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Spins of complex fragments in binary reactions within a dinuclear system model
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The average angular momenta and widths of the spin distributions of reaction products are calculated within
the dinuclear system model. The thermal excitation of rotational bearing modes is considered in the dinuclear
system. The calculated fragment spins (γ multiplicities) and their variances in the reactions 20Ne (166 MeV) +
63Cu, 40Ar (280 MeV) + 58Ni, 20Ne (175 MeV) + natAg, 40Ar (237 MeV) + 89Y, 40Ar (288 and 340 MeV) +
107,109Ag, and 16O (100 MeV) + 58Ni are compared with the available experimental data. The influence of the
entrance channel charge (mass) asymmetry and bombarding energy on the characteristics of spin distribution is
studied.
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I. INTRODUCTION

The dissipation of orbital angular momentum in fission and
heavy-ion reactions has been the subject of experimental and
theoretical interest for many years [1–30]. Of particular interest
is the mechanism that converts the orbital angular momentum
to the intrinsic fragment spins. In the classical picture, the two
nuclei of the dinuclear system (DNS) are assumed to be rigid
spheres rotating around a common center. As the nuclei interact
through the long-range repulsive Coulomb forces and short-
range attractive nuclear forces, the torques are generated upon
the two nuclei causing their intrinsic rotation at the expense of
relative angular momentum. If the condition of long interaction
times is satisfied, the system attains equilibrium which corre-
sponds to rigid rotation, characterized by matching the orbital
and the intrinsic angular velocities. Then, the spin of the nu-
cleus i after the DNS decay is defined by the following formula:

〈Ii〉 = �i

�1 + �2 + �R

J, (1)

where � = �1 + �2 + �R is the DNS moment of inertia in the
sticking limit, �i is the moment of inertia of the DNS nucleus
i [i = 1 ≡ (Zt − Z,At − A) or 2 ≡ (Z,A)], �R = μR2

m is the
relative moment of inertia with the reduced mass parameter μ
and the touching distance between the DNS nuclei, and J is the
total angular momentum of the DNS with the total mass At and
charge Zt numbers. Because the nucleus-nucleus collisions
occur with various impact parameters and, correspondingly,
with various values of the orbital angular momentum, the use
of the certain average value of J in Eq. (1) implies a serious
physical limitation in the interpretation. Several values of
“average orbital angular momentum” were proposed, ranging
from Jmax/2 to Jmax/

√
π, Jmax/

√
2 or even Jmax, where Jmax

is the maximum angular momentum in a given reaction.

As experimentally established, the amount of angular mo-
mentum transferred to the fragments in a completely relaxed
collision is approximately consistent with the formation and
evolution of the DNS. In the experiment, the measurement
of γ -ray multiplicities and alignment of the fragment spins
provides insight to the process of angular momentum transfer.
The relationship between the γ -ray multiplicity Mγ (Z,A) and
the average spin 〈IZ,A〉 of nucleus (Z,A) is often given in the
literature [17] as

〈IZ,A〉 = 2[Mγ (Z,A) − aγ ], (2)

where aγ is a constant between 0 and 6 defining the number
of statistical transitions which can be inferred from the γ
spectrum and are weakly related to the collective spin. The
heavy-ion collisions have proved that the rigid rotation limit is
indeed achieved. Using the classical mechanic’s rigid rotation
formula (1), the spin of the fission fragments can only be
approximately reproduced for the symmetric fragmentations,
and even this implies a “fitting” of the average orbital angular
momentum J . However, the angular momenta of fission
fragments determined by γ -ray measurements is usually lower
at large asymmetries than those predicted by Eq. (1). Also, the
experimental data for heavy targets and projectiles revealed
that the sum of the spins of final fragments has a weak
dependence on mass asymmetry, opposite to the classical
picture. Several models have been proposed in order to explain
the experimental angular momentum data: (1) the diffusion
model [14,17,21] in which transport equations have been
invoked and the time evolution of the DNS is explicitly treated
and (2) the statistical model [8,9,17] in which the angular
momenta associated with several collective rotational modes
(two wriggling modes, two bending modes, one tilting mode,
and one twisting mode) are investigated. The latter model leads
to some overestimation of the average values of the fragment

2469-9985/2017/96(4)/044611(12) 044611-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.044611
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spins, but provides an important insight on the origin and
magnitude of the spin fluctuations around the average value.

The angular momentum plays an important role in the cap-
ture and quasifission (fully damped) processes, the formation
of complex fragments and compound nucleus (CN), and the
competition of decay channels in the excited CN [17,31–33].
The nuclear reaction mechanism at low bombarding energies
is assumed to be determined rather uniquely by the impact
parameter or the angular momentum. As shown in Ref. [34],
high angular momentum favors the emission of high-energy
α particles and the emission probabilities of charged particles
increase with angular momentum. The experimental evidence
of the strong effect of angular momentum on the charge
distribution of complex fragments (Z > 3) has been revealed
in Ref. [35]. Within the DNS model [32,33,36–38] the reaction
mechanism [the fusion followed by binary decay or quasifis-
sion (fully damped process without the formation of CN)] is
mostly determined by the angular momentum deposited in the
system. Knowledge about the angular momentum dependence
of the probability of complex fragment emission is very
important for the production of exotic nuclei via cluster decay
of CN [39–43].

