
PHYSICAL REVIEW C 96, 044622 (2017)

Dynamical deformation in heavy ion reactions and the characteristics of quasifission products
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The investigation of the characteristics of low-energy heavy ion reactions covering both fusion and quasifission
is carried out within the dinuclear system (DNS) concept, which is developed to include the deformation variables
of fragments in addition to the mass numbers of the fragments, so that the energy dissipation, nucleon exchange,
and deformation evolutions of the colliding nuclei as well as their correlations are treated simultaneously, and the
potential energy surface of the system is thus reaction-time dependent. The direct consequence of introducing the
deformation of fragments as dynamical variables is that one must treat the orientation between the two deformed
nuclei. This is solved by introducing a barrier function. It is found that the model can reproduce data about the
mass, as well as the total kinetic energy and its dispersion, of the reaction products very well, revealing that the
DNS model has a reasonable theoretical foundation and thus can reliably describe the reaction mechanism.
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I. INTRODUCTION

So far, all superheavy nuclei up to Z = 118 synthesized
in laboratories have been produced via heavy ion fusion
reactions [1–12]. However, further synthesis becomes more
and more difficult, and a better understanding of the synthesis
mechanism is needed. It is known that the formed compound
nucleus gives no information about the reaction mechanism.
However, the mass distribution and the distribution of the total
kinetic energy (TKE) of the quasifission products reveal some
very important characteristics such as the reaction paths, the
entrance channel effects, and shell effects, with the result that
quasifission (QF) is the most important mechanism preventing
the formation of superheavy nuclei in the fusion of heavy
nuclei [13–16]. Theoretically QF and fusion processes are
described by the dinuclear system (DNS) concept [17–23].
The DNS model was developed to describe the time evolution
of the deformation of the two interacting nuclei [23] in addition
to the process of the nucleon transfer, where the intrinsic
properties of the nuclei couple with the collective diffusion
variables in the master equation via the driving potential of the
system. The TKE of the QF products and its distribution are
critically dependent on the fragment deformation. One chal-
lenge is whether the successful description of the dynamical
deformation can correctly describe the TKE distribution of
the QF products. On this basis the characteristics of the QF
reactions are studied, shedding some interesting light on the
reaction mechanism, and revealing the reasonable foundation
of the DNS.

II. THEORETICAL FRAMEWORK

Based on the DNS, the evaporation residue cross-
section can be written as a sum over all partial waves
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J [24]:

σER(Ec.m.) = πh̄2

2μEc.m.

∑
J

(2J + 1)T (Ec.m.,J )

×PCN(Ec.m.,J )Wsur(Ec.m.,J ), (1)

where the penetration coefficient T (Ec.m.,J ) describes the
probability of the colliding nuclei at the incident energy
Ec.m. overcoming the potential barrier in the entrance channel
to form a DNS. PCN(Ec.m.,J ) is the probability for the
DNS to form a compound nucleus via nucleon transfer, and
Wsur(Ec.m.,J ) is the survival probability for the compound
nucleus in the deexcitation process.

During the collisions, the two nuclei gradually get deformed
due to strong nuclear and Coulomb interactions between them
[25–27]. Such a system also evolves along two main degrees
of freedom: the transfer of nucleons in the mass asymmetry
coordinate η = (A1 − A2)/(A1 + A2) between the nuclei in
the excited system leading to the compound nuclear formation,
and the variation of the internuclear distance r of the nuclei
in the interaction potential leading to QF. The evolution of the
system is described by the following master equation [23]:

dP (A1,β1,β2,E1,t)

dt

=
∑
A′

1

WA1,β1,β2,E1;A′
1,β1,β2,E

′
1
(t)[dA1,β1,β2,E1

×P (A′
1,β1,β2,E

′
1,t) − dA′

1,β1,β2,E
′
1
P (A1,β1,β2,E1,t)]

+
∫∫

WA1,β1,β2,E1;A1,β
′
1,β

′
2,E

′
1
(t)[dA1,β1,β2,E1

×P (A1,β
′
1,β

′
2,E

′
1,t) − dA1,β

′
1,β

′
2,E

′
1
P (A1,β1,β2,E1,t)]

