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Constraining the equation of state with identified particle spectra
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We show that in a central nucleus-nucleus collision, the variation of the mean transverse mass with the
multiplicity is determined, up to a rescaling, by the variation of the energy over entropy ratio as a function of the
entropy density, thus providing a direct link between experimental data and the equation of state. Each colliding
energy thus probes the equation of state at an effective entropy density, whose approximate value is 19 fm−3 for
Au+Au collisions at 200 GeV and 41 fm−3 for Pb+Pb collisions at 2.76 TeV, corresponding to temperatures
of 227 and 279 MeV if the equation of state is taken from lattice calculations. The relative change of the mean
transverse mass as a function of the colliding energy gives a direct measure of the pressure over energy density
ratio P/ε, at the corresponding effective density. Using Relativistic Heavy Ion Collider (RHIC) and Large
Hadron Collider (LHC) data, we obtain P/ε = 0.21 ± 0.10, in agreement with the lattice value P/ε = 0.23
in the corresponding temperature range. Measurements over a wide range of colliding energies using a single
detector with good particle identification would help reduce the error.
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I. INTRODUCTION

One of the motivations for studying nucleus-nucleus colli-
sions at high energies is to probe experimentally the equation
of state of QCD matter [1]. Ultrarelativistic collisions probe
the phase diagram at vanishing chemical potential: At high
temperatures, hadrons merge into a quark-gluon plasma. It
was originally hoped that this change occurred through a
first-order phase transition [2]. However, it was progressively
understood that it is a smooth, analytic crossover [3,4] and that
a phase transition, if any [5], can only take place at high baryon
density [6,7]. The equation of state of baryonless QCD matter
is now known precisely from lattice simulations with physical
quark masses [8,9]. The goal of this paper is to understand
the imprints of the equation of state on heavy-ion data, in
particular transverse momentum spectra.

Relativistic hydrodynamics [10] plays a central role in our
understanding of heavy-ion observables in the soft sector. Its
simplest version is ideal hydrodynamics [11], which describes
most of the qualitative features seen in transverse momentum
spectra, elliptic flow, and interferometry radii [12]. This simple
description can be refined by taking into account finite-size
corrections due to viscosity [13] which are important for
azimuthal anisotropies [14]. The equation of state lies at the
core of the hydrodynamic description, and the vast majority
of modern hydrodynamic calculations [15–25], which give a
satisfactory description of soft observables, use as an input an
equation of state from lattice QCD calculations.

While the success of hydrodynamics suggests that equi-
libration takes place to some degree [26,27], most dynam-
ical calculations predict that the system produced in the
early stages of a heavy-ion collision is far from chemical
equilibrium, typically with overpopulation in gluon numbers
[28] and underpopulation in quark numbers [29,30]. The
resulting effective equation of state might differ significantly
from that calculated in lattice QCD, and it is important to
understand what experimental data tell us about the equation
of state, beyond a comparison between different lattice results
[31,32]. It has been recently shown that a simultaneous fit of

several observables to hydrodynamic calculations constrains
the equation of state to some extent [33]. However, this recent
study uses a systematic, Bayesian framework, and the nature of
the relationships between model parameters and observables
remains obscure. Further Bayesian studies have shown [34]
that interferometry radii and transverse momentum spectra are
the observables which are most sensitive to the equation of
state, but they are still unable to provide a simple picture of
how this dependence takes place. Another related approach
is to use a deep learning method to distinguish the crossover
and first-order phase transitions in equations of state from
heavy-ion particle spectra [35].

We show that for central collisions, the variation of the mean
transverse mass per particle as a function of the multiplicity
density dN/dy (which itself depends on the collision energy√

s) reproduces, up to proportionality factors, the variation of
energy over entropy ratio ε/s as a function of the entropy
density s [36]. We illustrate our point by discussing an
ideal experiment in Sec. II. We then carry out detailed
hydrodynamic simulations using a variety of equations of
state. The equations of state are presented in Sec. III. Results
from hydrodynamic calculations are discussed in Sec. IV.
Calculations are compared with experimental data from RHIC
and LHC in Sec. V.

II. AN IDEAL EXPERIMENT

In order to illustrate our picture, we first describe a simple
ideal experiment: The fluid is initially at rest in thermal
equilibrium at temperature T0 in a container of arbitrary shape
and large volume V . At t = 0, the walls of the container
disappear and the fluid expands freely into the vacuum. If
V is large enough, this expansion follows the laws of ideal
hydrodynamics. At some point, the fluid transforms into N
particles. We assume for simplicity that this transformation
occurs at a single freeze-out temperature Tf [37].

The thermodynamic properties at the initial temperature T0

can be easily be reconstructed by measuring the energy E and
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the number of particles N at the end of the evolution, provided
that the initial volume V is known. The total energy E is
conserved throughout the evolution; hence, the initial energy
density is

ε(T0) = E

V
. (1)

For simplicity, we assume throughout this paper that the net
baryon number is negligible (which corresponds to high-
energy collisions) so that the energy density depends solely
on the temperature.