The aim of the present work is to study the average angular
momenta and widths of the spin distributions of binary reaction
products within the DNS model [32,33,36,37]. For this
purpose, the DNS is coupled with the modes bearing angular
momentum [9]. In the DNS model, the complex fragment
formation and decay is treated under the assumption that the
primary fragments are produced by the collective motion of
the DNS in charge asymmetry coordinate with further thermal
escape over the Coulomb barrier. The DNS model has an
advantage that both fusion-fission and quasifission processes
are taken into account naturally. The dynamics plays a role
at high angular momenta when the quasifission becomes
important. The main ingredient of the DNS description is
the sophisticated potential energy (driving potential) as a
function of angular momentum. The emission barriers for
complex fragments are calculated within the DNS model
by using the double-folding potential (with the Skyrme-type
density-depending effective nucleon-nucleon interaction) for
the nuclear part of the nucleus-nucleus interaction potential.
Both the evaporation and binary decay are treated in the same
way. In comparison with the statistical model [44,45], the
definition of the emission barriers is more accurate in our case.
In the DNS model, Jmax is not an adjustable parameter, but it is
calculated by using the nucleus-nucleus interaction potential
[36]. The scission configuration is exactly defined and the
temperature is precisely calculated for each fragmentation. The
exact calculations of the temperature and angular momentum
fractionation [8,17] (because the driving potential depends on
the angular momentum) allow us to follow the evolution of
the twisting, tilting, and bending modes in more detail, and to
assess their contributions in the fragment spins with changing
different experimentally controllable parameters. Note that in
the works done in the eighties, the temperature seemed to be an
adjustable parameter and the same for all fragmentations. Note
that within the DNS model the charge, mass, and isotopic dis-
tributions of the products in the fusion-fission and quasifission
reactions have been successfully described [32,33,36,37].

The results of the present paper are summarized as (a)
a simultaneous treatment of the mass, charge, and spin
distributions in the fusion-fission and quasifission reactions;
(b) an explanation of the experimental data, especially at
large mass and/or charge asymmetries; (c) a more detailed
calculation of the variances arising from the orbital motion and
bearing modes; (d) a saturation of intrinsic spin of fragments
at a specific value of the bombarding energy; (e) a role of
the angular momentum deposited into the system; and (f)
a connection between the entrance channel and the spin of
fragments. The model proposed is described in Sec. II. The
detailed theoretical study of the reactions 40Ar (280 MeV)
+ 58Ni, 20Ne (175 MeV) + natAg, 40Ar (237 MeV) + 89Y,
40Ar(288, 340 MeV) + natAg, and 16O (100 MeV) + 58Ni is
carried out in Sec. III. The conclusions are given in Sec. IV.

II. MODEL

A. Evolution in charge and mass asymmetries
and decay in relative distance

The DNS model [32,33,36,37] describes an evolution of
the charge and mass asymmetry degrees of freedom, which
are defined here by the charge and mass (neutron) numbers Z
and A (N = A − Z) of the light nucleus of the DNS, in the
DNS formed in the entrance channel of the reaction after the
dissipation of kinetic energy and angular momentum of relative
motion. According to this description, there are nucleon drift
and nucleon diffusion between the DNS nuclei and eventually
either the CN is formed (complete fusion) or the DNS with
given Z and A is formed and decays in the relative distance R
between the centers of mass of the nuclei (quasifission). After
the formation, the excited CN decays by various channels
including the formation of certain DNS and their decay. The
CN formation and its subsequent decay is not necessarily
the ultimate result of the evolution of the initial DNS. In
addition to contributions from the CN decay, the binary decay
component is related to the quasifission mechanism. The
competition between the complete fusion and quasifission
depends on the value of the maximum angular momentum
deposited in the system. The quasifission and CN decays are
hardly distinguished in the experiments because in both cases
two fragments are produced by the decay of the DNS formed
during the diffusion process in the mass (charge) asymmetry
coordinate with and without the stage of the CN formation.

The production cross section of nucleus with charge Z and
mass A numbers is calculated as follows [32,33,36,37]:

σZ,A(Ec.m.) =
Jmax∑
J=0

σZ,A(Ec.m.,J )

=
Jmax∑
J=0

σcap(Ec.m.,J )WZ,A(Ec.m.,J ), (3)

where σcap is the partial capture cross section which defines
the transition of the colliding nuclei over the Coulomb barrier
and the formation of the initial DNS when the kinetic
energy Ec.m. above the barrier and angular momentum J
of the relative motion are transformed into the excitation
energy and angular momentum of the DNS. This transition
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probability is calculated with the Hill-Wheeler formula, where
the effective nucleus-nucleus potential V is approximated near
the Coulomb barrier at R = Rb by the inverted harmonic-
oscillator potential. The maximum value of angular mo-
mentum Jmax is limited by either the kinematical angular
momentum Jkin = [2μ(Ec.m. − Vb)/h̄2]1/2Rb (Vb is the height
of the Coulomb barrier) or by the calculated critical angular
momentum Jcr (at which the potential pocket of the nucleus-
nucleus interaction potential disappears and the capture of
projectile by the target becomes impossible) depending on
which one is smaller: Jmax = min[Jkin,Jcr].