× ρ(β ′
1)ρ(β ′

2)dβ ′
1dβ ′

2

−�
qf
A1,β1,β2,E1

(�(t))P (A1,β1,β2,E1,t), (2)

where P (A1,β1,β2,E1,t) denotes the probability distribution
function to find fragment 1 with A1 nucleons, the quadrupole
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deformations of fragments being β1, β2 (here only the most
important axially symmetric quadrupole deformations of the
nuclei are considered, and always the tip-to-tip orientation
is taken; afterwards it is remedied statistically), with the
corresponding local excitation energy E1 at time t , for
the incident angular momentum J . β1, β2 are taken as
two discrete variables, corresponding to the projectile-like
and target-like fragments respectively. They are taken as
continuous variables in the second line of Eq. (2); however,
ρ(β ′

i) = 1
hi

is the density of discrete points with step length
hi (i = 1,2). The local excitation energy E1 is determined
by the dissipated energy from the relative motion and the
potential energy surface of the corresponding DNS [this will
be shown later in Eqs. (8) and (9)]. The dissipation energy
is described by the parametrization method of the classi-
cal deflection function [28–32]. WA1,β1,β2,E1;A′

1,β1,β2,E
′
1
(t) =

WA′
1,β1,β2,E

′
1;A1,β1,β2,E1 (t) is the mean transition probability

from channel (A1,β1,β2,E1) to (A′
1,β1,β2,E

′
1). dA1,β1,β2,E1

denotes the dimension corresponding to the macroscopic state
(A1,β1,β2,E1). The sum is taken over all possible mass
numbers that a fragment A′

1 may take, but only one-nucleon
transfer is considered. The initial condition of Eq. (2) is
P (AP ,βP ,βT ,E1 = 0,t = 0) = 1, with the AP and βP ,βT

being the mass number of the projectile and the ground
state quadrupole deformations of projectile and target in the
injection channel.

In this DNS, the fusion process to form the compound
nucleus is competing with the QF, which can be described
by incorporating the Kramers formula into Eq. (2) [33,34]. It
is proved that the Kramers formula works well in the mass
asymmetry region, where the QF barriers are relatively high
[22]. The QF rate �

qf
A1,β1,β2,E1

(�(t)) is estimated with the
Kramers formula:

�
qf
A1,β1,β2,E1

(�(t)) = ω

2πωBqf

⎛
⎝

√(



2h̄

)2

+ (ωBqf )2 − 


2h̄

⎞
⎠

× exp

(
−Bqf(A1,β1,β2,E1)

�(t)

)
. (3)

The potential VCN(r) of each DNS as a function of the
internuclear distance r of the nuclei leading to QF is evaluated
by using a double-folding method to calculate the nuclear
and Coulomb interactions between two deformed nuclei with
arbitrary orientation. A simplified Skryme-type interaction is
adopted [35]. It is shown in Fig. 1 that the QF barrier Bqf

is the depth of the pocket of the interaction potential. The
local temperature is given by the Fermi-gas expression � =√

ε∗/a with the level density parameter a = A/12 MeV−1

and the local excitation energy ε∗. The frequency ωBqf is the
frequency of the inverted harmonic oscillator approximating
the interaction potential of two nuclei along the internuclear
distance around the top of the quasifission barrier, and ω is
the frequency of the harmonic oscillator approximating the
potential along the internuclear distance around the bottom
of the pocket. The quantity 
 denotes the double average
width of the contributing single-particle states. Here constant
values 
 = 2.8 MeV, h̄ωBqf = 2.0 MeV, and h̄ω = 3.0 MeV
were used. Then the QF yields as a function of the fragment

FIG. 1. The potential of each DNS as a function of the internu-
clear distance r of the nuclei leading to QF.

deformations are

Yqf(A1,β1,β2,E1)

=
∫ τint

t=0
�

qf
A1,β1,β2,E1

(�(t))P (A1,β1,β2,E1,t)dt. (4)

The fusion probability is

PCN =
ABG∑
A1=1

∫∫
P (A1,β1,β2,τint)ρ(β1)ρ(β2)dβ1dβ2. (5)

The interaction time τint in the dissipative process of two
colliding nuclei is dependent on the incident energy Ec.m. and
the incident angular momentum J , which is determined by
using the deflection function method [29,31,32]. Hereafter we
restrict ourselves to the study of the quasifission characteris-
tics.

The potential energy surface (the driving potential for the
nucleon transfer and the deformation evolution) of the DNS is

U (A1,A2,R,β1,β2,J )

= E(A1,β1) + E(A2,β2) − [
E(ACN,βCN) + V CN

rot (J )
]

+VCN(A1,A2,R,β1,β2,J ), (6)

where ACN = A1 + A2 is the mass number of the compound
nucleus, R is the distance between nuclei at which the interac-
tion potential between the two nuclei, VCN(A1,A2,R,β1,β2,J ),
has the minimum value. E(Ai,βi) (i = 1,2) and E(ACN,βCN)
are the total energies of the ith nucleus and the compound
nucleus, respectively, in which the shell and the pairing
corrections are included. They can be calculated as a sum
of the liquid drop energy and the Strutinsky shell correction.
We use the formula and parameters of Ref. [36]:

