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Extraction of t slopes from experimental γ p → K+� and γ p → K+�0 cross section data
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We analyze recent K+ meson photoproduction data from the CLAS collaboration for the reactions γp → K+�

and γp → K+�0, fitting measured forward-angle differential cross sections to the form AeBt . We develop a
quantitative scheme for determining the kinematic region where the fit is to be done, and, from the extracted
t-slope B, determine whether single-Reggeon exchange can explain the production mechanism. We find that, in
the region 5 < s < 8.1 GeV2, production of the K+� channel can be explained by single K+ Reggeon exchange,
but the K+�0 production channel cannot. We verify these conclusions by fitting the data to a differential cross
section produced by the interfering sum of two exponential amplitudes.
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I. INTRODUCTION

In recent years, the CEBAF Large Acceptance Spectrome-
ter (CLAS) collaboration at Jefferson Lab has collected a large
volume of high-precision data for the unpolarized photopro-
duction of K+ mesons from a proton target with a � or �0

hyperon as the recoil baryon [1–3]. The experiments measured
the differential cross section dσ

dt
for a range of low and

intermediate photon energies from Eγ = 0.91 GeV to Eγ =
3.83 GeV, corresponding to squared center-of-momentum
energies from s = 2.59 GeV2 to s = 8.07 GeV2, and a wide
range of angles from the forward to backward region.

Such a wide kinematic coverage allows for the data to be
used in testing a variety of models with different domains of
applicability. For instance, at central angles—specifically, 90◦
in the center-of-momentum frame—the quark counting rule
can be tested [4]. By contrast, at forward angles, one can inves-
tigate the applicability of diffractive scattering and production
models, such as those formulated on the basis of Regge theory.
Additionally, the K+ photoproduction data have been vital in
the extraction of intermediate s-channel resonances in both
partial wave analyses and effective field theories (cf. [5–10]).
The range of photon energies at which these measurements
were done allows the tests of said models to be extended into
center-of-momentum energies below which they have so far
been successfully applied.

In this work, we look specifically at the recent CLAS
data in the diffractive, forward production regime. Within this
regime, it has been customary (cf., e.g., [11]) to fit data to an
exponential function

dσ

dt
= A(s)eB(s)t . (1)

It is specifically the t-slope factor B that we will extract. More-
over, we will develop a quantitative scheme for determining
the range of t over which the fit to Eq. (1) should be done.

The paper is organized as follows. In Sec. II, we briefly
review some basic results from Regge theory that justify the
use of Eq. (1) and help determine its range of validity. In
Sec. III, we perform the exponential fit to recent CLAS data
for the reactions γp → K+� and γp → K+�0 and develop
a scheme for determining the appropriate range of t values at

which to perform the fit. In Sec. IV, we perform an additional
fit to the interfering sum of two exponentials in order to further
investigate the results of the prior section. Finally, in Sec. V,
we reiterate our conclusions and consider implications of this
investigation.

II. t SLOPES AND REGGE TRAJECTORIES

Regge theory is a phenomenological theory that explains
hadronic scattering amplitudes using mathematical properties
of the scattering matrix in place of a fundamental theory of the
strong nuclear interaction. It relies on imposing a handful of
simple properties, namely unitarity of the S matrix, analyticity
in terms of physical observables, and crossing symmetry in
order to constrain the functional form that the scattering
amplitude.

One of the most fruitful methods employed by Regge
theory is to analytically continue functions of the angular
momentum quantum number l into the complex plane. This
allows a partial-wave expansion of the scattering amplitude to
be rewritten as a sum of integrals around cuts and poles in the
complex-l plane, in what is known as the Sommerfeld-Watson
representation. Cuts tend to dominate the scattering amplitude
at high −t , while poles dominate at smaller −t [12].