It should be noted that the calculated capture cross sections
with this method are in a good agreement with those obtained
with the dynamical model [46]. The value of

WZ,A(Ec.m.,J ) = PZ,AP R
Z,A∑

Z′,A′ PZ′,A′P R
Z′,A′

(4)

is the formation-decay (emission) probability of the DNS with
a given asymmetries Z and A. The probability

PZ,A(Ec.m.,J ) ∼ exp[−U (Rm,Z,A,J )/Tmax(J )] (5)

of the DNS formation is calculated statistically by using the
stationary solution of the master equation with respect to the
charge and mass asymmetries and depends on the potential
energy U (Rm,Z,A,J ) of the DNS configurations at touching
distance Rm and on the thermodynamical temperature Tmax(J ).
The probability

P R
Z,A(Ec.m.,J ) ∼ exp

[−B
qf
R (Z,A,J )/TZ,A(J )

]
. (6)

of the DNS decay in the relative distance R is calculated by
using the transition state method. This probability depends on
the difference B

qf
R (Z,A,J ) between the potential energies of

the DNS configurations at the touching distance and at the
barrier position. The barrier B

qf
R , called quasifission barrier,

prevents the DNS decay in R. In Eqs. (5) and (6), Tmax(J ) =
max{TZ,A(J )}, where TZ,A(J ) are the temperatures of all
possible configurations. These temperatures are calculated
within the Fermi-gas model. The level density parameter a
is taken as a = 0.114A + 0.162A2/3 from Ref. [47]. The
details of calculations of σcap,WZ,A, and, correspondingly,
σZ,A(Ec.m.) are given in Ref. [36]. Here, only the most salient
features are outlined.

B. Spin of fragments from orbital momentum
and bearing modes

The orbital motion of the system is not the only source of
intrinsic spin of the fragments [17]. The collective angular
oscillations (the bending, wriggling, tilting, and twisting
modes) are also generated by thermal excitation of the DNS.
Let us fix a reference frame with the y axis coinciding with
the line of nuclear centers and the x and z axes perpendicular
to it. The two bending modes correspond to a spin of one
fragment parallel to the x or z axis associated with an opposite
rotation of the other fragment. The twisting modes correspond
to a rotation of one fragment around the y axis associated with
an opposite rotation of the other fragment. The two wriggling
modes are rotations of both fragments around the x or z axis

compensated by a counter-rotation of the system as a whole
about the same axis. Finally, the tilting mode describes the
inclination angle of the total angular momentum with respect
to the y axis. In general, because these collective modes are not
exactly normal but are weakly coupled to the intrinsic modes,
they can be thermally excited.

Thus, the collective angular modes as well as the rigid
rotation (the orbital) mode contribute to the angular momenta
and rotational energy of the fragments. In some instances, such
as in γ -ray multiplicity measurements, we are interested in the
average sum of moduli of the fragment spins from the different
modes. Then, the average spin of the fragment (Z,A) is written
as

〈IZ,A〉 =
∑Jmax

J=0 I T
Z,A(J )σZ,A(Ec.m.,J )∑Jmax

J=0 σZ,A(Ec.m.,J )
, (7)

where

I T
Z,A(J ) = I

Rigid
Z,A (J ) + I

Bearing
Z,A (J )

= I
Rigid
Z,A (J ) + I T w

Z,A(J ) + I T i
Z,A(J ) + IB

Z,A(J ) + IW
Z,A(J )

(8)

is the sum of the pure orbital I
Rigid
i , twisting I T w

i , tilting
I T i
Z,A, bending IB

i , and wriggling IW
i spin components of the

fragment [see Appendix A]. One can perform the averaging
over all possible mass numbers A at fixed Z:

〈IZ〉 =
∑

A〈IZ,A〉∑
Z,A〈IZ,A〉 . (9)

The large variance of the spin distribution of the fragments
can be explained only by the contributions from the orbital and
bearing modes. The total spin variance

σ I
Z,A =

∑Jmax
J=0 σT

Z,A(J )σZ,A(Ec.m.,J )∑Jmax
J=0 σZ,A(Ec.m.,J )

(10)

originates from the variances of the rigid rotation and the
bearing modes. Here,

σT
Z,A(J ) = σ

Rigid
Z,A (J ) + σ

Bearing
Z,A (J )

= σ
Rigid
Z,A (J ) + σT w

Z,A(J ) + σT i
Z,A(J )

+ σB
Z,A(J ) + σW

Z,A(J ) (11)

is the sum of orbital σ
Rigid
Z,A , twisting σT w

Z,A, tilting σT i
Z,A, bending

σB
Z,A, and wriggling σW

Z,A variances [see Appendix A]. One can
perform the averaging σ I

Z,A over all possible mass numbers at
given Z:

σ I
Z =

∑
A σ I

Z,A∑
Z,A σ I

Z,A

. (12)

In Ref. [9], the wriggling mode, consisting of the rotation of
both fragments in the same direction (the light nucleus carries
the bulk of the spin) and the rotation of the whole system in the
opposite direction, is also described. Although this motion is
possible in the classical description, the quantum mechanical
calculations show that the energy required to activate this mode
is much higher than the energy needed for the twisting, tilting,
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FIG. 1. The nucleus-nucleus interaction potential for the 20Ne +
63Cu reaction at J = 0 and J = Jcr = 51.

and bending modes. So, it is energetically costly to impart
spin to the light fragment. In comparison, for the bending and
tilting modes, the heavy fragment bears most of spin in the
asymmetric DNS and for the twisting mode, both fragments
carry equal spins for any DNS. Under these circumstances, the
wriggling mode is ignored in our further analysis.