E(Ai,βi2) = ELD(Ai)
(
1 + bi2β

2
i2

) + c1Eshell(Ai,βi2). (7)

In the following, the notation βi2 ≡ βi , and we take b2 =
0.0074A1/3 − 0.38A−1/3. The energy of a nucleus with respect
to the axial deformations is calculated with a Skyrme energy-
density functional together with the extended Thomas-Fermi
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FIG. 2. The potential energy surface for the reaction 48Ca +
248Cm, which drives the nucleon transfer, and the deformation
evolution, as a function of quadrupole deformations in the entrance
channel (A1 = 48).

approximation, which gives the minimum total energies of the
ith nucleus with the optimum βi2. The V CN

rot is the rotational
energy of the compound nucleus. The interaction potential
between the two nuclei VCN(A1,A2,R,β1,β2,J ) includes the
nuclear, Coulomb interaction, and centrifugal parts. Here again
a double-folding method is used to calculate the nuclear
and Coulomb interaction between two deformed nuclei with
arbitrary orientation. A simplified Skryme-type interaction is
adopted. The details are given in Refs. [35,37]. The driving
potential for the nucleon transfer and the deformation evolution
is shown in Fig. 2.

In the relaxation process of the relative motion, the DNS
will be excited by the dissipation of the relative kinetic energy.
The excited system opens a valence space 
εK in each
fragment K (K = 1,2), which has a symmetrical distribution
around the Fermi surface. Only the particles in the states within
this valence space are actively involved in the excitation and
transfer [38]:


εK =
√

4ε∗
K

gK

, ε∗
K = ε∗ AK

A
, gK = AK

12
, (8)

where ε∗ is the local excitation energy of the DNS, which pro-
vides the excitation energy for the mean transition probability,
so that the E1 in Eq. (2) is determined as E1 = ε∗. There
are NK = gK
εK valence states and mK = NK/2 valence
nucleons in the valence space 
εK , which gives the dimension
d(m1,m2) = (N1

m1
)(N2

m2
). The local excitation energy is defined as

ε∗ = Ex − U (A1,A2,R,β1,β2,J ). (9)

The excitation energy Ex of the composite system is converted
from the relative kinetic energy loss, which is related to the
Coulomb barrier [37] and is determined for each initial relative
angular momentum J by the parametrization method of the

FIG. 3. The evolution of the distribution function P (A1,β1,β2,t)
(left) and the mass yield Yqf(A1,β1,β2,t) (right) as a function of the
fragment deformations of the reaction 48Ca + 248Cm for A1 = 48.

classical deflection function [28,30,32]. So, Ex is coupled with
the relative angular momentum.

III. RESULTS AND DISCUSSIONS

Under the potential energy surface, the master equation
(2) is solved to obtain the probability distribution function
P (A1,β1,β2,E1,t) with A1 nucleons in fragment 1, and the
quadrupole deformations of fragments are β1, β2 at the time
t . It displays the evolution of the distribution function for
A1 = 48 at different time as indicated in the Fig. 3 (left).
At the initial stage of the reaction up to t = 0.5 × 10−22 s
the probability function is distributed around the injection
point with βP = 0.0 and βT = 0.235. With increasing time it
diffuses, becoming distributed into a wider area with wider
nuclear deformations. At t = 50 × 10−22 s an appreciable
probability is accumulated at the several places. Because nuclei
have different deformations, their shell correction energies are
different. The large shell correction energy is the reason that
the distribution functions are localized in these places.

For the whole process, our dynamical calculation shows
that it evolves in a manner quite different from a Gaussian
distribution [34]. Figure 3 (right) displays the evolution of the
the mass yield distribution Yqf(A1,β1,β2,t) with A1 = 48. At
each time it looks very much like the distribution function
P (A1,β1,β2,E1,t), indicating that in Eq. (4) the distribution
probability plays the dominant role.
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FIG. 4. (a) The evolution of the relative quasifission yield
distribution Y (A1) of the reaction 48Ca + 248Cm at Ec.m. = 205 MeV.
The data are taken from Ref. [15]. (b) The energy surface as a function
of A1, with β1 and β2 being the values at which the energy surface is
the lowest. The arrow in the figure indicates the injection channel.

