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Cross sections of the 10B(n,t2α) three-body reaction were measured at En = 4.0,4.5, and 5.0 MeV using a
twin gridded ionization chamber and a thin-film 10B sample. The present paper is the first part of the work.
The experimental spectrum of the 10B(n,t2α) reaction measured by the gridded ionization chamber (GIC) was
predicted. The 10B(n,t2α) reaction can proceed in three ways, which are referred to as 7Li∗∗, 8Be, and breakup
channels. The energies and directional angles of the three particles in the final states for the 7Li∗∗, 8Be, and breakup
channels were calculated, respectively. Based on these results, the one-dimensional and two-dimensional spectra
were calculated through integration. Three kinds of interference reactions were taken into account, which were
the 10B(n,α)7Li reaction, the H(n, n)p reaction, and the (n,α) reactions from the working gas of the GIC. Two
effects were considered in the prediction of the experimental spectrum, which were the energy loss of the products
in the sample and the wall effect of the sample position well. The predicted spectra play an important role in the
guidance of the implementation of the experiment and the processing of the experimental data.
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I. INTRODUCTION

As is well known, the 10B isotope is widely used in neutron
detection, reactor control and shielding protection, and many
other applications. The main nuclear reaction of the 10B isotope
induced by thermal and epithermal neutrons is the 10B(n,α)7Li
reaction and its cross sections are inversely proportional to the
neutron velocity (the 1/v law). In the MeV energy region, cross
sections of the 10B(n,t2α) three-body reaction increase rapidly
and become larger than those of the 10B(n,α)7Li two-body
reaction at about 4.5 MeV.

Experimental studies on the 10B(n,t2α) three-body reaction
were carried out just a few years after the discovery of
the neutron [1,2]. To date, four kinds of detection methods
have been employed to measure this reaction: boron-loaded
emulsion [1–3], tritium counting [4,5], the �E-E counter tele-
scope [6,7], and the gridded ionization chamber (GIC) [8,9].
However, large discrepancies exist among the experimental
cross section data. In particular, cross sections measured by
the GIC detector are significantly lower than those measured
with other methods. The shapes of the excitation functions
are also different from each other. Both the magnitude and the
trend of GIC measured results are not adopted by the evaluated
data libraries.

In both of the existing measurements using the GIC
detector, a 10B gas sample was used [8,9]. The chamber was
filled with a mixture of Kr (or Ar) and BF3 gas. When the gas
sample is used, much attention should be paid to the wall effect
of the GIC detector, whereby the reaction products would
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leave the region of uniform electric field or collide with the
electrodes of the chamber. The wall effect would result in a
major uncertainty of event counting and the number of target
nuclei.

To avoid the wall effect, we propose to measure the
10B(n,t2α) reaction using a 10B solid sample deploying into
a twin gridded ionization chamber. The 10B sample should be
very thin, so both the forward and backward emitted particles
from the three-body reaction could come out of the sample and
be detected simultaneously by the chamber. The total energy
of each three-body event can be obtained by the summation of
the amplitudes of the forward and backward signals. From
the total-energy spectrum, the 10B(n,t2α) reaction events
could be distinguished from those of the 10B(n,α)7Li reaction
because of the difference of the Q values. The Q values
of the 10B(n,t2α) and 10B(n,α)7Li reactions are 0.323 and
2.790 MeV, respectively (corresponding to the ground state
of the residual nucleus). In additino to the total-energy
spectrum, the forward and backward spectra, which contain
more dynamic information than the Q value of the reaction,
can also be measured.

In order to be able to implement the coincidence measure-
ment of the 10B(n,t2α) three-body reaction according to the
above experimental scheme, three things need to be done:
(1) theoretical prediction of the experimental spectrum of
the 10B(n,t2α) reaction measured by the GIC detector, (2)
development of the GIC spectrometer based on a waveform
digitizer (WFD), and (3) preparation of a thin-film 10B sample
and determination of the number of 10B atoms. The present
paper shows the prediction of the experimental spectrum. The
WFD-based GIC spectrometer and the thin-film 10B sample,
as well as the experimental results of the 10B(n,t2α) reaction,
are presented in the second paper [10].
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TABLE I. The level schemes of 7Li and 8Be isotopes [12].

7Li 8Be

Ek (MeV) Jπ Ek (MeV) Jπ

Ground state 0 3/2− 0 0+
First level 0.478 1/2− 3.030 2+
Second level 4.630 7/2− 11.350 4+
Third level 6.680 5/2− 16.626 2+
Fourth level 7.459 5/2−

II. THE 10B(n,t2α) REACTION AND EXPERIMENTAL
SPECTRUM

The 10B(n,t2α) reaction, leading to one triton and two
α particles in the final state, can proceed in three ways as
follows [8]:

10B + n → 7Li∗∗ + α − 1.840 MeV,

7Li∗∗ → α + t + 2.162 MeV, (1)
10B + n → 8Be + t + 0.230 MeV,

8Be → α + α + 0.092 MeV, (2)
10B + n → α + α + t + 0.322 MeV. (3)

Mechanisms (1) and (2) take place through a chain of
two-body processes with 7Li and 8Be as the intermediate
nuclei, respectively. There is a strong α-t final-state interaction
in mechanism (1) and α-α interaction in mechanism (2).
Mechanism (3) proceeds as a three-body breakup of the
compound nucleus of 11B. This is a pure kinematic process
without interaction between the three particles in the final
state. Hereafter, mechanisms (1)–(3) are referred to as 7Li∗∗,
8Be, and breakup channels, respectively.