The initial entropy density can be inferred from the final
number of particles N . Ideal hydrodynamics conserves the
total entropy S. The fluid is transformed into particles at
the freeze-out temperature Tf , and the multiplicity N is
directly proportional to the entropy.1 Therefore, the initial
entropy density is related to the final multiplicity through the
relation

s(T0) =
(

S

N

)
Tf

N

V
, (2)

The volume dependence cancels in the energy per
particle:

ε(T0)

s(T0)
=

(
N

S

)
Tf

E

N
. (3)

One can repeat the experiment for several values of the initial
density and plot the energy per particle E/N as a function
of N/V . One thus obtains a plot of ε/s versus s, which
gives access to the equation of state. Note that Eqs. (2) and
(3) do not involve the fluid velocity pattern, which depends
on the shape of the initial volume. Hydrodynamic modeling
only enters through the entropy per particle at freeze-out
(S/N )Tf

. This ideal experiment thus allows one to measure
the equation of state for temperatures larger than Tf . Based
on a similar picture, Van Hove [38] argued that the transition
from a hadronic gas to a quark-gluon plasma should result
in a flattening of the mean transverse momentum 〈pT 〉 as a
function of the multiplicity. It has been recently attempted to
extract an approximate equation of state from recent pp and
pp̄ collision data on this basis [39,40].

The little liquid produced in an ultrarelativistic nucleus-
nucleus collision has similarities with this ideal experiment
if one cuts a thin slice perpendicular to the collision axis
and looks at its evolution in the transverse plane. The initial
transverse velocity is zero, and the fluid expands freely into
the vacuum right after the collision takes place. The two main
differences are as follows:

(1) The initial temperature profile is not uniform in a box
but has a nontrivial transverse structure.

(2) The slice expands in the longitudinal direction and
its energy decreases as a result of the work of the

1Both the multiplicity N and the entropy S are scalar quantities,
and hence, the entropy per particle only depends on the freeze-out
temperature Tf , not on the fluid velocity.

longitudinal pressure [41] exerted by neighboring
slices: dE = −PdV .

As we shall see, both effects can be taken care of by
appropriately redefining the volume V and the temperature
T0, and replacing the energy per particle E/N with the mean
transverse mass, where the transverse mass is defined by
mT =

√
p2

T + m2. Equations (2) and (3) are replaced with

s(Teff) = a
1

R3
0

dN

dy
,

ε(Teff)

s(Teff)
= b〈mT 〉, (4)

where R0 is a measure of the transverse radius, which will
be defined in Sec. IV, Teff is an effective temperature taking
into account the longitudinal cooling (Teff < T0), dN/dy is the
multiplicity per unit rapidity, and a and b are dimensionless
parameters whose values are independent of the equation
of state and of the colliding energy. Their values will be
determined in Secs. IV using hydrodynamic calculations,
which take into account the longitudinal cooling and the
inhomogeneity of the initial profile.

By measuring the mean transverse mass and the multiplicity
density in a given system at different colliding energies,
one obtains the variation of 〈mT 〉 as a function of dN/dy.
When one neglects the energy dependence of the transverse
size R0 (this will be justified in Sec. V), the slope of
this curve in a log-log plot is the ratio of pressure over
energy density, P (Teff)/ε(Teff) [42–44]. Using Eqs. (4), one
obtains

d ln〈mT 〉
d ln dN/dy

= d ln ε − d ln s

d ln s

∣∣∣∣
Teff

= P

ε

∣∣∣∣
Teff

, (5)

where we have used the thermodynamic identities dε = T ds
and ε + P = T s. Note that the dependence on the unknown
coefficients a and b cancels in this expression. One thus
obtains a measure of the ratio P/ε of the quark-gluon matter
produced in the collision from data alone. The entropy density
s(Teff) at which this ratio is measured, however, depends
on the coefficient a, which can only be obtained through
detailed hydrodynamic simulations. These will be carried out
in Sec. IV.

III. EQUATIONS OF STATE

The equation of state of QCD is characterized by a transition
from a hadronic, confined system at low temperatures to
a phase dominated by colored degrees of freedom at high
temperatures. It has been determined precisely through lattice
calculations [8,9]. Lattice calculations are carried out at zero
baryon chemical potential, and the matter produced at central
rapidity in high-energy collisions also has small net baryon
number. We therefore choose to neglect net baryon density in
the present study.

