
https://doi.org/10.1103/PhysRevC.95.014909
https://doi.org/10.1103/PhysRevC.81.031903
https://doi.org/10.1103/PhysRevC.81.031903
https://doi.org/10.1103/PhysRevC.81.031903
https://doi.org/10.1103/PhysRevC.81.031903
https://doi.org/10.1103/PhysRevLett.97.162302
https://doi.org/10.1103/PhysRevLett.97.162302
https://doi.org/10.1103/PhysRevLett.97.162302
https://doi.org/10.1103/PhysRevLett.97.162302
https://doi.org/10.1103/PhysRevC.86.034902
https://doi.org/10.1103/PhysRevC.86.034902
https://doi.org/10.1103/PhysRevC.86.034902
https://doi.org/10.1103/PhysRevC.86.034902
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1103/PhysRevC.94.024921
https://doi.org/10.1088/1742-6596/736/1/012020
https://doi.org/10.1088/1742-6596/736/1/012020
https://doi.org/10.1088/1742-6596/736/1/012020
https://doi.org/10.1088/1742-6596/736/1/012020
https://doi.org/10.1103/PhysRevC.95.064901
https://doi.org/10.1103/PhysRevC.95.064901
https://doi.org/10.1103/PhysRevC.95.064901
https://doi.org/10.1103/PhysRevC.95.064901
https://doi.org/10.1103/PhysRevC.84.024909
https://doi.org/10.1103/PhysRevC.84.024909
https://doi.org/10.1103/PhysRevC.84.024909
https://doi.org/10.1103/PhysRevC.84.024909
https://doi.org/10.1103/PhysRevC.95.054901
https://doi.org/10.1103/PhysRevC.95.054901
https://doi.org/10.1103/PhysRevC.95.054901
https://doi.org/10.1103/PhysRevC.95.054901
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevLett.103.251601
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.83.014913
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1103/PhysRevC.90.044902
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1016/j.nuclphysa.2013.02.062
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.91.044901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1103/PhysRevC.89.064901
https://doi.org/10.1088/0264-9381/27/2/025006
https://doi.org/10.1088/0264-9381/27/2/025006
https://doi.org/10.1088/0264-9381/27/2/025006
https://doi.org/10.1088/0264-9381/27/2/025006
https://doi.org/10.1103/PhysRevC.69.034903
https://doi.org/10.1103/PhysRevC.69.034903
https://doi.org/10.1103/PhysRevC.69.034903
https://doi.org/10.1103/PhysRevC.69.034903
https://doi.org/10.1103/PhysRevLett.88.062302
https://doi.org/10.1103/PhysRevLett.88.062302
https://doi.org/10.1103/PhysRevLett.88.062302
https://doi.org/10.1103/PhysRevLett.88.062302
https://doi.org/10.1103/PhysRevLett.89.159901
https://doi.org/10.1103/PhysRevLett.89.159901
https://doi.org/10.1103/PhysRevLett.89.159901
https://doi.org/10.1007/BF00281373
https://doi.org/10.1007/BF00281373
https://doi.org/10.1007/BF00281373
https://doi.org/10.1007/BF00281373
https://doi.org/10.1103/RevModPhys.61.41
https://doi.org/10.1103/RevModPhys.61.41
https://doi.org/10.1103/RevModPhys.61.41
https://doi.org/10.1103/RevModPhys.61.41



