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Simulating spin dynamics with spin-dependent cross sections in heavy-ion collisions
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We have incorporated the spin-dependent nucleon-nucleon cross sections into a Boltzmann-Uehling-Uhlenbeck
transport model for the first time, using the spin-singlet and spin-triplet nucleon-nucleon elastic scattering cross
sections extracted from the phase-shift analyses of nucleon-nucleon scatterings in free space. We found that the
spin splitting of the collective flows is not affected by the spin-dependent cross sections, justifying it as a good
probe of the in-medium nuclear spin-orbit interaction. With the in-medium nuclear spin-orbit mean-field potential
that leads to local spin polarization, we found that the spin-averaged observables, such as elliptic flows of free
nucleons and light clusters, becomes smaller with the spin-dependent differential nucleon-nucleon scattering
cross sections.
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I. INTRODUCTION

The spin-orbit interaction, which was previously introduced
to explain the magic number of finite nuclei, is critical in
understanding the structures of rare isotopes and their impacts
on astrophysics [1–5]. Heavy-ion collisions provide the only
way of studying properties of nuclear matter as well as
nuclear interactions at both finite densities and temperatures
in terrestrial laboratories, and a useful means of extracting
properties of the in-medium nuclear spin-orbit interaction with
optimal reaction conditions. Recently, we have developed a
spin- and isospin-dependent Boltzmann-Uehling-Uhlenbeck
(SIBUU) transport model, by incorporating the nucleon spin
degree of freedom and the nuclear spin-orbit interaction into
the IBUU transport model [6,7]. We found this model is useful
in studying the spin dynamics in intermediate-energy heavy-
ion collisions [8]. In particular, it was observed that the spin
splittings of collective flows of free nucleons and light clusters
can be good probes of the in-medium spin-orbit interaction
[9,10]. However, in our previous studies, we applied the spin-
dependent mean-field potential for nucleons but employed the
spin-averaged nucleon-nucleon scattering cross sections. In
order to have a complete framework of the spin-dependent
transport approach and a better description of the spin dynam-
ics in intermediate-energy heavy-ion collisions, in the present
study we incorporated the spin-singlet and spin-triplet cross
sections for elastic nucleon-nucleon scatterings into the model.
The latter are extracted based on the phase-shift analyses
of nucleon-nucleon scatterings in free space. We found that
the spin splitting of the collective flow as a probe of the in-
medium nuclear spin-orbit interaction is almost not affected by
the spin-dependent nucleon-nucleon scattering cross sections.
However, the overall elliptic flows of free nucleons and light
clusters are slightly smaller with the spin-dependent nucleon-
nucleon scattering cross sections compared with the spin-

*Corresponding author: xujun@sinap.ac.cn

averaged ones, if there is local spin polarization induced by the
spin-dependent mean-field potential. A more complete BUU
framework including both the spin-dependent potential and the
spin-dependent cross sections has been established, providing
possibilities of further exploring the interesting physics of spin
dynamics in intermediate-energy heavy-ion collisions.

II. SPIN-DEPENDENT CROSS SECTIONS FROM
PHASE-SHIFT ANALYSES

The phase-shift analysis has been an effective way of
decoupling nucleon-nucleon interactions into various channels
by fitting experimental nucleon-nucleon scattering data in
terms of the scattering matrix [11–14]. There are series
of studies on the energy-dependent phase-shift analyses of
nucleon-nucleon elastic scattering data in a wide energy range
[15–17]. Using the phase-shift data in Ref. [15], we evaluate
the spin-singlet and spin-triplet nucleon-nucleon elastic cross
sections within the incident nucleon energy range between
1 and 500 MeV, where the inelastic scatterings are less
important. For completeness, we first recall the most relevant
formulae in the following.