In lattice calculations, one first computes the trace anomaly
I ≡ ε − 3P as a function of the temperature T , where ε is the
energy density and P is the pressure. Other quantities are then
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FIG. 1. The pressure P normalized by T 4 vs the temperature
T . The curves correspond to various parametrizations obtained by
varying the number of degrees of freedom (a), or the transition tem-
perature (b). The solid line in both panels, labeled “L,” corresponds
to the lattice result [9].

determined through the thermodynamic relations:

P

T 4
=

∫ T

0

I

T 5
dT ,

ε = I + 3P,

s = ε + P

T
. (6)

The equation of state used in hydrodynamic calculations is
constrained, on the low-temperature side, by the condition
that it matches that of the hadron resonance gas created
at the end of the evolution [45,46]. All the equations of
state used in this paper match the hadron resonance gas for
temperatures smaller than 140 MeV, which is the freeze-out
temperature of our hydrodynamic calculation. We choose to
vary the high-temperature part along two different directions:
either by varying the high-temperature limit of P/T 4, which
is proportional to the number of degrees of freedom of the
quark-gluon plasma [denoted as equation of state (EOS) A, B,
L, and C in Fig. 1(a), where EOS L corresponds to the lattice
QCD-based equation of state], or by varying the temperature
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FIG. 2. Energy over entropy vs entropy density for the equations
of state shown in Fig. 1. Symbols correspond to Eq. (4), where 〈mT 〉
and dN/dy are evaluated at Tf = 140 MeV in ideal hydrodynamics,
before resonance decays.

range over which the transition occurs [denoted as EOS D,
E, L, and F in Fig. 1(b)]. The parametrization is explicated
in Appendix A. We thus span a range of equations of state
around the lattice value. Note that the error on P/T 4 from
lattice calculations is smaller than 0.1 for all T [8]. We explore
a much wider range of equations of state.

According to the picture outlined in Sec. II, heavy-ion
collisions measure the variation of the energy over entropy
ratio as a function of the entropy density. This variation is
displayed in Fig. 2 for the various equations of state displayed
in Fig. 1. Note that the ratio ε/s is closely related to the
temperature [38]:

3T

4
<

ε

s
< T, (7)

where the lower bound corresponds to the ideal gas limit
P = ε/3 and the upper bound corresponds to P = 0. Thus,
the variation of ε/s as a function of s is essentially the
variation of the temperature with the entropy density. In the
high-temperature phase, s ∝ νT 3, where ν is the effective
number of degrees of freedom of the quark gluon plasma.
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More degrees of freedom implies a smaller temperature, for
the same entropy density, which explains why the order of the
curves is inverted in Fig. 2 compared to Fig. 1.

IV. HYDRODYNAMIC CALCULATIONS

In this section, we carry out hydrodynamical simulations
in order to determine the mapping between observables and
the equation of state according to Eq. (4). We model the
evolution of the fluid near midrapidity and assume boost
invariance in the longitudinal direction [41]. We solve the
transverse expansion numerically using a (2+1)-dimensional
code [47]. The initial transverse velocity is assumed to be zero
at the proper time τ0 = 0.4 fm/c at which the hydrodynamic
expansion starts. This small value of τ0 accounts for the early
transverse expansion [48–50], irrespective of whether or not
hydrodynamics is applicable at early times [51].

Initial conditions are defined by the initial transverse
density profile. The most important quantity involving initial
conditions in this study is the effective radius R0 defined by

R2
0 ≡ 2(〈|x|2〉 − |〈x〉|2), (8)

where x is the position in the transverse plane, and angular
brackets denote an average value weighted with the initial
entropy density:

〈F (x)〉 ≡
∫

F (x)s(x,τ0)d2x∫
s(x,τ0)d2x

. (9)

The normalization factor 2 in Eq. (8) ensures that one recovers
the correct result for a uniform entropy density profile within
a circle of radius R0.

In the ideal experiment described in Sec. II, the mapping
between observables and the equation of state is independent
of the shape of the initial volume. For this reason, one
expects that most of the dependence on the shape of the
initial density profile is through the radius R0. This has
been checked in detail in studies of transverse momentum
fluctuations [43,52,53], where it was shown that the mean
transverse momentum in hydrodynamics is sensitive to initial-
state fluctuations only through fluctuations of R0. We have
checked it independently by comparing two standard models
of initial conditions, the Monte Carlo Glauber model [54]
and the Monte-Carlo Kharzeev-Levin-Nardi (MCKLN) [55]
model, as will be explained below. The default setup of
our hydrodynamic calculation uses a Monte Carlo Glauber
simulation of 0–5% most central Au+Au collisions where the
energy density is a sum of contributions of binary collisions,
and the contribution of each collision is a Gaussian of width
0.4 fm centered halfway between the colliding nucleons. The
resulting density profile is centered and then averaged over a
large number of events in order to obtain a smooth profile
[56]. The normalization of the density profile determines
the multiplicity dN/dy. We run each calculation with five
different normalizations spanning a range which covers the
LHC and RHIC data, which will be used in Sec. V.