III. CALCULATED RESULTS AND DISCUSSIONS

A. DNS potential energy and nucleus-nucleus
interaction potential

With the density-dependent effective nucleon-nucleon
interaction [48,49] a repulsive core appears in V (see
Figs. 1 and 2) which prevents the motion to smaller
distances (R < R1[1 + √

5/(4π )β1] + R2[1 + √
5/(4π )β2],

FIG. 2. The nucleus-nucleus interaction potential for the 40Ar +
58Ni reaction at J = 0 and J = Jcr = 68.

FIG. 3. The driving potential for the 20Ne + 63Cu system at the
indicated angular momenta. The potential energy is normalized to the
potential energy of the rotating CN. The total energies of the bearing
modes are taken zero.

where Ri = r0A
1/3
i and βi are the radii and quadrupole

deformations [50] of interacting nuclei) and reflects the
action of the Pauli principle. Because of the sum of
the repulsive Coulomb and centrifugal summands with at-
tractive nuclear one, the nucleus-nucleus potential has a
pocket with a minimum situated for pole-pole orientation
at the touching distance R = Rm ≈ R1(1 + √

5/(4π )β1) +
R2(1 + √

5/(4π )β2) + 0.5 fm between the nuclei. The DNS is
localized in the minimum of this pocket. At J = 0, the position
of the Coulomb barrier in V corresponds to R = Rb ≈ Rm

+ 2 fm in the DNS under consideration. Then the depth of
the potential pocket is B

qf
R (Z,A,J ). The quasifission barrier

B
qf
R prevents the DNS decay. The value of B

qf
R decreases with

increasing J because of the growth of the repulsive centrifugal
force. In the entrance channel, the potential pocket disappears
at some critical value J = Jcr (Figs. 1 and 2). So, the capture
of projectile by the target is impossible at J > Jcr. The depth
of the potential pocket depends also on the charge asymmetry
of the DNS corresponding to given CN. For the asymmetric
DNS, the interaction potential pocket is deeper than that for
more symmetric configurations.

The potential energies U (Rm,Z,A,J ) of the DNS versus Z
are presented in Figs. 3 and 4 for the systems 20Ne + 63Cu and
40Ar + 58Ni at different values of J . Note that since the isotopic
composition of the nuclei forming the DNS is chosen with the
condition of a N/Z equilibrium in the system [38], the mass
and charge evolutions are related to each other. Because the
mode responsible for the N/Z equilibrium in the DNS is the
fast one, the potential energies U are minimized with respect
to the mass asymmetry for each fixed charge asymmetry. It
is necessary to note that the driving potential is sensitive to
the total mass number of the DNS. The odd-even staggering
decreases with increasing N/Z ratio in the system and the
potential energy U is more flat for the neutron-rich DNS.
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FIG. 4. The same as in Fig. 3, but for the 40Ar + 58Ni system.

At high angular momenta, the potential energies U of some
DNS (Figs. 3 and 4), normalized to the energy of rotating
CN, become negative; i.e., these configurations seems to be
energetically more favorable than the CN configuration. So,
the complete fusion becomes energetically hindered. Thus, at
high J the quasifission contribution is larger than the complete
fusion contribution to the production of binary fragments.

B. Comparisons with the experimental data

For the reactions 16O (Elab = 100 MeV) + 58Ni [E∗
CN(J =

0) = 75 MeV, Jmax = Jcr = 45] (Fig. 5) and 40Ar(Elab =
237 MeV) + 89Y [E∗

CN(J = 0) = 122 MeV, Jmax = Jcr =
78] (Fig. 6), the sum of the average fragment spins as a
function of Z is calculated by using Eq. (10). The large
increase of fragment spin with charge asymmetry indicates
that the DNS approaches a sticking condition [4]. In the
limit, such a condition is expected to lead to a rigid rotation
of the composite system in which the initial orbital angular
momentum is partitioned according to the moments of inertia
of the fragments and of the composite system.

As seen, the DNS model describes quite well the experi-
mental data [4,23]. In our model, the maximum angular mo-
mentum for capture leading to fusion and quasifission reactions
is always smaller than the critical angular momentum. This
means that the DNS is captured in the potential pocket (because
of the balance between attractive and repulsive forces) and
reseparations of the DNS into two fragments occur in time
larger than that required for the DNS revolution by 360 deg.
Because for the reactions 16O (Elab = 100 MeV) +58Ni (Fig. 5)
and 40Ar (Elab = 237 MeV) +89Y (Fig. 6), the experimental
data [2,4,15,23] and calculated results are in rather good
agreement, one can conclude that the measured data are mainly
related to the fusion-fission and quasifission processes.

Note that in Ref. [4] it was concluded that the 40Ar (Elab =
237 MeV) +89Y reaction fragments observed at large angle
of 55 deg do result from a very narrow range of partial waves
near the fusion limit. The measured anisotropic γ -ray emission
indicates a strong fragment alignment and the magnitudes of

FIG. 5. The experimental (symbols) [2,15] and calculated (lines)
sum of the average fragment spins vs the charge number of the light
fragment in the 16O (100 MeV) +58Ni reaction. The experimental
data are presented for the laboratory angles of 70 deg (closed circles)
and 35 deg (open circles). The results calculated with and without
considering the quadrupole deformations of the DNS nuclei are shown
by solid and dotted lines, respectively. The results calculated with
Eq. (15) (dash-dotted line) and with the CN decay model of Ref. [23]
(dashed line) are presented as well.

average fragment spin are in very good agreement with the
values calculated for rigid rotation of the DNS formed in
collisions with projectile partial wave J = 70 near the limiting
angular momentum for evaporation residue production [4]. It
is sufficient to stress that the measured γ -ray multiplicities
and derived angular momenta [4] are smaller at other angles
(<55 deg).