We begin with the general formula for the differential
cross section of two-body collisions expressed directly in
terms of the eigenphases of the scattering matrix by Blatt
and Biedenharn [18]:

dσα′s ′;αs = g

(2s + 1)k2

∞∑
L=0

BL(α′s ′; αs)PL(cos θ )d�, (1)

where g is 1 for neutron-proton scatterings and 4 for proton-
proton (neutron-neutron) scatterings, PL(cos θ ) is the Legen-
dre polynomial, k is the center-of-mass (c.m.) momentum in
the two-body system, and the coefficients

BL(α′s ′; αs) = (−)s
′−s

4
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∑
l2
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′
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′
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×R.P.[(δα′αδs ′sδl1
′l1 − S

J1

α′s ′l1 ′;αsl1
)∗

×(δα′αδs ′sδl2
′l2 − S

J2

α′s ′l2 ′;αsl2
)] (2)

can be determined directly from the phase-shift data. In the
above expression, δab represents the Kronecker δ function;
α, s, l, and J represent the scattering channel, the spin of the
scattering channel, the orbital angular momentum, and the total
angular momentum, respectively; SJ

α′s ′l′;αsl is the scattering
amplitude of a collision from a channel αsl to a channel α′s ′l′;
the Z coefficient represents the selection rules introduced by
Biedenharn et al. [19]; the R.P.[...] represents the real part
of the expression in the bracket. In the limit of pure elastic
nucleon-nucleon scatterings without spin flipping, α′ = α and
s ′ = s are always satisfied, so we omit the superscript α and
use only s as the superscript in the following. s = 0 and
s = 1 stand for the spin-singlet and spin-triplet scattering,
respectively.

Let us first consider the spin-singlet and spin-triplet channel
for neutron-proton scatterings. For the spin-singlet case with
s = 0, there is only one channel l = J . Using S = exp(2iδ0

J ),
Eq. (2) becomes

BL(0; 0) =
∑
J1

∑
J2

∑
l1=J1

∑
l2=J2

Z(l1J1l2J2,0L)2

× sin δ0
J1

sin δ0
J2

cos
(
δ0
J1

− δ0
J2

)
, (3)

where δ0
J is the phase-shift of the spin-singlet channel with

orbital angular momentum l = J . For the spin-triplet case
with s = 1, given l = J , there is still only one channel with
S = exp(2iδ1

J ). When the neutron-proton scattering is affected
by the tensor force in their spin-triplet state, the angular
momentum l can have two values, i.e., l = J ± 1. In the latter
case, the general expression of the S matrix of a two-channel
reaction is

S =
(

cos2(εJ )e2iδ1
J−1 + sin2(εJ )e2iδ1

J+1 1
2 sin(2εJ )(e2iδ1

J−1 − e2iδ1
J+1 )

1
2 sin(2εJ )(e2iδ1

J−1 − e2iδ1
J+1 ) sin2(εJ )e2iδ1

J−1 + cos2(εJ )e2iδ1
J+1

)
. (4)

In the above, δ1
J±1 is usually called the Biedenharn-Blatt (BB)

phase shift of the spin-triplet channel with l = J ± 1, and εJ

is the parameter describing the mixing probability of the two
coupling states. By using the energy-dependent neutron-proton
phase-shift data as well as the mixing parameters for various
channels in Tables III and IV of Ref. [15], we calculate
the coefficient BL and the differential cross section. For the
unpolarized neutron-proton cross section, we also take the
summation of the isovector contribution T = 1, the isoscalar
contribution T = 0, and their interference contribution to the
coefficient BL [20]. We note there is a simplified method
for calculating the spin-triplet case developed by Blatt and
Biedenharn [21], and it leads to identical results.