A. Ideal hydrodynamics

We first carry out ideal hydrodynamic simulations for all
the equations of state displayed in Fig. 1. The fluid is converted

into hadrons through the standard Cooper-Frye freeze-out
procedure [37] at a temperature Tf = 140 MeV. We include
all hadron resonances with M < 2.25 GeV and compute 〈mT 〉
and dN/dy directly at freeze-out, before resonances decay.
Our goal here is to mimic as closely as possible the ideal
experiment outlined in Sec. II.

The symbols in Fig. 2 correspond to the right-hand side
of Eq. (4), where the dimensionless parameters a and b have
been fitted to achieve the best possible agreement with the
left-hand side. There are five points for each equation of state,
which correspond to different initial temperatures. The overall
agreement is excellent and shows that the variation of 〈mT 〉 as
a function of (1/R3

0)(dN/dy) is determined by the equation of
state.

In order to test that this mapping is independent of initial
conditions, we have carried out a calculation with MCKLN
initial conditions. While both models give values of R0 that
differ by 5%, they yield the same value of 〈mT 〉 when compared
at the same value of (1/R3

0)dN/dy.
Let us now comment on the order of magnitude of the fit

parameters a and b. First, compare Eq. (3) and the second line
of Eq. (4). The entropy per particle at freeze-out before decays
is (S/N )Tf

= 6.5 in this calculation. The transverse mass of a
particle is smaller than its energy, since it does not include
the longitudinal momentum pz. The relevant longitudinal
momentum here is that relative to the fluid, which cannot be
measured, since data are integrated over all fluid rapidities. The
value of b = 0.202 is slightly larger than (N/S)Tf

= 0.154,
and thus compensates for the loss of longitudinal momentum.

We now discuss the order of magnitude of a. The main
difference between the ideal experiment described in Sec. II
and the real experiment is that the energy of the fluid slice
decreases as a result of the work done by the longitudinal pres-
sure. In ideal hydrodynamics, this cooling is only significant at
early times: After the transverse expansion sets in, the pressure
decreases very rapidly, the work becomes negligible, and
the energy stays constant. A rough, but qualitatively correct,
picture is that the expansion is purely longitudinal during a
time τeff and that the energy is conserved for τ > τeff [42]. For
dimensional reasons, τeff = f R0, where f is of order unity.
The volume at τeff is V = πR2

0τeff = πf R3
0. By inserting this

value into Eq. (2) and identifying the right-hand side with
the first line of Eq. (4), one obtains f � 0.5, in agreement
with the value obtained in previous calculations [42]. Ideal
hydrodynamics thus probes the equation of state at a time
τeff ∼ 0.5R0, which is the typical time at which transverse
flow and elliptic flow develop [57–59].

B. Resonance decays

The largest correction to the naive ideal fluid picture comes
from decays occurring through strong or electromagnetic
interactions, which occur after freeze-out, but before the
daughter particles reach the detectors. We compute particle
spectra after strong and electromagnetic decays, but before
weak decays. Decays are treated in Ref. [60], by assuming
that the decay rate is proportional to the invariant phase space.
After decays, the only remaining particles are pions, kaons,
nucleons, and strange baryons. In this preliminary study,
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FIG. 3. Comparison of results from various hydrodynamic cal-
culations. From top to bottom: ideal hydrodynamics before and
after decays, and viscous hydrodynamics without and with viscous
correction at freeze-out.

we neglect strange baryons, which are a small fraction of
the total number of particles and are identified in separate
analyses [61]. We therefore evaluate the multiplicity dN/dy
and the mean transverse mass including only pions, kaons, and
(anti)nucleons, both charged and neutral. As shown in Fig. 3,
decays increase the multiplicity by 40%. They also conserve
the total energy, so that 〈mT 〉 decreases, while the product
〈mT 〉dN/dy only changes by a few percent.

Since the increase of dN/dy due to decays depends solely
on the freeze-out temperature, but is independent of the
colliding energy and the equation of state, decays amount to
further rescalings of 〈mT 〉 and dN/dy. They can be taken into
account by modifying the values of the coefficients a and b in
Eq. (4). We again determine the values of a and b through a
simultaneous least-square fit to all equations of state. The result
is shown in Fig. 4, where only the equations of state of Fig. 1(a)
are shown. After rescaling, the effective entropy density of the
fluid is unchanged: Locations of symbols in Figs. 2(a) and 4 are
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FIG. 4. Same as Fig. 2(a) after resonance decays.
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FIG. 5. Same as Fig. 4 with shear and bulk viscosity included.

identical within less than 0.5%. The fact that they are identical
confirms that Eqs. (4) reconstruct thermodynamic properties
of the fluid.

A more realistic description of the hadronic stage should
include not only decays, but also rescatterings, for instance,
by coupling hydrodynamics to a transport code [62–64]. It has
been recently shown [65] that transverse momentum spectra
are remarkably independent of the temperature at which one
switches from the hydrodynamic to the transport description,
which implies that our results would be unchanged if we
switched from a hydrodynamic description to a transport
calculation at a temperature larger than 140 MeV. Below
140 MeV, effects of hadronic scatterings are suppressed due
to the lower density. Our choice of Tf allows us to roughly
reproduce observed particle ratios, in agreement with Ref. [65].
This is important as the mean mT , averaged over all particle
species, strongly depends on particle ratios.