The mass distribution of the QF products reads

Yqf(A1) =
∫ τint

t=0
dt

∫
ρ(β1)dβ1

∫
ρ(β2)dβ2

× P (A1,β1,β2,E1,t)�
qf
A1,β1,β2,E1

(�(t)). (10)

Figure 4(a) shows the relative mass yield of QF products as
a function of the fragment mass number A1, normalized over
the whole mass range to 200%, for the reaction 48Ca + 248Cm
at different reaction times. As indicated in the figure, at
the beginning of the reaction, t = 5 × 10−22 s, the yield is
distributed near the injection point: A1 = 48 and A2 = 248.
At t = 50 × 10−22 s, the dispersion area is enlarged and
moves towards the mass-symmetric region. Finally, at t =
300 × 10−22 s, the dispersion tends to fit the experimental data.
Black squares indicate the experimental data, which show two
symmetric parabola-like peaks. The potential energy surface
as a function of A1 is shown in Fig. 4(b). For each A1, the
deformations of the nuclei β1 and β2 take values at which
the energy surface is the lowest. One may see that the energy
surface is getting very low in the symmetric region, which is
in favor of mass distribution probability P (A1) accumulation.

In the figure, the dash-dotted line denotes the quasifission
barriers Bqf. Note that on the left side the values are nearly
zero from A1 = 100 to A1 = 150; this is in favor of the QF,
i.e., the mass distribution probability P (A1) decreases faster.
The consequence is that, with decreasing potential energy, the
mass distribution probability P (A1) gains on one hand and
loses on the other. So it first increases, reaches a maximum,
then decreases. Since the QF yield mainly depends on P (A1), it
correspondingly shows a maximum. The other side indicates
the mass yield of the heavy fragment A2. Further, at about
A1 = 100 and A1 = 200 there are two minima in the energy
potential, which will help to cause two maximum distributions
of P (A1) and help maximum QF yields, and the position of
the maximum may be influenced a little.

Based on the dynamical deformation, we now further
calculate the mean total kinetic energy 〈TKE〉 of the QF
products and its dispersion. The 〈TKE〉 of the QF fragments
as a function of the light fragment mass number A1 can be
written as〈

TKEB(β1,β2)(A1)
〉

=
∫∫

dβ1dβ2ρ(β1)ρ(β2)TKEB(β1,β2)(A1)Yqf(A1,β1,β2)∫∫
dβ1dβ2ρ(β1)ρ(β2)Yqf(A1,β1,β2)

(11)
with TKEB(β1,β2) = Vnucl(Rb) + Vcoul(Rb), where the radius Rb

is the position of the Coulomb barrier B in the tip-to-tip
orientation; currently, it is taken as Rb = 1.6[R1(A1,β1) +
R2(A2,β2)] [40,41], which is actually the radius of the scission
point. At the moment the orientation is not yet considered.
Since the nuclei in each DNS under discussion are deformed,
their different orientations will generate different Coulomb
barriers,corresponding to different scission points, and there-
fore will generate different TKEs. For two deformed nuclei,
they separate into the QF channel with all possible orientations,
so all possible orientations must be taken into account. To
simulate the orientation effect we use a barrier distribution
function with a asymmetry Gaussian form. Suppose B0(β1,β2)
and Bs(β1,β2) are the height of the Coulomb barrier at waist-
to-waist orientation and the height of the minimum barrier;
the corresponding TKE will be TKEB0(β1,β2) and TKEBs (β1,β2),
respectively. The barrier distribution function as a function
of the barrier BX(β1,β2) [42–44] reads f (BX(β1,β2)) =
1
N

exp[−(BX(β1,β2)−Bm(β1,β2)

1

)2] [BX(β1,β2) < Bm(β1,β2)] and

f (BX(β1,β2)) = 1
N

exp[−(BX(β1,β2)−Bm(β1,β2)

2

)2] [BX(β1,β2) >
Bm(β1,β2)], with Bm(β1,β2) = [B0(β1,β2) + Bs(β1,β2)]/2
and 
2 = [B0(β1,β2) − Bs(β1,β2)]/2. The value of 
1 is
several MeV less than the value of 
2; usually it is taken
as 2–4 MeV. By using the barrier function, the mean TKE and
the variance of TKE become

〈TKE(A1)〉 =
∫∫

dβ1dβ2ρ(β1)ρ(β2)
∫

dBX(β1,β2)f (BX(β1,β2))TKEBX(β1,β2)(A1)Yqf(A1,β1,β2)∫∫
dβ1dβ2ρ(β1)ρ(β2)Yqf(A1,β1,β2)

, (12)

σ 2
TKE(A1) = 〈TKE(A1)2〉 − 〈TKE(A1)〉2

=
∫∫

dβ1dβ2ρ(β1)ρ(β2)
∫

dBX(β1,β2)f (BX(β1,β2))(TKEBX(β1,β2)(A1))2Yqf(A1,β1,β2)∫∫
dβ1dβ2ρ(β1)ρ(β2)Yqf(A1,β1,β2)

− 〈TKE(A1)〉2. (13)
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FIG. 5. The 〈TKE(A1)〉, the variance σ 2
TKE(A1) of TKE, and the relative mass yield Y (A1) of the QF products in the reaction 48Ca + 248Cm

at Ec.m. = 205 MeV. The quantities in the left column are the ones calculated with the shell correction, those in the middle are calculated with
the shell corrections being witched off, and those in the right column are calculated with the damped shell corrections. The blue dashed lines
are the results obtained by LDM [39]. The experimental data are from Ref. [15].