The two superscript stars in the name of mechanism (1),
i.e., the 7Li∗∗ channel, indicate that the intermediate nucleus
7Li is at the second or higher excited levels. If 7Li is at the
first excited level, it will decay through γ deexcitation to the
ground state; this leads to the 10B(n,α)7Li two-body reaction.
For the 8Be nucleus, it is not stable at either ground or excited
states, and it will decay spontaneously into two α particles. The
discrete level schemes of 7Li and 8Be are shown in Table I. In
fact, the above phenomenon shows one of the characteristics
of the neutron induced light-nucleus reaction. Different levels
of the intermediate residual nucleus may belong to different
reaction channels due to the different decay modes from these
levels [11].

In view of the particle emission mechanism for the neutron
induced reactions of the 1p-shell nucleus (from 6Li up to
16O), all of the emission processes proceed between discrete
levels. Meanwhile, in addition to the equilibrium mechanism,
the preequilibrium emission process becomes prominent and
must be taken into account [13]. Therefore, the key point
to describe the neutron induced light-nucleus reaction is that
the conservation of parity and angular momentum should be
considered properly in the preequilibrium emission process. A
unified Hauser-Feshbach and exciton model was proposed by

FIG. 1. The representative emission situations of the three parti-
cles in the final state for the 10B(n,t2α) reaction.

Zhang et al. [14]. The master equation theory of precompound
and compound nuclear reactions was generalized to include
the conservation of parity and angular momentum. Based
on this improved model, they developed the LUNF code to
calculate the neutron induced reaction data for 6Li, 7Li, 9Be,
10B, 11B, 12C, 14N, and 16O isotopes. The cross sections and the
double-differential cross sections of the 10B(n,t2α) three-body
reaction can be calculated by the LUNF code.

Since the double-differential cross sections of the three
products from the 10B(n,t2α) reaction are calculated individ-
ually in the LUNF code, they could not be used to predict
the experimental spectrum measured by the GIC. In the
present measurement, the triton and α particle cannot be
distinguished by the GIC detector; thus, the spectrum of
the triton or α particle cannot be obtained individually. The
forward and backward spectra measured by the GIC [15] are
the superposition of all of the partial spectra corresponding to
the different emission situations of the three particles as shown
in Fig. 1. The forward or backward directions may contain one,
two, or even three particles.

All the emission situations of the three particles constitute
the final-state phase space of the 10B(n,t2α) reaction. In the nu-
merical calculation, the final-state phase space is discretized;
in other words, it consists of many phase-space bins. Different
bins corresponds to different emission situations as shown in
Fig. 1. Each phase-space bin, referred to as δi(), is described
by the energy ε and the directional angle � (θ and ϕ) of each of
the three particles. With the complete final-state phase space,
the forward and backward spectra of the 10B(n,t2α) reaction
can be obtained by superimposing the spectra of all of the
phase-space bins. In addition, the energy loss of the products
in the sample and the wall effect of the sample position well
[16] need to be taken into account. Therefore, the experimental
forward and backward spectra Sf b can be calculated by the
following equation:

Sf b =
∑

i

piF (δi(m1,ε1,θ1,ϕ1; m2,ε2,θ2,ϕ2; m3,ε3,θ3,ϕ3; )),

(4)
where pi is the state density of each phase-space bin and
F () refers to the correction operations of the energy loss and
the wall effect of the sample position well. Details about the
correction methods of the energy loss and the wall effect
of the sample position well can be found in Refs. [15,16],
respectively.

The key point to predict the experimental spectrum is to cal-
culate the complete final-state phase-space of the 10B(n,t2α)
reaction. The calculation method for the sequential two-body
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process, namely, the 7Li∗∗ and 8Be channels, is different from
that for the three-body breakup process. The two calculation
methods are introduced in Secs. III and IV, respectively.
Section V shows the interference reactions which contain the
10B(n,α)7Li reaction, the H(n, n)p reaction, and the (n,α)
reactions of the working gas from the GIC. The predicted
spectra are given in Sec. VI. Section VII shows the conclusions.

III. CALCULATION METHOD FOR THE 7Li∗∗

AND 8Be CHANNELS

In general, the calculation process of the final-state phase-
space for the 7Li∗∗ and 8Be channels consists of four steps.
First, the angular distribution of the first emitted particle in the
center-of-mass system (CMS) is calculated by the LUNF code.
The first emitted particle is an α particle in the 7Li∗∗ channel
and a triton in the 8Be channel as shown in Eqs. (1) and
(2), respectively. Second, the energy and angle of the second
emitted particle are calculated in the recoil nucleus system
(RNS). The RNS is a moving system that is set at the end of
the velocity vector of the recoil residual nucleus in the CMS.
Third, the energy and angle of the second emitted particle are
transformed from the RNS to the CMS. Finally, the energy and
angle of the first and second emitted particles are transformed
from the CMS to the laboratory system (LS). Three motion
systems are used and the physical quantities in the present
paper are indicated by the superscripts L, C, and R for the
LS, CMS, and RNS systems, respectively. In this section,
the 7Li∗∗ channel is to be taken as the example to introduce
the calculation process.