For proton-proton scatterings, we only incorporate the
nuclear contribution to the cross section into transport model
simulations, but subtract the contribution of the long-range

Coulomb potential to the scatterings. For the spin-singlet and
spin-triplet proton-proton scatterings with l = J , the scattering
matrix S can be expressed as

S = e2iδ
0(1)
J − e2iφJ + 1, (5)

where φJ is the pure Coulomb phase shift for orbital angular
momentum l = J , and it can be written as [22]

φl =
l∑

m=1

arctan(η/m) (6)

with η = e2/h̄v ≈ (137β)−1, where β = v/c is the reduced
velocity of the incident proton in the laboratory frame. In
order to subtract the Coulomb contribution from the S matrix
for the two channels of spin-triplet scatterings with l = J ± 1,
we express it as [23]

S = 1 +
(

cos(2εJ )e2iδ1
J−1 − e2iφJ−1 i sin(2εJ )ei(δ1

J+1+δ1
J−1)

i sin(2εJ )ei(δ1
J+1+δ1

J−1) cos(2εJ )e2iδ1
J+1 − e2iφJ+1

)
(7)

with

δ
0(1)
l = δ

0(1)
l (N ) + φl, (8)

where δ
0(1)
l (N ) is called the nuclear bar phase shifts, which are

taken from Table II of Ref. [15] for various proton incident
energies. The way of subtracting the Coulomb contribution
assumes that the Coulomb force acts only outside the region of
the nuclear force where the WKB approximation is valid [23].
For the spin-singlet and spin-triplet proton-proton scatterings
with l = J , the expressions for the scattering matrix S are
the same for BB phase shifts and bar phase shifts, as can be
seen from Eq. (5). In this way the spin-dependent differential

proton-proton elastic scattering cross sections can also be
obtained.

III. PARAMETRIZATION OF THE SPIN-DEPENDENT
CROSS SECTIONS

Starting from the energy-dependent phase-shift results of
nucleon-nucleon scatterings by Arndt et al. [15], and using
the method described above, we are now able to obtain
the differential cross sections for elastic nucleon-nucleon
scatterings at various collision energies. Since the higher-order
terms of the Legendre polynomials vanish after integration,
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the total cross section is determined by the terms with L = 0
in Eq. (1). The total cross sections for both spin-singlet and
spin-triplet elastic neutron-proton scatterings between 1 and
500 MeV can be parametrized, respectively, as

σ 0
np = 9302.64/E3 − 982.187/E2 − 1.32 × 102 + 1.03E

− 3.06 × 10−3E2 + 4.85 × 10−6E3 − 3.19 × 10−9E4,

(9)

σ 1
np = −27888.84 × 104/E3 + 17565.39/E2 + 13382.81/E

− 8.10 × 101 + 0.37E − 2.75 × 10−4E2

− 9.60 × 10−7E3 + 1.37 × 10−9E4. (10)

Similarly, the total cross sections for both spin-singlet and
spin-triplet elastic proton-proton scatterings between 1 and
500 MeV can also be parametrized, respectively, as

σ 0
pp = −11877.31/E3 + 733.31/E2 + 17397.66/E

− 2.38 × 102 + 1.51E − 4.9 × 10−3E2

+ 8.37 × 10−6E3 − 5.58 × 10−9E4,

σ 1
pp = −1.20 + 0.79E − 8.40 × 10−3E2 + 3.24 × 10−5E3,

(1 MeV < E < 100 MeV)

σ 1
pp = 1.72 × 101 + 0.16E − 8.13 × 10−4E2

+ 2.14 × 10−6E3−2.86 × 10−9E4+1.52 × 10−12E5

(100 MeV < E < 500 MeV). (11)

In the above, σ 0 and σ 1 in mb are the cross sections for the
elastic spin-singlet and spin-triplet scatterings, respectively,
and E in MeV is the kinetic energy of the incident nucleon in
the laboratory frame. The spin-averaged cross section can be
obtained from σ = σ 0/4 + 3σ 1/4. In Fig. 1 we compared the
total elastic scattering cross sections obtained in the present
study with those previously used in the IBUU transport model,

FIG. 1. Total elastic spin-averaged, spin-singlet, and spin-triplet
cross sections obtained in the present study for neutron-proton (left)
and proton-proton (neutron-neutron) (right) scatterings as functions
of the reduced incident nucleon velocity β in the laboratory frame,
compared with the previous ones used in the IBUU transport model.

with the latter taken from Ref. [24] parametrized as

σpp(nn) = 8.76/β2 − 15.04/β + 13.73 + 68.76β4, (12)

σnp = 25.26/β2 − 18.18/β − 70.67 + 113.85β, (13)

where the cross section σ is in mb, and β =√
1 − M2

Nc4/(MNc2 + E)2 is the reduced velocity of the
incident nucleon with MN being the nucleon mass. We find that
the previously used parametrized cross sections are similar to
the spin-averaged ones obtained in the present study using the
phase-shift results in the energy range considered. Note that
a cut at very low energy region, where the cross section may
diverge, is usually used in transport model simulations.