C. Viscosity

We finally study viscous corrections to the ideal fluid
picture. We use “minimal” shear viscosity η/s = 1/4π [66]
and bulk viscosity ζ/s = 2(1/3 − c2

s )η/s [67] based on the
gauge-string correspondence, where cs is the sound velocity.
The relaxation times are also conjectured in the holographic
approach [68]. Viscosity modifies the equations of motion of
the fluid [69] and the momentum distribution of particles at
freeze-out [70,71]. We show both effects separately in Fig. 3.
The main effect of viscosity is to increase the multiplicity
for a given initial condition, which is a consequence of
the entropy increase due to dissipative processes. On the
other hand, the value of 〈mT 〉 changes little, which is due
to a partial cancellation between effects of shear viscosity
(which increases 〈mT 〉) and bulk viscosity (which decreases
〈mT 〉) [71].

The values of 〈mT 〉 and dN/dy can again be matched to
the equation of state through Eqs. (4). We again determine the
values of a and b which give the best simultaneous fit to all
equations of state. The result is displayed in Fig. 5, where only
the equations of state of Fig. 1(a) are shown. This figure shows
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that viscous corrections do not alter qualitatively the ideal fluid
picture, and that the variation of the mean transverse mass with
the multiplicity density is still driven by the equation of state
in the presence of viscosity. Comparison with Fig. 4 shows
that symbols are shifted to the right, which means that for the
same initial temperature, viscous hydrodynamics results in a
higher effective entropy density. The reason is that entropy is
produced in the off-equilibrium processes.

The actual value of the shear and bulk viscosity are not
known precisely. Since a and b depend slightly on the viscosity,
the uncertainty on the viscosity translates into an uncertainty
on the mapping of experimental data onto the equation of
state through Eq. (4). The upper bound on constant η/s from
heavy-ion data is typically 0.2 [72]. It has been recently
noted that the inclusion of bulk viscosity tends to lower the
preferred value of the shear viscosity [65], so that η/s < 0.2
seems conservative. We assume that viscous corrections are
proportional to the viscosity; therefore, the uncertainty can
be inferred from the difference between our viscous and
ideal calculations. The uncertainty on a is 7% and amounts
on an uncertainty on the effective entropy density seff . The
uncertainty on b is 11% and is essentially an uncertainty
on the corresponding temperature. Note, however, that the
dependence on a and b cancels in the logarithmic slope, Eq. (5),
and the ratio P/ε can be determined precisely even if transport
coefficients are not precisely determined.

V. COMPARISON WITH DATA

We now discuss to what extent existing data constrain the
equation of state. Both dN/dy and 〈mT 〉 require spectra of
pions, kaons, and protons. Such data have been published by
STAR [73] and PHENIX [74] at the Relativistic Heavy Ion
Collider (RHIC) and by ALICE [75] at the Large Hadron
Collider (LHC). PHENIX and ALICE data for protons are
corrected for the contamination from weak � decays, while
STAR data are not. We correct STAR data by assuming that
a fraction 35% ± 10% of protons come from � decays, as
determined by the PHENIX analysis [74]. Particles are only
identified within a limited pT range, which depends on the
experiment, and spectra must be extrapolated in order to
obtain dN/dy and 〈mT 〉. These extrapolations are discussed
in Appendix B. The data we use are for charged particles, and

we need 〈mT 〉 and dN/dy for all hadrons, including neutral
ones. Yields of neutral particles are obtained assuming isospin
symmetry. The resulting values of 〈mT 〉 and dN/dy are given
in Table I. For 200 GeV, we include both STAR and PHENIX
measurements, which are slightly different, but compatible
within errors.

In order to convert the multiplicity dN/dy into a density,
one needs an estimate of the initial transverse size R0. This
quantity, which represents the mean square radius of the initial
density profile, is not measured and can only be estimated in
a model. As we shall see, it turns out to be the largest source
of uncertainty when constraining the equation of state from
data. In particular, the uncertainty from R0 is larger than the
uncertainty from transport coefficients.

We discuss how we estimate R0. Note that the transverse
size fluctuates event to event, even in a narrow centrality
window [52]. Ideally, we would like to estimate the average
value over events of (1/R3

0)dN/dy. Since the input available
from experiment is an average of dN/dy, for the sake of
simplicity, we estimate the average value of R0 over many
events and divide dN/dy by it for our analyses. We use the
same Monte Carlo Glauber model as in our hydrodynamic
calculation. The resulting values, averaged over many events,
are given in Table I. The MCKLN model [55] gives values
5% smaller, which implies that the density is 15% larger. This
shows that the uncertainty on the transverse size is significant.