In the LUNF code, the angular distribution of the first emitted
particle in the sequential two-body process is given by the
Legendre coefficients representation as follows:

σ (cos θC,φC) ≡ dσ

d�C
= 1

4π

∑
l

(2l + 1)flPl(cos θC), (5)

where fl is the Legendre coefficients and Pl() are the Legendre
polynomials. Here the value of l is from zero to 5 and the f0

is normalized to the total cross section. Quantities cosθC and
ϕC are discretized in the numerical calculation.

Using Eq. (5), the angular distribution of the first emitted
particle σ (cosθC

α ,ϕC
α ) for the 7Li∗∗ channel is obtained. Then,

according to the conservation of energy and momentum, the
energy of the first emitted particle εC

α , and the energy and
angular distribution of the intermediate nucleus 7Li, EC

7Li, and
σ (cosθC

7Li,ϕ
C
7Li), can be calculated by the following equations:

εC
α = M7Li

mα + M7Li
EC

tot,

EC
7Li = mα

mα + M7Li
EC

tot,

EC
tot = M10B

M10B + mn

EL
n + Q1 − E∗∗

7Li,

σ
(

cos θC
7Li,φ

C
7Li

) = σ
(− cos θC

α ,φC
α + π

)
, (6)

where mα,M7Li,mn,, and M10B are the masses of the α particle,
7Li, the neutron, and the 10B nucleus, respectively; EL

n is the
incident neutron energy in the LS; Q1 is the reaction energy

which is −1.840 MeV as shown in Eq. (1); E∗∗
7Li is the second

excitation energy of 7Li; and EC
tot is the total kinetic energy

of the α particle and 7Li in the CMS. (Note that if the 7Li
nucleus is at the third excitation energy, then Q1 is equal to
−3.890 MeV and EC

tot is the third excitation energy of 7Li.)
Using Eqs. (5) and (6), the energy and directional angles of
the first emitted particle and the 7Li nucleus are obtained.

It is assumed that the angular distribution of the second
particle is isotropic in the RNS [13,17]. Using energy and
momentum conservation, the following equations are derived
for the energy and angular distribution of the second particle
in the RNS:

εR
α′ = mt

M7Li
(Q2 + E∗∗

7Li),

εR
t = mα

M7Li
(Q2 + E∗∗

7Li), (7)

σ
(

cos θR
α′ ,φ

R
α′
) = σ

(− cos θR
t ,φR

t + π
) = 1

4π
,

where Q2 is the reaction energy, which is 2.162 MeV as shown
in Eq. (1). (If the 7Li nucleus is at the third excitation energy,
then Q2 is equal to 4.212 MeV.) The other parameters have
the same meaning as those in Eq. (6).

Next, we need to transform the energy and angular
distribution of the second emitted particle from the RNS to
the CMS. Here the key point is that the transformation is
related not only to the polar angle θ , but also to the azimuthal
angle ϕ, because the RNS has not only translational motion but
also the rotational motion in the CMS. This question can be
understood clearly in the coordinate frames of the RNS, CMS,
and LS shown as the x ′′-y ′′-z′′, x ′-y ′-z′, and x-y-z frames,
respectively, in Fig. 2.

As is the common practice, the z axis of the LS is along the
direction of the velocity vector of the incident neutron and the
CMS starts from the end of the velocity vector of the center of

mass in the LS, i.e.,
−−→
V L

c.m.. Therefore, the z′ axis of the CMS is
coincident with the z axis of the LS as shown in Fig. 2. The x
and y axes of the LS and CMS are set according to the rule of
the right-handed coordinate system. For the RNS coordinate,
the z′′ axis is along the direction of the velocity vector of the

recoil nucleus 7Li in the CMS, i.e.,
−→
V C

Li. The y ′′ axis of the
RNS is set in the plane which is perpendicular to the x ′-y ′
plane of the CMS coordinate frame and contains the velocity

vector
−→
V C

Li. The x ′′ axis of the RNS is set according to the rule
of the right-handed coordinate system. It can be proved that
the x ′′ axis of the RNS is in the x ′-y ′ plane of the CMS. The
proof is as follows: the x ′′ axis is perpendicular to the y ′′-z′′
plane and the z′ axis is in the y ′′-z′′ plane, thus the x ′′ axis is
perpendicular to the z′ axis; the z′ axis is perpendicular to the
x ′-y ′ plane and the origin of the x ′′ axis is in the x ′-y ′ plane,
so the x ′′ axis is in the x ′-y ′ plane. As can be seen below,
the properties of the above coordinate frames make it easy to
rotate the frame from the RNS to the CMS.