We have also parametrized the differential spin-singlet
and spin-triplet cross sections for elastic neutron-proton and
proton-proton scatterings between 1 and 500 MeV in the
following form:

dσ s
np(θ ) =

11∑
n=0

as
ncosnθd�, (14)

dσ s
pp(θ ) =

5∑
m=0

bs
2mcos2mθd�. (15)

In the above equations, the cross sections are in mb, n and
m are related to the angular momentum quantum numbers
of the orbital wave function, i.e., from s wave to h wave, as
used in the energy-dependent phase-shift analyses. With the
differential cross sections from phase-shift results at discrete
energies, we are able to parametrize the coefficients as

n and
bs

2m as functions of the energy E to get continuous energy-
dependent differential cross sections between 1 and 500 MeV.
The s-wave coefficients a0

0 , a1
0 , b0

0, and b1
0, which lead to the

total cross section, are parametrized, respectively, as

a0
0 = −47.99/E3 − 28.93/E2 + 740.42/E − 12.11

+ 7.53 × 10−2E − 2.32 × 10−4E2 + 3.83 × 10−7E3

− 2.62 × 10−10E4, (16)

a1
0 = −2435.74/E3 + 1565.07/E2 + 1115.4/E

− 9.27 + 0.02E + 1.43 × 10−4E2

− 6.04 × 10−7E3 + 6.08 × 10−10E4, (17)

b0
0 = −987.99/E3 + 80.497/E2 + 1409.47/E − 23.51

+ 0.148E − 4.488 × 10−4E2 + 7.203 × 10−7E3

− 4.72 × 10−10E4, (18)

b1
0 = −0.142 + 0.079E − 8.78 × 10−4E2 + 3.36 × 10−6E3

(1 MeV < E < 100 MeV),

b1
0 = 1.89 + 9.85 × 103E − 6.90 × 10−5E2 + 1.84

×10−7E3 − 2.33 × 10−10E4 + 1.16 × 10−13E5

(100 MeV < E < 500 MeV). (19)

For other coefficients as
n and bs

2m corresponding to larger
orbital angular momentum quantum numbers, polynomial
functions are used to fit their energy dependence, and the
fitting results are shown in Table I.
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TABLE I. Coefficients for the polynomial fit of the energy dependence of as
n (n > 0) and bs

2m (m > 0), i.e., as
n(bs

2m) = C0 + C1E + C2E
2 +

C3E
3(1 MeV < E < 50 MeV) and as

n(bs
2m) = C4 + C5E + C6E

2 + C7E
3 + C8E

4 + C9E
5(50 MeV < E < 500 MeV).

C0 C1 C2(10−3) C3(10−5) C4 C5 C6(10−3) C7(10−6) C8(10−9) C9(10−12)