Using the fit form in Eq. (1) for a given s value finds
justification within Regge theory, provided that the reaction has
a large center-of-momentum energy

√
s and a small invariant

momentum transfer −t . More precisely, the conditions s → ∞
and −t � s should hold. The small −t leads us to expect poles
to dominate the Sommerfeld-Watson representation of the
scattering amplitude, and the conditions s → ∞ and −t � s
together mean the contribution of one pole to the scattering
amplitude A(s,t) follows the asymptotic form [12]:

A(s,t) ≈ A(s)

(
s

s0

)αR (t)

, (2)

where A(s) is a function of s alone. Here, s0 is not actually
constant, but a function of t . However, the t dependence
of s0 is conventionally neglected and a central value of
s0 = 1 GeV2 is typically used [12,13]. The function αR(t)
is the real part of the location of the pole in the complex-l
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FIG. 1. Regge trajectories for the K and K∗ mesons.

plane, which represents infinitely many exchanged particles
with different l but otherwise identical quantum numbers.

Due to crossing symmetry, the function αR should be
defined for both positive and negative values of its argument.
In particular, where αR(t) appears in a t-channel diagram for
the process AB → CD, the expression αR(s) will appear in an
expression for the “crossed” process AC̄ → BD̄. When s is
the squared mass of a resonance with the quantum numbers of
the Regge pole in question and internal angular momentum j ,
i.e., when s = m2

j , one should have αR(m2
j ) = j . This allows

for phenomenological extraction of the functional form of
αR(t) in the t > 0 region, and one typically finds αR(t) to
be approximately linear in this region. The line along which
these exchange particles fall, and likewise the function αR(t),
is called a Regge trajectory. The particles falling on a Regge
trajectory are formally treated as a single fictitious particle
with complex angular momentum α(t) called a Reggeon.

Relevant to the present work, the K and K∗ mesons fall
along linear trajectories on a j vs. m2 plot, as can be seen in
Fig. 1. Since analyticity is also imposed on αR , the linear form
αR(t) ≈ αR(0) + α′

Rt is expected to hold at least for small −t
as well. It is commonly understood (see, e.g., [12,13]) that
the Regge trajectory saturates for larger values of −t and no
longer follows this linear trend, but this nonlinear behavior
can be neglected by keeping −t small, as is needed for the
asymptotic form of Eq. (2) (and the negligibility of complex-l
cuts) to hold.

Using the linear form of the Regge trajectory, along with
Eq. (2), gives the exponential fit form AeBt if we assume a
single Regge trajectory (i.e., one pole in the complex-l plane)
contributes to the overall scattering amplitude. One moreover
has

B = 2α′
R log

(
s

s0

)
, (3)

giving a theoretical expectation as to how the t slope we extract
from the data should vary with s.

In the following section we will extract the t slopes from
recent CLAS and older world data for γp → K+� and γp →
K+�0 (hereafter the K+� and K+�0 channels, respectively)
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FIG. 2. Differential cross section dσ
dt

versus −t for (top) the K+�

channel and (bottom) the K+�0 channel for a high squared center-
of-momentum energy s = 30.91 GeV2, together with a fit to Eq. (1).
SLAC data are given in the plots [14].

by fitting these data to Eq. (1). In light of Eq. (3) from Regge
theory, we will study the dependence of B on the squared
center-of-momentum energy, s, to see if this dependence is
in fact logarithmic, and to see if the slope of B versus log(s)
corresponds to either 2α′

K or 2α′
K∗ . To find as much for either

channel would suggest that photoproduction of this channel is
dominated by exchange of a single Reggeon in the diffractive
region.

III. EXPONENTIAL FIT AND SLOPE FACTORS

As explained in the previous section, Eq. (1) is valid
for a fixed, large value of s under the condition −t � s.
However, there is currently no fixed quantitative scheme for
determining what range of t the condition −t � s corresponds
to. Typically, at sufficiently high s, one can determine the range
for which this fit is valid by visual inspection of a log-scaled
plot. For instance, in Fig. 2, one can see an unambiguous
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FIG. 3. The differential cross section dσ
dt