The transformation from the RNS to the CMS for the
energy and angular distribution of the second emitted particles
includes two steps. The first step is to transform the velocity

vector
−→
V R

α′ to
−→
V C

α′ as shown in Fig. 2. The transformation
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FIG. 2. The relationship of the velocity vector between the RNS
(x ′′-y ′′-z′′), CMS (x ′-y ′-z′), and LS (x-y-z) for the second-emitted α

particle from the 7Li∗∗ channel.

approach is the same as that for the common transformation
from the CMS to the LS using the method of velocity
composition. The transform equations for the energy, angle,
and angular distribution are as follows:

εC
α′ = εR

α′
(
1 + γ 2 + 2γ cos θR

α′
)
,

cos θC
α′ = γ + cos θR

α′√
1 + γ 2 + 2γ cos θR

α′

,

dσ

d�C
α′

= dσ

d�R
α′

(
1 + γ 2 + 2γ cos θR

α′
)∣∣1 + γ cos θR

α′
∣∣ ,

γ ≡
∣∣−→V C

Li

∣∣∣∣−→V R
α′

∣∣ =
√

mα′EC
Li

mLiε
R
α′

. (8)

Note that after the transformation in the first step, the

velocity
−→
V C

α′ is still in the x ′′-y ′′-z′′ coordinate frame. So the

second step is to transform the velocity
−→
V C

α′ from the x ′′-y ′′-z′′
frame to the x ′-y ′-z′ frame. As can be seen from Fig. 2, the
x ′-y ′-z′ frame can be rotated to the x ′′-y ′′-z′′ frame by two
rotations: first rotate −θC

Li degrees along the x ′ axis, and then
rotate (2/π − ϕC

Li) degrees along the z′ axis. Therefore, the

coordinates of the vector
−→
V C

α′ can be transformed from the
x ′′-y ′′-z′′ frame to the x ′-y ′-z′ frame by the matrix operation
as follows: ⎛

⎝x ′
y ′
z′

⎞
⎠ = Rz

(
π

2
− ϕC

Li

)
Rx

(
θC

Li

)⎛⎝x ′′
y ′′
z′′

⎞
⎠, (9)

where Rz() and Rx() are the unit rotation matrices, which can
be expressed as follows:

Rz(θ ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦,

Rx(θ ) =
⎡
⎣1 0 0

0 cos θ sin θ
0 − sin θ cos θ

⎤
⎦. (10)

After the transformation of the two steps, the energy and
angle of the second emitted particles in the CMS are obtained.
Note that there is a one-to-one correspondence for the angle
between the first and second emitted particles through the angle
information of the intermediate nucleus 7Li.

Finally, the energy and angle of the first and second
emitted particles are transferred from the CMS to the LS. The
transformation method is the same as that shown as Eq. (8).
There is a trick here which can reduce the calculation amount
greatly. The final results we want are the energy and angle of
the particles in the LS. As can be seen from Fig. 2, the length

of the velocity
−→
V L

α′ is independent of the angle ϕC
Li. On the other

hand, as can be seen from Eq. (9), the transformation from the
RNS to the CMS is related to the angle ϕC

Li. Therefore, ϕC
Li can

be set as a constant, for example, 0◦, which can simplify the
calculation of the transformation from the RNS to the CMS.

Now the energy and angle of the three particles from the
7Li∗∗ or 8Be channels are obtained; thus, the complete final-
state phase space is obtained. The probabilities of phase-space
bins are calculated by dividing the total cross section of the
7Li∗∗ or 8Be channels given by the LUNF code.

IV. CALCULATION METHOD FOR THE BREAKUP
CHANNEL

The three-body breakup of the compound nucleus 11B
proceeds as a pure kinematic process without interaction
between the three particles in the final state. On the basis of
energy and momentum conservation, the following equations
can be obtained:

εL
t + εL

α + εL
α′ = EL

n + Q,

−→
P L

t +
−→
P L

α +
−→
P L

α′ =
−→
P L

n , (11)

where EL
n and

−→
P L

n are the energy and momentum of the incident
neutron in the LS, respectively; Q is the reaction energy of
the 10B(n,t2α) reaction. The three particles in the final state
include nine degrees of freedom as shown in Eq. (4). Equations
(11) contain four constraints, so at least five degrees of freedom
need to be set first to decide all of the nine degrees of freedom.
The following five quantities are selected:(

εL
t ,θL

t ,ϕL
t ; θL

α ,ϕE
α

)
, (12)

which are the energy and angle of the triton and the angle of
one of the α particles. On the basis of the five initial quantities,
the nine degrees of freedom can be obtained by the following
three steps.

First, the two α particles in the final state are taken as a
whole, which is quasi-2α particle. The energy and angle of
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FIG. 3. (a) Velocity triangle and (b) “energy” triangle for the
triton from the breakup channel.

the triton in the CMS are related to the energy and angle in
the LS through the well-known velocity triangle as shown in
Fig. 3(a). Since it is more convenient to work with energies, the
velocity triangle can be transformed into an “energy triangle”
by multiplying each velocity with

√
mt/2 as shown in Fig. 3(b)

[18]. The quantity mt is the mass of the triton. In Fig. 3(b),
the magnitude of the “energy vector” −→at can be expressed as
follows:

|−→at | =
√

1

2
mt

(∣∣−−→V L
c.m.

∣∣)2

=

√√√√1

2
mt

( √
2mnEL

n

M10B + mn

)2

, (13)

where
−−→
V L

c.m. is the velocity of the center of mass in the LS. The
triton energy in the CMS, εC

t , can be calculated using equations
similar to Eq. (6).