a0
1 −6.23 −0.46 32.24 − 42.98 − 2.20 −2.84 × 10−3 0.14 − 0.26 − 0.064 0.29

a0
2 −0.48 0.54 − 21.99 24.79 4.71 −7.55 × 10−2 0.74 -2.41 3.54 − 1.98

a0
3 0.47 −0.32 7.92 − 4.77 − 8.82 0.23 − 1.98 6.80 − 10.61 6.39

a0
4 −4.07 × 10−2 11.08 5.23 − 9.12 0.23 0.12 − 1.96 7.48 − 12.09 7.36

a0
5 −0.13 9.77 × 10−2 − 11.76 15.66 − 1.80 −0.12 1.37 − 5.28 8.92 − 5.75

a0
6 4.80 × 10−2 −3.77 × 10−2 4.57 − 5.47 3.41 −0.14 3.03 − 12.81 21.96 − 13.90

a0
7 −2.63 × 10−2 1.90 × 10−2 − 1.99 2.07 1.43 −0.11 1.13 − 4.02 6.57 − 4.01

a0
8 2.12 × 10−2 −1.55 × 10−2 1.68 − 2.23 0.10 0.12 − 2.67 11.89 − 21.24 13.77

a0
9 −2.52 × 10−3 1.49 × 10−3 − 0.052 − 0.90 2.43 −6.06 × 10−2 − 0.30 1.97 − 3.80 2.55

a0
10 −4.21 × 10−5 4.64 × 10−4 − 0.19 1.45 − 4.37 9.84 × 10−2 0.43 − 3.68 7.86 − 5.56

a1
1 0.36 −8.13 × 10−2 7.28 − 10.15 2.72 −1.39 × 10−2 − 0.11 0.92 − 2.11 1.59

a1
2 −0.18 −0.22 16.87 − 21.24 1.10 1.07 × 10−1 − 1.00 4.27 − 8.11 5.63

a1
3 1.17 × 10−2 1.15 × 10−2 − 1.34 2.27 − 1.69 5.93 × 10−2 − 0.57 2.10 − 3.42 2.09

a1
4 5.37 × 10−2 −3.46 × 10−2 3.80 − 6.46 4.16 −6.24 × 10−2 − 0.65 4.21 − 8.40 5.75

a1
5 −1.81 × 10−3 3.65 × 10−3 − 1.07 1.97 − 2.72 6.95 × 10−2 − 0.36 0.39 0.41 − 0.72

a1
6 2.03 × 10−2 −1.74 × 10−2 2.24 − 0.78 − 5.71 0.25 − 1.42 3.63 − 4.75 2.52

a1
7 −1.05 × 10−2 8.01 × 10−3 − 0.91 1.06 1.76 −0.11 1.41 − 5.04 7.87 − 4.64

a1
8 1.32 × 10−3 −9.45 × 10−4 0.09 0.08 − 0.70 2.77 × 10−2 − 0.19 0.53 − 0.66 0.29

a1
9 −3.39 × 10−4 5.50 × 10−5 0.05 − 0.61 0.94 −1.36 × 10−2 − 0.43 2.03 − 3.58 2.27

a1
10 −5.08 × 10−5 6.50 × 10−5 − 0.01 0.09 − 0.08 −1.16 × 10−3 0.11 − 0.48 0.81 − 0.48

b0
2 −1.24 −9.83 × 10−1 − 36.74 38.86 8.51 −9.91 × 10−2 0.47 − 1.27 1.84 − 1.04

b0
4 0.16 −0.12 14.36 − 20.55 4.01 4.33 × 10−2 − 0.87 3.07 − 4.73 2.91

b0
6 1.44 × 10−2 −1.02 × 10−2 0.99 − 0.35 − 1.62 0.064 0.0061 − 0.27 0.57 − 0.61

b0
8 1.38 × 10−4 −8.66 × 10−5 0.0048 0.034 − 0.078 0.0022 0.0097 − 0.042 0.068 − 0.041

b1
2 0.039 −0.019 − 0.82 2.06 − 1.44 0.03 − 0.15 0.52 − 0.98 0.67

b1
4 −0.027 0.023 − 1.79 1.63 − 0.488 0.397 − 1.61 3.08 − 2.10 5.63

b1
6 6.53 × 10−5 −3.52 × 10−3 0.52 − 0.84 2.13 −5.18 × 10−2 0.34 − 0.84 0.65 − 0.073

b1
8 1.73 × 10−3 −1.95 × 10−3 0.204 − 0.18 − 0.63 4.94 × 10−2 − 0.68 2.55 − 3.93 2.25

b1
10 −2.30 × 10−3 6.16 × 10−3 − 0.021 0.15 − 0.29 −3.78 × 10−3 0.23 − 1.04 1.75 − 1.07