It should be stressed that a relatively long reaction time
is also responsible for a full relaxation of the bearing modes
versus charge (mass) asymmetry.

Employing Eqs. (10) and (2), one can calculate the average
γ -ray multiplicity of the two complementary fragments with
atomic numbers Z and Zt − Z:

Mγ = Mγ (Z) + Mγ (Zt − Z)

=
∑
A

[Mγ (Z,A) + Mγ (Zt − Z,At − A)]

= 1
2

[〈
I T
Z

〉 + 〈
I T
Zt−Z

〉] + aγ . (13)

For the reactions 20Ne (166 MeV) + 63Cu [E∗
CN(J = 0) =

125 MeV, Jmax = Jcr = 51] (Fig. 10), 20Ne (175 MeV) + natAg
[E∗

CN(J = 0) = 128 MeV, Jmax = Jcr = 63] (Fig. 12), 40Ar
(237 MeV) + 89Y [E∗

CN(J = 0) = 122 MeV, Jmax = Jcr = 78]
(Fig. 6), and 40Ar (288, 340 MeV) + 107,109Ag [E∗

CN(J = 0) =
236,288 MeV, Jmax = Jcr = 97] (Fig. 7), the calculated Mγ as
a function of the charge number of one fragment are in good
agreement with the experimental data. Although the parameter
aγ is adjusted for the better description of the experimental γ
multiplicities, it does not influence the dependence of Mγ on
Z. Besides one case in Fig. 7, aγ < 2 in our calculations.
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FIG. 6. The calculated (a) γ -ray multiplicity (aγ = 1.6) and (b)
average spin of the heavy fragment (solid lines) as a function of the
charge number of the light fragment in the 40Ar (237 MeV) +89Y
reaction. The experimental data (symbols) [4,23] are presented for
the laboratory angle of 55 deg.

Using Eqs. (11) and (12), the widths of the fragment spin
distributions in the 20Ne (166 MeV) + 63Cu reaction are
calculated (Fig. 8). The contributions from the bending and
twisting modes decrease with increasing charge asymmetry,
while the contribution from the rigid rotation increases and
dominates for very asymmetric DNS. For the symmetric and
not strongly asymmetric fragmentations, the main process
forming the width is the bending vibrations. By adding the
contribution from the orbital motion to the contributions from
the bearing modes, the total width remains approximately
constant, which is in a good agreement with the experimental
data. The calculated root mean square of the single fragment
spins [Fig. 9(b)] in the 40Ar (280 MeV) +58Ni reaction are
in fairly good agreement with the experimental data [7]. In
this reaction, the maximum angular momentum is set to the
critical value Jmax = Jcr = 68 and the excitation energy of the
CN 98Pd is E∗

CN(J = 0) = 151 MeV.

C. Role of the formation-decay probability

To emphasize the role of the formation-decay (emission)
probability WZ,A(E∗

CN,J ), the average spins of the fragments
in the 20Ne (166 MeV) +63Cu reaction are calculated also with
Eq. (1) for two values of J : J = Jcr and J = Jcr/

√
2 (Fig. 10).

While this simple formula (1) describes the experimental data
for the symmetric binary fragmentations, it fails to reproduce

FIG. 7. The calculated γ -ray multiplicity (aγ = 5) as a function
of fragment charge number in the reactions 40Ar (288 MeV) +107,109Ag
(solid line) and 40Ar (340 MeV) +107,109Ag (dashed line). The
experimental data (symbols) are from Ref. [5].

the results at large asymmetries. As seen in Fig. 11, the average
orbital angular momentum

〈J 〉 =
∑

A

∑Jmax
J=0 JσZ,A(Ec.m.,J )∑

A

∑Jmax
J=0 σZ,A(Ec.m.,J )

(14)

of the DNS is nearly constant as a function of Z for almost
symmetric fragmentations due to the dominance of the high
partial waves and then drop off rather abruptly because of the

FIG. 8. The calculated square root of the sum of variances of the
fragment spin distributions (solid line) vs the charge number of the
light fragment in the 20Ne (166 MeV) + 63Cu reaction. The contri-
butions from the orbital motion (dash-dotted line), bending (dashed
line), twisting (dotted line) modes are shown. The experimental data
(circles) are from Ref. [6].
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FIG. 9. The calculated (solid lines) roots mean square of the
single fragment spin (b) and of the sum of fragment spins (a) as
a function of the charge number of one of the fragments in the 40Ar
(280 MeV) +58Ni reaction. The experimental data (symbols) are from
Ref. [7].

small contribution of high partial waves at large asymmetries.
This phenomenon is so-called the angular momentum frac-
tionation effect [8,17]. The statistical and dynamical aspects of
the angular momentum fractionation are in a good agreement
with the DNS model. As seen from the driving potentials U for
the reactions 20Ne + 63Cu (Fig. 3) and 40Ar + 58Ni (Fig. 4),
with increasing J the driving potential starts developing a
deep minimum for symmetric configurations. This minimum
appears for negative values of the driving potential and the
quasifission becomes energetically favorable. In the virtue
of Eq. (17), which links the yield to the average spin of
the fragment, the dynamical angular momentum fractionation
effect is closely related to the wide spread of the low partial
waves in the mass and/or charge asymmetry coordinate, while
the high waves localize near symmetry. Taking into account
that for a very asymmetric projectile-target pair the amount of
angular momenta injected in the system is rather low, the high
partial waves have an influence only at high incident energy.