Using the geometrical relationship of the “energy triangle,”
the maximum and minimum of the triton energy εL

t in the LS
can be expressed as follows:

εL
t, max = (α + β)2,

εL
t, min =

{
(α − β)2, α > β

0, α � β,
(14)

where α and β are depicted in Fig. 3(b) and can be expressed
as

α = |−→at | cos θL
t ,

β =
√

εC
t − (|−→at | sin θL

t

)2
. (15)

The maximum and minimum of the angle θL
t are

θL
t, max =

{
sin−1γ, γ � 1

180◦, γ > 1,

θL
t, min = 0◦, (16)

where γ is defined as

γ =
√

εC
t

|−→at |
. (17)

As can be seen from Fig. 3(b), when γ � 1 the angle θL
t �

90◦ and the triton energy εL
t has double values at each angle

of θL
t (except the maximum angle θL

t, max).
From Eqs. (14) and (16), the range of the energy εL

t and
angle θL

t of the triton can be obtained. In the numerical
calculation, the quantities εL

t and θL
t are discretized. The angle

ϕL
t is independent of the energy εL

t , and it can be set as a

FIG. 4. The relationship of the velocity vector of triton and quasi-
2α particle between the CMS and the LS.

constant. (In the present work, ϕL
t is set to be 180◦.) After the

first step, the energy and angle of the triton are obtained.
The next step is to calculate the energy and angle of one of

the two α particles. In the CMS, the triton and the quasi-2α
particle move in the opposite direction. Since the angle ϕL

t is
set to be 180◦, the angle ϕL

2α is equal to 0◦. Therefore, the
relationship of the velocity vector of the quasi-2α particle and
triton in the LS is simplified in the x-z plane as shown in Fig. 4.

On the basis of the geometrical relationship as shown in
Fig. 4, the velocity component of the quasi-2α particle in the
LS can be expressed as follows [18]:

(−→
V L

2α

)
x

= ∣∣−→V C
2α

∣∣ · cos
(
θC
t − 90◦) =

√(
2mtε

C
t

)
mα + mα′

sin θC
t ,

(−→
V L

2α

)
y

= 0,

(−→
V L

2α

)
z

= ∣∣−−→V L
c.m.

∣∣ + ∣∣−→V C
2α

∣∣ · sin
(
θC
t − 90◦)

= ∣∣−−→V L
c.m.

∣∣ −
√(

2mtε
C
t

)
mα + mα′

cos θC
t , (18)

where the energy εC
t and angle θC

t were obtained in the first
step.

In the moving system of the quasi-2α particle, the two α
particles move in the opposite direction. The magnitude of the
velocity for one of the α particles in the moving system can be
expressed as

|−→v | =
√

2mα′E2α

mα(mα + mα′ )
,

E2α = EC
tot − mt + mα + mα′

mα + mα′
εC
t , (19)

where E2α is the total kinetic energy of the two α particles in
the moving system and EC

tot is the total kinetic energy of the
three particles in the CMS. The velocity vector −→v defines a

sphere with the center at the end of the velocity vector
−→
V L

2α as
shown in Fig. 5.
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FIG. 5. The relationship of the velocity vector of the α particle
between the LS and the quasi-2α particle moving system.

The energy of one of the α particles in the LS can be
expressed as follows:

εL
α = 1

2mα(c ± b)2,

b2 = |−→v |2 − (∣∣−→V L
2α

∣∣2 − c2
)
,

c = ∣∣−→V L
2α

∣∣ · cos θ, (20)

where the parameters b and c are shown in Fig. 5. The angle
θ is an unknown quantity and it can be expressed using the
formula of included angle:

cos θ = cos θL
2α cos θL

α + sin θL
2α sin θL

α cos
(
ϕL

2α − ϕL
α

)
. (21)

The meanings of the angles are shown in Fig. 5. The angle
ϕL

2α is equal to 0◦.
As shown in Eq. (20), the expression of the quantity

b includes the parameter c, so we further define two new
quantities as follows:

α = c, β = b2 − c2. (22)

Substituting Eqs. (21) and (22) into Eq. (20), the following
equations can be obtained [18]:

εL
α = 1

2mα(α ±
√

(α2 + β))2,

α = (−→
V L

2α

)
x

sin θL
α cos ϕL

α + (−→
V L

2α

)
z

cos θL
α , (23)

β = |−→v |2 − ∣∣−→V L
2α

∣∣2
.

When β > 0, the energy εL
α has one solution and the sign is

positive; when −α2 < β < 0, εL
α has two solutions; and when

β < −α2, εL
α has no solution.

Using Eq. (23), the energy of one of the α particles is
obtained. The angles θL

α and ϕL
α are discretized. After the

second step, the energy and angle of one of the α particles
are obtained.

In the final step, the energy and angle of the triton and the
first α particle are substituted into Eq. (11), and then the energy
and angle of the other α particle are obtained.

Now the energy and angle of the three particles from the
breakup channel are obtained, and then the complete final-state
phase space is obtained. The probabilities of phase-space bins
can be calculated using the expression of the triple-differential
cross section [18]:

d3σ

dεL
t d�L

t d�L
α

= 2π

h̄2

μn

kn

〈|M|〉2ρ
(
εL
t

)
,

μn = mnm10B

mn + m10B
, (24)

kn = 1

h̄
μm

∣∣−→pL
n

∣∣/mn,

where μn and kn are the reduced mass and momentum of the
incident neutron. The matrix element M has several forms.
For the cross section of a pure statistical energy distribution,
like the case of the breakup channel, the matrix element M
can be assumed to be a constant. ρ(εL

t ) is the density of the
final state and it can be expressed as follows [18]:

ρ
(
εL
t

)
dεL

t d�L
t d�L

α

= h−6mtmαmα′
∣∣−→pL

t

∣∣∣∣−→pL
α

∣∣
(mα + mα′ ) + mα

(−→
pL

t − −→
pL

n

)−→
pL

α

/∣∣−→pL
α

∣∣2 dεL
t d�L

t d�L
α,

(25)

where
−→
pL

n ,
−→
pL

t , and
−→
pL

α are the momenta of the neutron, triton,
and the first α particle, respectively. Using Eq. (25), the
probabilities of phase-space bins for the breakup channel can
be calculated.