In transport model simulations of heavy-ion collisions, it
is more convenient to use the cross sections determined by
the spins of the colliding nucleons, and they can be expressed
in terms of the spin-singlet and spin-triplet scattering cross
section as

σ
↑↑(↓↓)
NN = σ 1

NN, (20)

σ
↑↓(↑↓)
NN = (

σ 1
NN + σ 0

NN

)
/2, (21)

where σ
↑↑(↓↓)
NN (σ ↑↓(↑↓)

NN ) is the cross section for nucleon pairs
with the same (different) spin with respect to the angular
momentum of the pair. The angular dependence of the
differential cross sections to be used in SIBUU transport model
simulations is plotted in Fig. 2. These angular distributions
reveal the nucleon interaction in vacuum. For example, in
neutron-proton scatterings, the forward peak is due to the
Wigner force while the backward peak is due to the Majorana
force [25]. On the other hand, scatterings between identical
particles with the same spin and isospin are not likely to have
forward and backward peaks due to the strong Pauli repulsive
effect.

IV. EFFECTS IN HEAVY-ION SIMULATIONS

In the SIBUU transport model, the density of the initial
two nuclei is sampled according to the prediction of Skyrme-
Hartree-Fock calculations, while the momentum of each
nucleon is sampled according to its local density and further
boosted by the beam energy. The spin expectation value of
each nucleon is chosen as a unit vector in the 4π solid angle,
and it is randomly sampled in the initial stage. As the system
begins to evolve, the coordinate �r , momentum �p, and spin �s
of each nucleon follow the equations of motion consistently
derived from the spin-dependent Boltzmann-Vlasov equation
[7] as follows:

d�r/dt = �p/

√
p2c2 + M2

Nc4 + ∇pUs, (22)

d �p/dt = −∇U − ∇Us, (23)

d�s/dt = − i

h̄
[�s,Us], (24)

where U is the momentum- and spin-independent mean-field
potential, and the right-hand side of the third equation denotes
the commutator of each component of spin with the spin-
dependent mean-field potential Us . Particularly, the strength,
the isospin dependence, and the density dependence of Us are
still under debate and are hot topics in nuclear structure studies
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FIG. 2. Differential cross sections for neutron-proton (left) and
proton-proton (right) pairs with the same spin, different spins, and the
spin-averaged differential cross sections as functions of the scattering
polar angle θ in the c.m. frame, at an incident nucleon energy of
100 MeV.

[8]. In our previous studies, we have shown that nucleons with
different spins may have different dynamics with Us , and this
leads to local spin polarization (see Fig. 1 of Ref. [6] and Fig. 1
of Ref. [10]) as well as the spin splitting of collective flows of
free nucleons and light clusters [6,9,10]. Here, we investigate
the effects of nucleon-nucleon scatterings with spin-dependent
differential elastic cross sections in heavy-ion collisions. Since
the spin expectation direction is known for each nucleon,
the spin state of a single nucleon and that of the colliding
nucleon pair can be obtained by projecting the spin expectation
direction onto the total angular momentum of the incoming
nucleon pair. The differential scattering cross sections are then
determined from the spin state as well as the collision energy
through the parametrizations given in Sec. III, and they are
technically incorporated according to the scattering treatment
in Appendix B of Ref. [26].

We first examine the effects of the spin-dependent cross
sections on the spin up-down differential transverse flow
defined as [6,9]

Fud (yr ) = 1

N (yr )

N(yr )∑
i=1

si(px)i , (25)

where N (yr ) is the number of nucleons with rapidity yr , (px)i
is the momentum of the ith nucleon in x direction, and si is
1 (−1) for spin-up (spin-down) nucleons with respect to the
total angular momentum of the heavy-ion collision system.
As discussed in Refs. [6,9], the spin-dependent potential Us

gives an additional attractive (repulsive) potential to spin-up
(spin-down) nucleons, resulting in their different transverse
flows. As shown in the left panel of Fig. 3, Fud vanishes without
Us , with the latter the source of different potentials for spin-up
and spin-down nucleons and thus their different transverse
flows. With Us , Fud remain almost the same using the spin-
averaged and spin-dependent nucleon-nucleon cross sections,
as shown in the right panel of Fig. 3. We have also found that