To show the effect of the formation-decay probability even
further, we considered the case of WZ,A(Ec.m.,J ) = 1 (the J -
independent probability) in Eq. (9); i.e., the average spin of
the fragment ′′i ′′ (i = 1 or 2) arising from the orbital motion is

〈Ii〉 = �i

�1 + �2 + �R

∑Jmax
J=0 Jσcap(Ec.m.,J )∑Jmax
J=0 σcap(Ec.m.,J )

. (15)

FIG. 10. The calculated (solid line) γ -ray multiplicities (aγ = 0)
deduced from the calculated sum of the fragment spins as a function
of charge number of light fragment in the 20Ne (166 MeV) +63Cu
reaction. The contribution from the bending mode is shown by
a dashed line. The results of calculations with Eq. (1) and J =
Jcr,Jcr/

√
2 are indicated by dotted lines. The experimental data

(triangles) are from Ref. [6].

For the reactions 16O (100 MeV) + 58Ni and 20Ne (175 MeV)
+ natAg, the important role of the redistribution of angular
momenta due to the formation-decay probability becomes
clear in Figs. 5 and 12. Without taking into consideration
the dependence of WZ,A(Ec.m.,J ) on the J , Eq. (15) fails to
reproduce the experimental data [15,23]. One can explain this
by observing the strong dependence of the driving potential
on the angular momentum (Figs. 3 and 4). As the angular
momentum of the system increases, the minimum in the

FIG. 11. The calculated average orbital angular momentum of the
DNS as a function of charge number of one DNS nuclei in the 20Ne
(166 MeV) + 63Cu reaction.
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FIG. 12. The calculated sum of the average fragment spins with
(solid line) and without (dotted line) considering the fragment
deformations in the 20Ne (175 MeV) + natAg reaction. The results
calculated with Eq. (15) (dash-dotted line) and with the CN decay
model of Ref. [23] (dashed line) are also plotted. The conversion
from the γ -ray multiplicities to the fragment spins is performed
with Eq. (13) and aγ = 1. The experimental data (symbols) are from
Ref. [23].

driving potential U becomes deeper and shifts to the symmetric
configurations. As shown in Ref. [37], for the large angular
momenta the symmetric fragmentation channels are favorable;
that results in an enhanced yield near symmetry. This indicates
that only low-J waves are feeding the asymmetric region far
from the entrance channel. As a consequence, the mean total
angular momentum is expected to decrease with increasing
asymmetry. This decrease explains the deviation of results of
Eq. (1) from the experimental data in Fig. 10.

For the 16O (100 MeV) + 58Ni reaction, the calculations
with Eq. (15) and with the CN decay model of Ref. [23] give the
close values of the sum of the average fragment spins (Fig. 5).
In the latter model, the excitation of the bearing modes in the
20Ne (175 MeV) + natAg reaction leads to an overestimation
of the average γ -ray multiplicities Mγ from both fragments at
large asymmetries (Fig. 12).

D. Role of deformations of the DNS nuclei

For comparison, we also show the results of the calculations
without taking into consideration the deformations of the DNS
nuclei. As clearly seen in the reactions 16O (100 MeV) + 58Ni
(Fig. 5) and 20Ne (175 MeV) + natAg (Fig. 12), the dependence
of 〈IZ〉 or Mγ on deformations is rather weak.

E. Role of bombarding energy in the 40Ar + 89Y reaction

An important quantity in heavy-ion reaction is the center-
of-mass kinetic energy which governs the key aspects of
collision, such as the fusion cross section, the amount of
angular momenta injected into the system, excitation energies,
and temperatures. Thus, it is interesting to study the evolution

FIG. 13. The calculated average total spins 〈IZt −Z〉 (a) and total
spin components arising from the pure excitation of the orbital
[〈IRigid

Zt −Z〉] (b), bending [〈IB
Zt −Z〉] (c), twisting [〈I T w

Zt −Z〉] (d), and tilting
[〈I T i

Zt −Z〉] (e) modes of the fragments with Zt − Z = 33 (circles), 40
(squares), and 51 (triangles) as a function of Ec.m. in the 40Ar + 89Y
reaction.

of the spin distribution as Ec.m. goes from low to higher values
in the 40Ar + 89Y reaction. For the selected fragments with
Zt − Z = 33, 40, and 51, the evolution of the average spin
with Ec.m. is plotted in Fig. 13(a). As the value of Ec.m.

increases, the amount of angular momentum deposited into
the system also increases until it reaches the critical value
Jcr. This in turn leads to an increase of the orbital angular
momentum of the final DNS available to be imparted to the
final fragments, explaining the rapid increase of the spin of the
fragments with energy [Fig. 13(b)]. At Ec.m. with Jmax = Jcr,
an increase of angular momentum due to the orbital motion
becomes impossible, and only the bending, twisting, and tilting
modes contribute further to the fragment’s spin. In fact, the spin
of the fragments due to orbital motion even decreases due to the
decrease of the production cross section. For the Zt − Z = 51
fragment, this is clearly seen in Fig. 13(a). The saturation of
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FIG. 14. The calculated average temperatures of the DNS with
Zt − Z = 33 (circles), 40 (squares), and 51 (triangles) as a function
of the center of mass energy in the 40Ar + 89Y reaction.

the angular momenta of the fission fragments at high energies
has been suggested in Ref. [18] and experimentally verified in
the 40Ar + natAg reaction [5].