V. INTERFERENCE REACTIONS

The interference reactions can be detected by the GIC
detector and its spectrum will superimpose on that of the
10B(n,t2α) reaction. Three kinds of interference reactions
are taken into account: (1) the 10B(n,α)7Li reaction; (2) the
elastic scattering reaction between the neutron and hydrogen
which are adsorbed in the cathode plate, namely, the H(n,
n)p reaction; and (3) the (n,α) reactions of the isotopes in the
working gas of the GIC, which include

n + 13C → α + 10Be − 3.836 MeV,

n + 16O → α + 13C − 2.216 MeV,

n + 17O → α + 14C + 1.818 MeV, (26)

n + 82Kr → α + 79Se + 0.974 MeV,

n + 84Kr → α + 81Se − 0.404 MeV.

Although the 12C isotope abundance (98.93%) is much
larger than that of the 13C (1.07%) [12], the 12C(n,α)9Be
reaction is neglected because of the negative, rather large
Q value (−5.702 MeV). There are mainly four stable Kr
isotopes, 82Kr, 83Kr, 84Kr, and 86Kr, with abundances of
11.59%, 11.50%, 56.99%, and 17.28%, respectively. The
83Kr(n,α)80Se reaction is not taken into account due to the
large Q value (3.416 MeV) and the comparatively low isotope
abundance of 83Kr (11.50%); the 86Kr(n,α)83Se reaction
is neglected because the cross sections are very small at
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En = 4.0 ∼ 6.0 MeV predicted by the TALYS-1.6 code and in
the ENDF/B-VII.1 library.

The 10B(n,p)10Be reaction would be another interference
reaction considering the Q value (0.225 MeV), yet this reaction
is neglected for two reasons. First, the pressure of the working
gas is not high enough to stop the proton completely, so not all
of the energy of the proton is deposited into the working gas
and collected by the GIC. The 10B(n,p)10Be reaction events
will locate below the energy range of the 10B(n,t2α) reaction
events. Second, the positions of the proton events in the
forward spectrum are taken into account through considering
the H(n, n)p reaction. As shown in the second paper [10], the
forward spectrum will be used to select the effective events.

All of the interference reactions are two-body reactions,
so the calculation method of the final-state phase space is
similar to that of the first emitted particle in the 7Li∗∗ or 8Be
channel. For the 10B(n,α)7Li reaction, the cross sections and
the angular distribution of the α particle were calculated by
the LUNF code. For the H(n, n)p reaction, the cross sections
were obtained from the ENDF/B-VII.1 library and the angular
distribution of the recoil proton was assumed to be isotropic
in the CMS. For the (n,α) reactions from the working gas, the
TALYS-1.6 code was used to calculate the cross sections and the
angular distribution of the α particle with default parameters.

VI. THEORETICAL CALCULATION OF THE SPECTRUM

After obtaining the complete final-state phase space of the
7Li∗∗, 8Be, and breakup channels, one can check the self-
consistency of all of the phase-space bins. There are three
criteria:

(1) The summation of the probabilities of the phase-space
bins satisfies the conservation of total cross section.

(2) The energy of the three particles for each phase-space
bin satisfies the conservation of energy.

(3) The energy and angle of the three particles for each
phase-space bin satisfy the conservation of momentum.

By calculation, we find that all of the phase-space bins
satisfy the above three criteria, so the accuracy of the calculated
phase space is verified.

By integration of the phase-space bins, the spectra can be
obtained which include both one-dimensional (1D) and two-
dimensional (2D) spectra. There are two kinds of 1D spectra,
the forward and backward anode spectra and the total-energy
spectrum. For 2D spectra, there are also two types: the grid
versus the anode and the forward anode versus the backward
anode.

Figures 6(a) and 6(b) show the forward and backward
anode 1D spectra, respectively, for the 7Li∗∗, 8Be, and
breakup channels of the 10B(n,t2α) reaction together with
the 10B(n,α)7Li reaction at En = 4.0 MeV. The energy loss of
the products in the sample and the wall effect of the sample
position well are not included in this figure. In the figure, the
curve of (n, t2α) is the summation of the curves of 7Li∗∗, 8Be,
and breakup. Since the cross sections of the breakup channel
are not given by the LUNF code, their values are set to be equal to
those of the 7Li∗∗ channel based on the existing experimental
results [3,8]. As can be seen from Figs. 6(a) and 6(b), the

FIG. 6. (a) Forward and (b) backward anode 1D spectra for the
10B(n,t2α) and 10B(n,α)7Li reactions at En = 4.0 MeV without the
corrections of energy loss in the sample and wall effect of the sample
position well.

largest contribution to the 10B(n,t2α) reaction is from the 8Be
channel. It is worth noting that the relative contributions of the
7Li∗∗, 8Be, and breakup channels are still an open experimental
problem.