FIG. 3. Rapidity dependence of the spin differential transverse
flow from the spin-averaged and the spin-dependent cross sections
with (right) and without (left) the spin-orbit (SO) potential in Au+Au
collisions at 100 MeV/nucleon and an impact parameter b = 12 fm.

the spin up-down differential transverse flow remains the same
for neutrons and protons as well as for energetic nucleons,
justifying the validity of Fud as a good probe of the strength,
the isospin dependence, and the density dependence of the
in-medium nuclear spin-orbit potential [6,9,10].

Figure 4 compares the resulting spin-averaged elliptic flows
[v2 = 〈(p2

x − p2
y)/(p2

x + p2
y)〉] of free nucleons and deuterons

from the spin-averaged and spin-dependent nucleon-nucleon
scattering cross sections with and without the spin-dependent
mean-field potential. It is seen that v2 of free nucleons is
the same from the spin-averaged and spin-dependent cross
sections without Us , while the difference is observed with Us .
The latter is due to the local spin polarization induced by Us .
As is know, v2 is sensitive to the shear viscosity of the system
[27,28], with the later related to the transport cross section

FIG. 4. Rapidity dependence of the elliptic flow of free nucleons
(left) and deuterons (right) from the spin-averaged and the spin-
dependent cross sections with (lower) and without (upper) the spin-
orbit (SO) potential in Au+Au collisions at 100 MeV/nucleon and
an impact parameter b = 12 fm.
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defined as

σtr =
∫

dσ

d�
(1 − cos2 θ ). (26)

For a given total σ , a more forward- and backward-peaked
differential cross section generally leads to a smaller transport
cross section and a larger shear viscosity. Since locally there
can be different numbers of spin-up and spin-down nucleons
induced by the spin-dependent mean-field potential, the
transport cross section can be different from the spin-averaged
and spin-dependent cross sections. This is the reason why the
slightly different v2 is observed in panel (c) of Fig. 4. We have
also studied the formation of light clusters formed in transport
simulations, through a dynamical coalescence algorithm from
nucleons that are close in coordinate and momentum space
[10,29]. The spin-dependent differential cross sections lead
to correlations between the scattering angles of final-state
nucleons, resulting in the different final distributions of these
light clusters. It is seen from Fig. 4 that slight v2 difference
is observed at midrapidities between results from the spin-
averaged cross sections and the spin-dependent ones, and the
effect is further enhanced with the spin-dependent mean-field
potential.

V. CONCLUSION AND OUTLOOK

Using the phase-shift results from nucleon-nucleon scatter-
ing data in free space, we have obtained the spin-dependent
neutron-proton and proton-proton differential elastic scatter-
ing cross sections. We have further incorporated them into
the spin-dependent Boltzmann-Uehling-Uhlenbeck transport
model for the first time. The spin splittings of collective flows,
which were previously found as probes of the in-medium
nuclear spin-orbit interaction, are not affected by these spin-
dependent cross sections. However, spin-averaged quantities,

such as the elliptic flows of free nucleons and deuterons, can
be slightly affected with both the spin-dependent mean-field
potential and cross sections.

We note that it is still a big challenge to obtain the spin-
dependent inelastic nucleon-nucleon scattering cross sections
in the suitable energy range for intermediate-energy heavy-ion
collisions, due to the lack of the experimental data. On the other
hand, the in-medium nucleon-nucleon scattering cross sections
remain uncertain, even for the spin-independent part. So far,
the information of the in-medium cross sections relies on
various many-body theories [30–32], while in transport model
simulations the in-medium effective mass scaling [33,34] or
empirical parametrizations [35] are generally used. We are still
on the way of looking for reliable probes of the in-medium
nuclear spin-orbit interaction and studying interesting and
relevant physics of spin dynamics in heavy-ion collisions, by
using a dynamical framework as complete as possible.
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