However, the variation of R0 with colliding energy for a
given system is small, so that the evolution of the density
is mostly driven by the increase in the multiplicity dN/dy.
Therefore, uncertainties on R0 cancel when comparing two
different collision energies. The variation of the mean trans-
verse mass with dN/dy directly gives the ratio P/ε, as shown
by Eq. (5). As pointed out in Sec. IV C, uncertainties from
the viscosity also cancel in this energy dependence. When we
use PHENIX and ALICE data, which span a wide range of
dN/dy, and taking into account the different sizes of Au and
Pb nuclei, Eq. (5) gives

P

ε

∣∣∣∣
Teff

= 0.21 ± 0.10, (10)

where the error is solely from experiment.
The only significant theoretical uncertainty is on the

effective temperature Teff at which this ratio is measured. We

TABLE I. Results for Pb+Pb collisions at the LHC and Au+Au collisions at RHIC. The centrality is 0–6% for 130 GeV data and 0–5%
for all other energies. The first columns give our values of 〈mT 〉 and dN/dy, obtained by extrapolating the measurements (see text). The third
column is the value of R0 we use in Eq. (4), which is obtained from a Glauber model, but subject to significant theoretical uncertainty (see
text). The last columns give the values of the effective entropy density defined by Eq. (4) and of the corresponding temperature if the equation
of state is taken from lattice QCD. Error bars on seff and Teff are experimental only.

√
s dN/dy 〈mT 〉 R0 seff Teff

(GeV) (MeV) (fm) (fm−3) (MeV)

5020 ? ? 6.21 48.1 ± 3.1 292 ± 5
2760 [75] 2764 ± 177 686 ± 19 6.17 40.7 ± 2.6 279 ± 5
200 [74] 1146 ± 79 589 ± 33 5.97 18.6 ± 1.3 227 ± 4
200 [73] 1220 ± 97 590 ± 48 5.97 19.9 ± 1.6 231 ± 5
130 [76] 1042 ± 77 560 ± 41 5.93 17.1 ± 1.3 223 ± 4
62.4 [73] 1867 ± 65 549 ± 28 5.92 14.3 ± 1.1 214 ± 4
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FIG. 6. Experimental data from Table I, compared to value given
by various equations of state and Eqs. (4), where a and b are taken
from our viscous hydrodynamic calculation, and R0 from a Glauber
model (see text).

provide in Table I the values of the effective entropy density seff

given by Eq. (4), where a is given by our viscous hydrodynamic
calculation. The value at 5.02 TeV, where identified particle
spectra are not yet published, is obtained by assuming that
the relative increase in dN/dy from 2.76 TeV equals that of
dNch/dη, that is, 20% [77]. As discussed in Sec. IV C, the
uncertainty on seff from transport coefficients is 7%, and that
from the transverse size R0 is at least 15%.

The value of the temperature Teff corresponding to seff can
only be obtained if the equation of state is known. The values in
the last column of Table I correspond to the lattice equation of
state. Lattice calculations give P/ε = 0.23 for a temperature
halfway between the values of Teff corresponding to 200 GeV
and 2.76 TeV. The experimental value, Eq. (10), is compatible
with the lattice result. Experiments at

√
s = 5.02 TeV, for

which identified particle spectra are yet unpublished, will
probe the equation of state at a temperature close to 300 MeV.
Note that the theoretical uncertainty of �20% on seff translates
into an uncertainty ∼15 MeV on the effective temperature at
the LHC, which is dominated by the uncertainty on the initial
transverse radius R0.

Figure 6 shows the comparison between experimental
data and the values obtained from the equation of state
through Eqs. (4), where a and b are taken from our viscous
hydrodynamic calculation (see Fig. 5). With the minimal
viscosity chosen in this calculation, LHC data slightly favor
the equation of state C, which has a larger pressure than the lat-
tice equation of state. With a higher viscosity, however, the lat-
tice equation of state would be preferred. Equations of state A
and B are ruled out: As already well known, heavy-ion data fa-
vor a soft equation of state. Note that current experiments only
probe the equation of state up to T ∼ 300 MeV (see Table I).

VI. CONCLUSIONS

We have shown that in central nucleus-nucleus collisions,
the variation of the mean transverse mass as a function of the
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FIG. 7. The trace anomaly normalized by T 4 vs the temperature
T . The curves correspond to various parameterizations obtained
by varying the number of degrees of freedom (a) or the transition
temperature (b).

multiplicity density is, up to rescaling factors, driven by the
variation of the energy over entropy ratio ε/s as a function
of the entropy density s. Each collision energy probes the
equation of state at a different entropy density seff , which
corresponds roughly to the average density at a time τeff ∼
3 fm/c. RHIC and LHC experiments probe the equation of
state for temperatures up to ∼300 MeV.