A noticeable feature of the forward 1D spectrum are the
peaks of the so-called leaking events existing in both the
10B(n,t2α) and the 10B(n,α)7Li reactions as shown in Fig. 6(a).
This kind of event was first noticed by Georgios et al. in 2005
in the measurement of the 10B(n,α)7Li reaction [19]. It was
named a leaking event because people ignored such events
in the previous experiments. The leaking event is a special
kinematic effect occurring in the light-nucleus reaction in that
all of the products are emitted in the forward direction. There
are two leaking peaks in the spectrum of the 10B(n,α)7Li
reaction which correspond to the ground and the first excited
states of the 7Li residual nucleus, respectively.

The forward 1D spectra of the 7Li∗∗, 8Be, and breakup
channels are very different from each other as shown in
Fig. 6(a). For the 8Be channel, in addition to the leaking
event peak, there are another two peaks. The peak with higher
energy corresponds to such events that the triton is emitted
forward. The other peak with lower energy corresponds to
that the triton is emitted backward and at least one α particle
is emitted forward. The triton in the 8Be channel belongs to
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the first emitted particle, so its energy is relatively high. This
leads to the fact that the triton events are separated from the
α-particle events to some degree in the spectrum of the 8Be
channel. For the 7Li∗∗ channel, the triton is the second emitted
particle with low energy, so the triton cannot be separated
from the α-particle events and they become one broad peak.
For the breakup channel, the shape of the spectrum is similar to
the Gaussian distribution which is a classical result of purely
statistical energy distribution. Since the characteristics of the
forward spectrum for the 7Li∗∗, 8Be, and breakup channels are
different from each other, if the forward spectrum is measured
accurately, the proportion of contribution from the 7Li∗∗, 8Be,
and breakup channels can be calculated by unfolding the
forward spectrum.

The structure of the forward spectrum for the 10B(n,α)7Li
reaction is relatively simple and clear. The α particle and the
recoil 7Li events separate well from each other as shown
in Fig. 6(a). The 7Li events overlap with the events of the
10B(n,t2α) reaction, while the α-particle and leaking events
separate well from the three-body reaction events because of
their higher energy.

Figure 6(b) shows the backward 1D spectrum of the
10B(n,t2α) and 10B(n,α)7Li reactions. The energy of the
backward events is much lower than that of the forward ones.
For the 8Be channel, the peak with higher energy comes from
the triton events and the peak with lower energy from the
α-particle events. The two peaks correspond one to one with
those in the forward spectrum. The structure of the 10B(n,α)7Li
reaction spectrum is clear. The peaks of the α particle and
the recoil 7Li events correspond one to one with those in the
forward spectrum. In the backward spectrum, the 7Li events
overlap with the three-body reaction events.

Figure 7 shows the spectra of the 10B(n,t2α) and
10B(n,α)7Li reactions, taking into account the energy loss in
the sample and the wall effect of the sample position well.
The main changes of the spectra are that the leaking peaks
disappear in the forward spectrum. This is due to the fact that,
for the leaking events, the three particles [or two particles for
the 10B(n,α)7Li reaction] are emitted with large angles. The
particles go through a longer path in the sample, and thus the
energy loss is larger. In addition, with large emission angle,
the particles are more likely to collide with the wall of the
sample position well, and thus the energy detected by the GIC
becomes lower.

According to the present experimental scheme, the numbers
of events for the 10B(n,t2α) and 10B(n,α)7Li reactions are
obtained from the total-energy 1D spectrum. Figure 8 shows
the predicted total-energy 1D spectrum. Before considering
the energy loss in the sample and the wall effect of the sample
position well, the total-energy 1D spectra of the 10B(n,t2α)
and 10B(n,α)7Li reactions are actually one and two energy
peaks, respectively. This indicates that the final-state phase
space satisfies the energy conservation. After considering the
two effects, the spectra are broadened. In the total-energy 1D
spectrum, the three-body reaction events separate well from
those of the two-body reaction.

Figure 9 shows the 2D spectra of the grid versus the
anode for the 10B(n,t2α) and 10B(n,α)7Li reactions taking into
account the energy loss in the sample and the wall effect of the

FIG. 7. (a) Forward and (b) backward anode 1D spectra for the
10B(n,t2α) and 10B(n,α)7Li reactions at En = 4.0 MeV after the
corrections of energy loss in the sample and wall effect of the sample
position well.

sample position well. The spectra of the interference reactions
are also plotted in the figure. Here the “energy on grid”
(“energy on anode”) refers to the energy corresponding to the
height of the grid (anode) pulse. The height of the cathode and
anode pulse can be calculated using the formulas in Ref. [20],
while the height of the grid pulse cannot be calculated by a
specific formula. In the present work, a numerical simulation

FIG. 8. Total-energy 1D spectrum for the 10B(n,t2α) and
10B(n,α)7Li reactions at En = 4.0 MeV before and after the cor-
rections of energy loss in the sample and wall effect of the sample
position well.
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FIG. 9. (a) Forward and (b) backward grid-anode 2D spectrum
for the 10B(n,t2α) and interference reactions at En = 4.0 MeV.

method was used to calculate the ratios of the grid pulse height
to the cathode pulse height based on the law of charge induction
on the electrodes. The ratios relate to the energy and directional
angle of the incident particles and to the pressure of the GIC.
The grid pulse height can be obtained using the simulated ratios
and the cathode pulse height. Note that it is helpful to see the
following 2D spectra together with the anode 1D spectra as
shown in Fig. 7.