In Figs. 13(c)–13(e), the contributions to the heavy-
fragment spin from the bending, twisting, and tilting modes
are presented. Because these contributions are inversely
proportional to the spin arising from the rigid rotation (see
Appendix A), they generate less angular momentum as the
Ec.m. increases at Jmax < Jcr, even though the temperature of
the system slightly increases. Once the Jmax reaches Jcr, the
DNS temperature

TZ =
Jmax∑

A,J=0

σZ,A(Ec.m.,J )TZ,A(J )/
∑
A

σZ,A(Ec.m.)

rises more abruptly with Ec.m. (Fig. 14) and the con-
tributions of bearing modes increase. In fact, once the
critical angular momentum is reached only these modes
are responsible for any further increase of the spin. In
Fig. 14, 〈U (Rm,Zt − Z = 51)〉 < 〈U (Rm,Zt − Z = 33)〉 <
〈U (Rm,Zt − Z = 40)〉, where

〈U (Rm,Z)〉

=
Jmax∑

A,J=0

σZ,A(Ec.m.,J )U (Rm,Z,A,J )

/ ∑
A

σZ,A(Ec.m.),

and, correspondingly, the configuration with Zt − Z = 40
has the lowest temperature. Note that 〈U (Rm,Zt − Z =
51,J = 0)〉 = 4.9, 〈U (Rm,Zt − Z = 40,J = 0)〉 = 17.4, and
〈U (Rm,Zt − Z = 33,J = 0)〉 = 13.0 at J = 0 and the final
averaged temperatures TZ depend on the angular momentum
fractionation effect.

In Fig. 13, one can observe that the bending and twisting
modes tend to be suppressed with increasing mass (charge)
asymmetry. However, they cause a weak increase in the
average spin of the fragment. Note that the spin produced

by the twisting mode are considerably small with respect to
those from the bending and tilting modes.

IV. CONCLUSIONS

Employing the DNS model and the coupling with angular
momentum bearing (bending, twisting, and tilting) modes, we
have studied the characteristics of fragment spin distributions
in heavy-ion collisions at energies above the Coulomb barrier.
The thermal equilibrium of the collective modes of the DNS
with the internal degrees of freedom has been assumed. The
excitation of bearing modes causes an increase of the average
fragment spin over the rigid rotational value and leads to an ap-
preciable variation of the width of spin distributions. The effect
of the bearing modes decreases with increasing asymmetry of
the DNS. The spin distributions of complex fragments calcu-
lated with the DNS model agree well with the available exper-
imental data. For strongly asymmetric decays, we have shown
that one can expect a lower value of the average spin compared
with other models that is in a good agreement with the exper-
imental data. This effect is related to the small contribution of
high partial waves at large charge (mass) asymmetry (angular
momentum fractionation effect). For the heavy and superheavy
systems, one can probably use the angular momentum frac-
tionation effect to discriminate the fusion-fission events (with
low spin) from the quasifission ones (with high spin) near the
symmetry by measuring the average fragment spin.

We have also proven a connection between the entrance
channel and the intrinsic rotation of the resulting fragments,
dictated by the angular momentum deposited into the system.
The angular momentum can be controlled either by the mass
or charge asymmetry of the target-projectile system or by the
incident energy of the projectile. As shown, there is a limit on
the maximum amount of intrinsic spin of fragments. This limit
is reached when the bombarding energy is high enough and the
angular momentum of the system reaches the critical value. We
hope that a new look at relatively old experimental data might
trigger deeper studies of similar reactions with new facilities.
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APPENDIX

For the sake of completeness, we present here the most
important features of the bearing modes from Ref. [9]. Let
us treat the DNS in the body-fixed system in which the
disintegration (symmetry) axis is the y axis. The total angular
momentum of the system I is equal to the initial orbital angular
momentum J in the entrance channel. When the DNS decays,
I is imparted to the intrinsic spin Si of the fragments and to the
orbital angular momentum l: I = S1 + S2 + l. The projection
of I on the disintegration axis is K . The total rotational energy

044611-9
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of the system is

VR = S2
1

2�1
+ S2

2

2�2
+ l2

2�R

.

Here, h̄ = 1 for the simplicity and the index i = 1 refers to the
DNS heavy fragment. The spin components of this fragment
“1” are

S1x = �1

�
√

I 2 − K2 sin(�t) + R1x = IR1 sin(�t) + R1x,

S1y = �1

�1 + �2
K + R1y,

S1z = IR1 cos(�t) + R1z.

The first terms in the expressions above originate from the
rigid rotation of the system and the second terms arise
from the excitation of the collective modes. Imposing the
angular momentum conservation, one obtains the following
constraints:

Ix = lx + R1x + R2x + (IR1 + IR2 ) sin(�t),

Iy = K = R1y + R2y + K,

Iz = lz + R1z + R2z + (IR1 + IR2 ) cos(�t).