The largest source of uncertainty at the theoretical level is
the initial transverse size R0. The uncertainty from unknown
transport coefficients (shear and bulk viscosity) is twice as
small. These theoretical uncertainties cancel if one measures
the evolution of the mean transverse mass as a function of
collision energy, which gives direct access to the pressure over
energy density ratio P/ε of the quark-gluon plasma.

This analysis requires precise experimental data on identi-
fied particle spectra. One could think of replacing the trans-
verse mass with the transverse momentum and the rapidity
with the pseudorapidity, which was the original idea of Van
Hove [38] and would allow one to work with unidentified
particles. However, we have checked that the mapping onto
the equation of state is not as good in this case.

044902-7



AKIHIKO MONNAI AND JEAN-YVES OLLITRAULT PHYSICAL REVIEW C 96, 044902 (2017)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.5  1  1.5  2

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(a) π+

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  0.5  1  1.5  2

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(b) π-

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(c)  K+

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(d)  K-

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  0.5  1  1.5  2  2.5  3

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(e)  p

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

 0
 5

 10
 15
 20
 25
 30
 35
 40

 0  0.5  1  1.5  2  2.5  3

dN
/d

p t
dy

 (G
eV

-1
)

pT (GeV)

(f) -p

ALICE 2.76 TeV
PHENIX 200 GeV

STAR 200 GeV
STAR 130 GeV
STAR 62.4 GeV

FIG. 8. Transverse momentum distributions of identified particles in Pb+Pb collisions at the LHC and Au+Au collisions at RHIC. The
centrality range is 0–5% for all sets of data except 130-GeV data, which are 0–6%. Symbols are data from ALICE [75], PHENIX [74],
and STAR [73,76]. Solid lines are blast-wave fits (see text). Each panel corresponds to a different particle species: positive (a) and negative
(b) pions, positive (c) and negative (d) kaons, protons (e), and antiprotons (f). STAR data for protons and antiprotons also include secondary
products of � and �̄ decays, which explain the larger values. Experimental errors are not shown for sake of readability, but they are taken into
account in the fits.

The value of P/ε obtained from the evolution of spectra
from RHIC to LHC energies is compatible with the lattice
equation of state, but with large errors. Carrying out an energy
scan at the LHC with a single detector would greatly improve
the quality of the measurement.
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APPENDIX A: VARYING THE EQUATION OF STATE

The equation of state is constructed by connecting the trace
anomaly of the hadron resonance gas model smoothly to that
of lattice QCD [9]. To systematically generate variations of the
equation of state, modification is made through two factors cw

and ch in the QGP phase for our analyses. The expression reads

I (T ) = 1

2

[
1 − tanh

(
T − Ts

	Ts

)]
IHRG(T )

+ ch

2

[
1 + tanh

(
T − Ts

	Ts

)]
Ilat(Tw), (A1)
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TABLE II. Values of dN/dy for identified hadrons obtained by extrapolating measured spectra to the whole pT range. Our extrapolations
are compared with the extrapolations done by experimental collaborations (in italics).

Exp.
√

s [GeV] π+ π− K+ K− p p̄

ALICE 2760 732.3 733 ± 54 731.0 732 ± 52 109.0 109 ± 9 108.6 109 ± 9 33.6 34 ± 3 33.2 33 ± 3
PHENIX 200 306.5 286.4 ± 24.2 297.6 281.8 ± 22.8 48.1 48.9 ± 6.3 43.8 45.7 ± 5.2 16.4 18.4 ± 2.6 11.7 13.5 ± 1.8
STAR 200 310.6 322 ± 25 315.1 327 ± 25 51.3 51.3 ± 6.5 49.2 49.6 ± 6.2 34.5 34.7 ± 4.4 27.7 26.7 ± 3.4
STAR 130 265.5 278 ± 20 267.7 280 ± 20 46.7 46.3 ± 3.0 43.1 42.7 ± 2.8 28.2 28.2 ± 3.1 19.9 20.2 ± 2.2
STAR 62.4 221.1 233 ± 17 225.2 237 ± 17 38.3 37.6 ± 2.7 32.5 32.4 ± 2.3 29.2 29.0 ± 3.8 13.5 13.6 ± 1.7

where Tw = Ts + cw(T − Ts). cw and ch are associated with
the width and the magnitude of I (T ) in the QGP phase,
respectively. cw = 1 and ch = 1 recover the lattice QCD
result. The hadronic equation of state is left untouched
because, as mentioned earlier, the Cooper-Frye formula
requires that kinetic theory reproduce the equation of
state used in the hydrodynamic model at freeze-out
for energy-momentum conservation. When one chooses
Ts = 160 MeV and 	Ts = 0.1Ts , this is satisfied at and below
T = 140 GeV.

The pressure is obtained through the thermodynamic
relations (6). Since the trace anomaly is integrated, cw

and ch have to be modified simultaneously to shift the
pseudocritical temperature and change the effective number
of degrees of freedom in the pressure or the entropy density
(Fig. 7).