The mean TKE, the variance of TKE, and the QF mass yield
Y (A1) as a function of A1 for the reaction 48Ca + 248Cm at
Ec.m. = 205 MeV are shown in Fig. 5 with and without the
shell correction, and with the damped shell correction. For an
excited nucleus, its shell correction energy will be damped
due to the excitation energy. The excitation-energy-dependent
shell correction energy in Eq. (7) is taken as Eshell(Ai,βi,Ei) =
Eshell(Ai,βi,Ei = 0) × exp[−Ei/Ed ], where the damping fac-
tor Ed = 0.5A

4/3
i /a(Ai) with the level density parameter

a(Ai) = Ai/12 MeV−1 [45].
The red lines in the first row show that our calculated 〈TKE〉

can basically follow the experimental data, and they are not
influenced by the shell correction, since they are mainly depen-
dent on the nuclear deformation. Our calculated σ 2

TKE(A1) can
also basically follow the data, only the σ 2

TKE(A1) in panel (b) of
Fig. 5 shows much too distinct oscillation; obviously it is due
to the shell correction. When the shell correction is switched
off, the curve becomes smooth, as shown in Fig. 5(e). When the
excitation energy of the QF product is taken into account, so
that the shell correction energy is damped, the agreement with
the experimental data is greatly improved. One may see that,
in the very symmetric mass region, the data for σ 2

TKE(A1) are
smaller. The experimental data includes the fragments from
the compound nuclear fission, and they have no orientation
problem; therefore they produce small TKE dispersion. As
indicated in Fig. 6, in which the 〈TKE(A1)〉 and the variance
σ 2

TKE(A1) are calculated only for tip-to-tip orientation, one may
find that the 〈TKE(A1)〉 can still follow the data if the scission is
taken as Rb = (1.4/r0)[R1(A1,β1) + R2(A2,β2)] + 1 fm [40].
The top of the curve is not smooth due to the limited statistics.

However, the σ 2
TKE(A1) is significantly small, and cannot be

improved unless the orientation has been taken into account.
This indicate that the nuclear dynamical deformation and the

FIG. 6. 〈TKE(A1)〉, the variance σ 2
TKE(A1) of QF fragments with

only tip-tip orientation in the reaction 48Ca + 248Cm at Ec.m. =
205 MeV. The black squares represent the experimental data from
Ref. [15].
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orientation of the two deformed nuclei are the origin of the
large TKE fluctuation, which proves the existence of the two
individual deformed nuclei; this is the very foundation of the
DNS concept. Since the fluctuation of the TKE is symmetric
to the mean TKE, the fluctuation does not change the behavior
of the mean value. By considering the dynamical deformation,
the calculated QF mass yield distribution Y (A1) agrees well
with the data [15], and the shell correction does not influence
it since the QF barrier plays a more important role (please see
our explanation in Fig. 4).

IV. SUMMARY

To sum up, the fusion reactions leading to superheavy
elements and to the QF products are successfully described
by the DNS model. Although the QF products can shed
more light on the reaction mechanism, the yields of the
QF products alone does not provide thorough information.
Therefore the distribution of the TKE of the QF products
is measured and calculated. The kinetic energy of the QF
products critically depends on the deformations of the QF
products. By using our extended master equation, in which
the deformations of the nuclei in the DNS are taken as
dynamical valuables in addition to the project-like mass

number, the mass transfer and the deformation evolutions
of the fragments are described simultaneously. By further
considering all relative orientation of the deformed two nuclei,
the mean TKE and the variance of the TKE distribution are
successfully described. This indicates that in the reaction
process there really exist two deformed nuclei; their separation
with different orientations generates a large fluctuation in the
TKE of fragments. This strengthens the theoretical foundation
of the DNS concept, though phenomenologically. By taking
the deformations of the nuclei in the DNS to be dynamical
valuables, the intrinsic properties of nuclei are thus coupled
with the relative interaction, and the energy surface of the
reaction system becomes time dependent. This is an important
development for the diffusion, as well as for the reaction theory.
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