One immediately observes that R1y = −R2y . The quadratic
form of Vbm = VR − I 2/2� is written after diagonalization

Vbm = 1

2

(
ε2
Wx + ε2

Bx + ε2
T i + ε2

T w + ε2
Wz + ε2

Bz

)
,

where the normal coordinates εT i = K
√

�R

�(�1+�2) , εT w =
Ry

√
�1+�2
�1�2

, εWx = R1x/a1Wx , εWz = R1z/a1Wz, and εBx =
R1x/a1Bx, εBz = R1z/a1Bz of the tilting, twisting, wriggling,
and bending modes, respectively. The fragment spin compo-
nents of the eigenvectors are

a1T i = �1

√
�

�R(�1 + �2)
,

(A1)

a2T i = �2

√
�

�R(�1 + �2)
,

for the tilting mode,

a1T w = −a2T w =
√

�1�2

�1 + �2

for the twisting mode, and

a1B = −a1W = −�1

[ �2

�2
1�R(�2 + �R)λ2

B + (�1 + �R − 2�1�RλB)�
]1/2

,

a2B = a2W = �2

[ �1

�2
2�R(�1 + �R)λ2

B + (�2 + �R − 2�2�RλB)�
]1/2

, (A2)

λB = 1

2

[
1

�1
+ 1

�2
+ 2

�R

∓
√(

1

�1
+ 1

�2

)
+

(
2

�R

)2]

for the bending (a1B,2B and λB with a minus sign) and
wriggling (a1W,2W and λB with a plus sign) modes.

Let us now calculate the various moments of the fragment
spin distributions for the normal modes. Because of the double
degeneracy, the bending mode produces angular momenta
orientated randomly in the xz plane. The excitation of this
mode will produce the spin components R1x and R1z. With new
variables ζ 2 = ε2

Bx + ε2
Bz and θ = tan−1(εBx/εBz), the total

spin of the fragment “1” is S1 =
√

R2
1 + I 2

R1
+ 2R1IR1 cos θ ,

where R2
1 = R2

1x + R2
1z. The partition function is Z = 2πτ

and, thus, the average spin is

〈
SB

1

〉 ≈ IR1 + a2
1Bτ

2IR1

− 1

2

(
a2

1Bτ

IR1

+ IR1

2

)
exp

(
− I 2

R1

2a2
1Bτ

)

+
√

2πτ

(
a1B

2
+ I 2

R1

8τa1B

)
erfc

(
IR1

a1B

√
2τ

)
. (A3)

Here, τ = TZ,A is the temperature of the given DNS. The
similar derivation of the second moment for the fragment “1”
gives 〈(SB

1 )2〉 = I 2
R1

+ 2a2
1Bτ. Employing the above equations,

one can calculate the variance σB
1 of the spin distribution for

the fragment “1.” For large IR1 , σ
B
1 � a2

1Bτ .
For the γ -ray multiplicity measurements which are not

sensitive to the spin distributions of the individual fragments,
one should consider the total spin of fragments, SB = |SB

1 | +
|SB

2 |. The width of the spin distribution due to the bending
mode is calculated as

σB = 〈(∣∣SB
1

∣∣ + ∣∣SB
2

∣∣)2〉 − 〈∣∣SB
1

∣∣ + ∣∣SB
2

∣∣〉2 ≈ (|a1B | + a2B)2τ.

The spin of the fragment “1” due to the twisting mode is

〈
ST w

1

〉 ≈
(

IR1 + a2
1T wτ

2IR1

)
erf

(
IR1

a1T w

√
2τ

)

+ a1T w

2

√
2τ

π
e
−I 2

R1
/2a2

1T wτ

+ I 2
R1

2a1T w

√
2πτ

E1

(
I 2
R1

2a2
1T wτ

)
, (A4)
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where E1(x) = ∫ ∞
x

dte−t t−1 is the exponential integral. The
calculation of 〈(ST w

1 )2〉 is easier and leads to the simple result
〈(ST w

1 )2〉 = I 2
R1

+ a2
1T wτ . For small IR1 , the expression for the

variance arising from the twisting mode is [9]

σT w
1 = a2

1T w

(
1 − 2

π

)
τ. (A5)

In the limit of large IR1 , σ
T w
1 � 0. For fairly asymmetric

systems, large spin limit is attained by the heavy fragment
“1” and, thus, the total fluctuations due to the twisting mode
come from the light fragment “2” only: σT w � σT w

2 .
The spin of the fragment “1” due to the tilting mode is

〈
ST i

1

〉 ≈ IR1 + 1

2IR1

[
a2

1T i −
(�1

�
)2

(a1T i + a2T i)
2

]〈
ε2
T i

〉
,

〈
ε2
T i

〉 = τ

[
1 −

√
2

πτ

xe−x2/2τ

erf
(

x√
2τ

)]
, (A6)

where x = I/(a1T i + a2T i) = I
√

�R

�(�1+�2) . For large

IR1 , 〈ε2
T i〉 ≈ τ . Averaging the square of ST i

1 , one obtains

〈(
ST i

1

)2〉 ≈ I 2
R1

+
[
a2

1T i −
(�1

�
)2

(a1T i + a2T i)
2

]〈
ε2
T i

〉
.

(A7)

For almost symmetric DNS, the fluctuations to the spin
produced by the tilting mode are very small [9].

Equations (A3), (A4), and (A6) can be written as 〈SB
1 〉 =

IR1 + IB
1 , 〈ST w

1 〉 = IR1 + I T w
1 , and 〈ST i

1 〉 = IR1 + I T i
1 , where

the first term I
Rigid
1 = IR1 arises from the pure rigid rotation

and the second term is produced by the pure excitation of
the bending (IB

1 ) or twisting (I T w
1 ), or tilting (I T i

1 ) modes,
respectively.
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