versus −t for the K+�

and K+�0 channels at s = 4.35 GeV2, for several values of κ =
−tmax/s. Fits were made to the plotted CLAS data from (top) Bradford
et al. [1], (middle) McCracken et al. [2], and (bottom) Dey et al. [3].
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FIG. 4. The extracted slope factor B versus κ for the K+� and
K+�0 channels at s = 4.35 GeV2. The uncertainties in B are due to
quality of the fits. CLAS data from (top) Bradford et al. [1], (middle)
McCracken et al. [2], and (bottom) Dey et al. [3] were used in these
extractions.
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extracted from a fit to Eq. (1). Two values of κ [as defined in Eq. (4)]
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used. To improve readability of the plots, every fourth data point was
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FIG. 6. The relative uncertainty in B versus s, for two sources
of uncertainty: the uncertainty due to the quality of the fit, and the
“systematic” uncertainty due to the choice of κ . CLAS data from (top)
Bradford et al. [1], (middle) McCracken et al. [2], and (bottom) Dey
et al. [3] were used in extracting the B values. To improve readability
of the plots, every fourth data point was plotted.
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FIG. 7. The t-slope B versus s for the (top) K+� and (bottom) K+�0 channels. The t slopes were extracted by finding the κ value which
produces the maximum B value. The data included in these plots are a subset of the world data in the kinematic range of interest [1–3,14,18–24].
For the finely binned CLAS data, every fourth data point was plotted in order to make the plot readable.

straight line when dσ
dt

is plotted against −t with the y axis
logarithmically scaled.

However, at smaller s, there is not such a visibly clear
delineation between the region where Eq. (1) works and where
it fails. For instance, in Fig. 3, one sees that the differential
cross section for photoproduction of the K+� and K+�0

channels at s = 4.35 GeV2 is not quite a straight line on a
log-scaled plot, but is slightly convex-down. This means that
the extracted value of B will vary with the region of −t that
is fit. This dependence of B on the fitted t region has been
observed before, especially for photoproduction of φ(1020)
(see, e.g., [11,15–17]). Accordingly, it is necessary to develop
a quantitative scheme for determining the fit region that is to
be used, and for determining the systematic uncertainty in B
originating from this decision. Moreover, this scheme should
help us determine the minimum value of s to which Eq. (1)
can be fruitfully applied.

Before proceeding, it is necessary to additionally exclude
data with sufficiently small −t from the fit since, as can be seen
in both Figs. 2 and 3, the logarithmic slope of the differential
cross section flattens out and even falls when −t is close to
zero. To this end, we have fit the function AteBt to low-t data,
looking for the critical point t0 = −B−1 corresponding to the
maximum cross section. Since the fit function of Eq. (1) is
strictly monotonically decreasing, we use the critical point for
each s bin as the tmin for this bin. On average, −tmin is about
0.25 GeV2.

To exclude large −t data from the fit, we define a quantity

κ = −tmax

s
(4)

and study the dependence of the extracted B on the value
of κ . For example, in Fig. 3, the differential cross section of
the K+� and K+�0 channels were fit to the Eq. (1) within
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FIG. 8. The t-slope B for both the K+� and K+�0 channels, determined using the maximum B scheme. The s < 8.1 GeV2 points are
CLAS data from McCracken [2] and Dey [3], for which every fourth point was plotted to improve readability. SLAC data [14,20,21] at
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the region 0.25 GeV2 < −t < κs, using multiple values of κ .
The fits in this figure were performed by minimizing χ2. The
extracted B values for the K+� channel seem to be robust
against variation of κ , but this is due predominantly to the
relatively larger uncertainties in the high −t data than in the
low −t data, a difference which causes the low −t data to
overwhelmingly dominate the least-χ2 fit. Nonetheless, it is
clear that the higher −t data (−t � 2 GeV2) in Fig. 3 do not
follow the linear trend that the fit suggests, and high κ in this
sense produces a bad fit.

One trend we can see in Fig. 3 is that the differential cross
section begins falling more steeply as −t increases from 0
through around 1 GeV2 or so, and at sufficiently high −t the
fall-off stops and the differential cross section begins rising
again. Accordingly, we expect that the extracted B, taken as
a function of κ , should rise with κ to some maximum value
before falling. In light of this expectation, we have plotted the
dependence of B on κ for both the K+� and K+�0 channels
in Fig. 4. The expectation is indeed met.