In the forward 2D spectrum as shown in Fig. 9(a), the
α-particle and leaking events from the 10B(n,α)7Li reaction
separate well from the three-body reaction events. On the other
hand, there is a certain degree of overlap between the α-particle
and leaking events. The distribution structure of the α particle
from the 10B(n,α)7Li reaction is vertical, which is correlated
with the pressure of the working gas in the GIC. When the
gas pressure changes, the length of the ionization track of the
α particle changes, and then the amplitude of the grid pulse
changes accordingly. In the theoretical calculation, the gas
pressures are the same as those used in the experiment which
are shown in the second paper [10].

A noticeable characteristic of the forward 2D spectrum for
the 10B(n,t2α) reaction comes from the triton events of the 8Be
channel shown as “t(8Be)” in Fig. 9(a). Such triton events have
large energy, so the corresponding ionization track is long, and
thus the amplitude of the grid pulse is low. The distribution
of these triton events is slanted, which is due to the kinematic

FIG. 10. Backward-forward two-dimensional spectrum for the
10B(n,t2α) and 10B(n,α)7Li reactions at En = 4.0 MeV.

effect of the triton. The larger amplitude of the grid pulse
indicates that the emission angle of the triton is larger, while
the larger emission angle results in the lower energy. The recoil
effect is significant in the light-nucleus reaction due to the light
mass.

In the low-energy region of the forward 2D spectrum, the
main interference reactions are the H(n, n)p and 16O(n,α)13C
reactions. Although the energy of the protons is high, the
proton events separate well from the three-body events because
the amplitudes of the grid pulses are small. In the experimental
data processing, the forward 2D spectrum will be used to
select the effective events and reduce the influence from the
interference events.

Figure 9(b) shows the backward 2D spectrum. Since
the energy of the backward events is lower, most events
of the 10B(n,t2α) and 10B(n,α)7Li reactions are distributed
near the 90◦ line. The α-particle events from the 10B(n,α)7Li
reaction are clear. The triton events from the 8Be channel can be
seen to some degree. Since the hydrogen nuclei are considered
to be absorbed in the cathode plate and the proton particles
from the H(n, n)p reaction emit in the forward direction, there
are no H(n, n)p reaction events in the backward spectrum.

Note that the simulated backward spectrum for the (n,α)
reactions from the working gas, e.g., the 16O(n,α) reaction
events as shown in Fig. 9(b), is different from the measured
one. To simplify the calculation process, in the simulation the
backward spectrum for the (n,α) reactions from the working
gas is calculated independently from the forward one. While in
the experiment, the signal sampling of forward and backward
pulses is triggered by the forward signal as shown in the second
paper, so nearly all of the backward events of the (n,α) reaction
from the working gas are discarded. In other words, there are no
(n,α) reaction events from the working gas in the experiment.

Figure 10 shows another kind of 2D spectrum which is
the backward anode versus the forward anode. The energy
summation of the forward and backward signals is equal to
the summation of the incident neutron energy and the reaction
energy, which can be expressed as

Ef + Eb = En + Q. (27)
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The Q values of the 10B(n,t2α) and 10B(n,α)7Li reactions
are different (0.323 and 2.790 MeV), so the intercepts of
the distributions are different in the backward-forward 2D
spectrum. The three-body events separate well from the
two-body events.

VII. CONCLUSIONS

The 10B(n,t2α) three-body reaction proceeds in three ways,
namely, the 7Li∗∗, 8Be, and breakup channels. To predict the
experimental spectrum of the 10B(n,t2α) reaction measured by
GIC detector, the complete final-state phase space is calculated
for the 7Li∗∗, 8Be, and breakup channels, respectively.

The calculation method of the phase space for the 7Li∗∗
and 8Be channels is almost the same. The LUNF code is
first used to calculate the angular distribution of the first-
emitted particle. The RNS is adopted to calculate the energy
and directional angle of the second-emitted particles. A
transformation method for the energy and directional angle
from the RNS to the CMS is developed by exploiting the
rotation properties of the coordinate frames.

The breakup channel proceeds as a pure kinematic process
and its calculation method of the phase space is different from
that of the 7Li∗∗ and 8Be channels. The two α particles are
first taken as a whole and the energy and directional angle of
the triton are calculated. Then the energy and directional angle

of each α particle are calculated, taking full advantage of the
relationship of velocity composition between the LS and the
moving system of the quasi-2α particle.

Three kinds of interference reactions are taken into account,
including the 10B(n,α)7Li reaction, the H(n, n)p reaction, and
the (n,α) reactions from the working gas of the GIC (Kr +
2.7% CO2).

By integration of the phase-space bins, the one-dimensional
and two-dimensional spectra are obtained. The energy loss of
the products in the sample and the wall effect of the sample
position well are considered in the process of integration.
The dynamic and kinematic characteristics of the 10B(n,t2α)
reaction can be seen well from the calculated spectra.
The predicted spectra play an important role in the guidance
of the implementation of the experiment and the processing of
the experimental data.
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