We first consider a set of equations of state with different
numbers of QGP degrees of freedom by choosing (cw,ch) =
(2,0.5), (1.5,0.75), (1,1), and (0.5,1.25). They are labeled as
EOS A, B, L, and C, respectively. The normalized pressure as a
function of the temperature for each equation of state is plotted
in Fig. 1(a). It is noteworthy that we consider an equation
of state which exceeds the Stefan-Boltzmann limit with the
last parameter set (0.5,1.25). We also vary the pseudo-critical
temperature by setting the parameters to (cw,ch) = (2,1.5),
(1.5,1.25), (1,1), and (0.5,0.75) as shown in Fig. 1(b), which
are labeled as EOS D, E, L, and F. The equation of state
becomes harder for larger Tc because it is fixed on the hadronic
side.

APPENDIX B: IDENTIFIED PARTICLE SPECTRA
AT RHIC AND LHC

In order to estimate the mean transverse mass per particle
from experimental data, we use as input pT spectra of
identified charged hadrons in the central rapidity region. More

specifically, we use data for charged pions, charged kaons,
protons, and antiprotons, which are shown as symbols in
Fig. 8. These plots show the probability distribution of pT

near midrapidity, dN/dpT dy. Experimental data are shown
as symbols. Pion and kaon yields increase smoothly with
collision energy as expected. This does not appear to hold for
protons and antiprotons, but the reason is simply that STAR
data for protons and antiprotons include, in addition to primary
particles, secondary products of weak � and �̄ decays. Apart
from this difference, PHENIX and STAR data at 200 GeV are
compatible within error bars.

The effect of the net baryon number becomes visible at
the lower energies: It results in more protons than antiprotons
at midrapidity and also slightly more K+ than K− because
the strangeness chemical potential is nonvanishing in the
presence of the net baryon chemical potential μB owing to
the strangeness neutrality condition. While the differences
between particles and antiparticles are linear in μB , the total
multiplicities are even functions of μB , and hence effects of
net baryon number only appear to order μ2

B . We assume that
they are negligible down to 62.4 GeV.

Particles are identified only in a limited pT range, which
depends on the experiment. In order to evaluate the mean mT ,
we need to extrapolate the measured spectrum to the whole pT

range. These extrapolations are done with blast-wave fits [78].
For ALICE data, we fit each particle species independently, as
in the experimental paper [75]. The resulting values of dN/dy
and 〈pT 〉 are given in Tables II and III. They are very close
to the values in the experimental paper. The small differences,
which are much smaller than error bars, can be ascribed to
different fitting algorithms. For sake of consistency, we also
use blast-wave fits to extrapolate PHENIX data [74]. The
resulting values of dN/dy and 〈pT 〉 differ somewhat from
the experimental values which use a different extrapolation
scheme, but are compatible within error bars. For STAR
data, the pT range is too limited to fit each particle species

TABLE III. Values of 〈pt 〉 (in MeV/c) for identified hadrons obtained by extrapolating measured spectra to the whole pT range. Our
extrapolations are compared with the extrapolations done by experimental collaborations (in italics).

Exp.
√

s [GeV] π+ π− K+ K− p p̄

ALICE 2760 522 517 ± 19 525 520 ± 18 878 876 ± 26 867 867 ± 27 1357 1333 ± 33 1356 1353 ± 34
PHENIX 200 438 451 ± 33 447 455 ± 32 681 670 ± 78 697 677 ± 68 1021 949 ± 85 1051 959 ± 84
STAR 200 443 427 ± 22 437 422 ± 22 720 720 ± 74 720 719 ± 74 1102 1104 ± 110 1102 1103 ± 114
STAR 130 414 404 ± 13 415 404 ± 13 668 666 ± 30 668 667 ± 30 1002 1003 ± 87 1002 1002 ± 87
STAR 62.4 410 406 ± 11 407 403 ± 11 646 646 ± 29 646 645 ± 29 960 956 ± 75 960 959 ± 60
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independently: Therefore, we follow the recommendation of
the experimental paper [73] and carry out a simultaneous fit
for kaons and (anti)protons. For pions, however, we carry out
an independent blast-wave fit as for PHENIX data. Agreement
between STAR and PHENIX pion yields at 200 GeV is much
better than in the corresponding experimental papers, which
suggests that the differences were mostly due to the different
extrapolation methods.

Finally, the values of 〈mT 〉, which are needed in this paper,
are listed in Table IV.

TABLE IV. Values of 〈mt 〉 (in MeV) for identified hadrons
obtained by extrapolating measured spectra to the whole pT range.

Exp.
√

s [GeV] π+ π− K+ K− p p̄

ALICE 2760 553 555 1043 1034 1702 1702
PHENIX 200 472 481 878 889 1435 1455
STAR 200 475 470 906 906 1496 1496
STAR 130 448 449 861 861 1416 1416
STAR 62.4 444 441 843 843 1384 1384
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