Next, we look at the s dependence of B. Since the choice of
κ will affect the extracted B value, we study the s dependence
at two different values of κ , specifically κ = 0.2 and 0.4. We
plot several of the extracted B values against s in Fig. 5.
Since the CLAS data are very finely binned, we have plotted
every fourth data point so that the plots are readable. For
the extractions from the more recent CLAS publications from
McCracken et al. [2] and Dey et al. [3], in Fig. 5, the extracted
B values for the two different κ values fall within each other’s
error bars at s > 5 GeV2.

It has previously been observed (e.g., in [13]) that Regge
theory’s expected domain of validity is s � 5 GeV2, and the
relative robustness of the B extractions from the McCracken
and Dey values in this domain is compatible with this previous
knowledge. However, there is less consistency between the
κ values for the Bradford et al. data [1], thus prompting the
question of which κ value is most appropriate.

We next investigate how to determine the best value of κ to
use, and to estimate the systematic uncertainty in B resulting
from that choice. To proceed, we make use of the fact that
(as in Fig. 4) B as a function of κ reaches a maximum value,
corresponding to a range of −t in which the cross section
most behaves like a steeply falling exponential. The κ which
maximizes B is chosen as a “central” value, and is denoted κ0.
Two lower and higher values of κ are chosen which produce
different t slopes (denoted κ−2, κ−1, κ1, and κ2), and the
standard deviation of the t slopes produced by these κ values
is taken as the systematic “κ choice” uncertainty. Namely, we
define

σ
(sys)
B =

√√√√√ 2∑
i=−2

(B(κi))2 −
(

2∑
i=−2

B(κi)

)2

. (5)

In Fig. 6, we have plotted the relative uncertainty in the t
slope due to both the quality of the fits, and the systematic
uncertainty due to the choice of κ . It is worth noting that the
κ choice uncertainty (for the central value we have chosen) is
significantly smaller than the uncertainty due to quality of the
fits.

In Fig. 7, we use the “maximum B” scheme for determining
the slope factor, and have plotted the extracted slope factors
against s. We have included the world data for small-angle
photoproduction of both K+� and K+�0 from a proton target
in this figure. For the finely binned CLAS data [1–3], we
have plotted every fourth data point in order to keep the plot
readable. In these plots, the newer CLAS data from McCracken
[2] and Dey [3] seem to fall roughly along straight lines in the
region 5 < s < 8.1 GeV2 when the x axis is log-scaled. This
is in accordance with the prescription of Eq. (3).

Since Fig. 7 seems to vindicate Eq. (3), we proceed to
extract the parameters α′ and s0 by fitting Eq. (3) to the recent
CLAS data from McCracken et al. [2] and Dey et al. [3]. We
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FIG. 9. The differential cross section dσ
dt

versus −t for the K+�

and K+�0 channels at s = 5.93 GeV2, along with the double-
exponential fit to Eq. (12). CLAS data from (top) McCracken et al.
[2], and (bottom) Dey et al. [3] were used in these fits.

perform this fit in the region 5 GeV2 < s < 8.1 GeV2 for both
the K+� and K+�0 channels. This produces extracted Regge
slopes of

α′
K+� = 0.60 ± 0.05 GeV−2, (6)

α′
K+�0 = 1.93 ± 0.05 GeV−2, (7)

and extracted s0 values of

s
(K+�)
0 = 0.72 ± 0.12 GeV2 (8)

s
(K+�0)
0 = 3.37 ± 0.04 GeV2. (9)

Neither of the extracted trajectories in this two-parameter
fit is compatible with one-Reggeon exchange, although the
K+� channel comes close. In fact, it is possible to perform
a one-parameter fit to the K+� data using the constraint
s0 = 1 GeV2, with little increase in χ2 of the fit. Doing this

gives us

α′
K+� = 0.71 GeV−2. (10)

This is compatible with pure K Reggeon exchange, since
α′

K = 0.69 ± 0.02 GeV−2. On the other hand, the trajectory
for the K+�0 channel far exceeds the trajectories of both the
K and the K∗, and it is not possible to constrain s0 = 1 GeV2

for the K+�0 channel without increasing χ2 by an order
of magnitude, suggesting that the K+�0 final state is not
produced by exchange of a single Reggeon.

Regarding the extracted s0 values, we remind the reader
that the parameter s0 is not truly a constant, but a function of
t , which can approximately be written as [12]

s0(t) ≈
√

t2 − 2t
(
m2

p + m2
X

) + (
m2

p − m2
X

)2

2
, (11)

where mX = m� or m�0 , depending on the channel. Eq. (11)
gives s0(t) ≈ 1 GeV2 when −t is small, and this is the conven-
tional value of s0 used in Regge phenomenology [12,13]. The
value s

(K+�)
0 = 0.72 ± 0.12 GeV2 that we obtained is roughly

compatible with this, but s
(K+�0)
0 = 3.37 ± 0.04 GeV2 is far

in excess of the values s0 will take in the t range of interest.
We interpret this to vindicate both that the K+� channel is
produced mostly by K Reggeon exchange, and that the K+�0

channel cannot be explained by single Reggeon exchange.
Compatibility with Eq. (3) is indicated, after all, not just by a
logarithmic dependence of B on s, but by the parameters in
the equation representing true physical values.

It is further worth noting that the linear trend followed by
the CLAS data in Figs. 7 and 8 stops at around s ≈ 8 GeV2.
At higher s, the existing world data are sparse but, when
taken together with the lower-s CLAS data, is suggestive of
a flattening out of B. However, a finer structure that cannot
be discerned with the current world data are also possible. In
either case, the functional form suggested by Eq. (3) appears
to be violated at larger s. It would be prudent to extend the
experimental investigation of K+ meson photoproduction to
higher energies in order to obtain more high-precision data in
the s > 8 GeV2 region. This will be possible at Jefferson Lab
with the recent 12 GeV upgrade.

IV. DOUBLE-EXPONENTIAL FIT

It was observed in the previous section that the “trajectory”
of the K+�0 channel exceeded the expected trajectories for
both K and K∗ Reggeon exchange, and we hypothesized
that this was due to exchange of multiple Reggeons. In
this section, we offer a preliminary investigation into this
possibility by fitting the cross section to the interfering sum of
two trajectories. In particular, we fit the cross section to

dσ

dt
= |AK (s)eBK (s)t/2 + AK∗ (s)eBK∗ (s)/2|2. (12)

Since we are assuming purely diffractive t-channel exchanges,
both AK (s) and AK∗ (s) should be predominantly imaginary.
Typically, one would introduce a small real part using A(s) =
(i + α(s))C(s), but we will here neglect the real part, taking
α(s) = 0. Since Eq. (12) can only be used to fit AK (s) and
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FIG. 10. The amplitudes AK (s) and AK∗ (s) extracted from fits to Eq. (12), plotted against Mandelstam s. CLAS data [2,3] are plotted for
s < 8.1 GeV2, and SLAC data [14,20,21] for higher s. To improve readability, every fourth CLAS data point was plotted.

AK∗ (s) up to a common phase, we will normalize the phase so
that AK (s) is positive.

We use Eq. (12) to fit only AK (s) and AK∗ (s). The slope
factors BK (s) and BK∗ (s) used in the fit are determined
using Eq. (3), in which we use the “conventional” value of
s0 = 1 GeV2. We apply the fit to the range 0.25 GeV2 <
−t < κ(s)s, where κ(s) are the κ values determined previously
through the “maximum B” scheme. With these constraints in
place, the magnitudes and relative sign of AK (s) and AK∗ (s)
remain to be fit.

Examples of double-exponential fits are given in Fig. 9. The
fits are of variable quality, with improved description of the
data at higher s. We expect the fits to be imperfect because
of several approximations that have been made, including
(1) that all of the t dependence of the differential cross
section comes from the Regge trajectory α(t), and (2) that
the reaction γp → K+�(�0) proceeds entirely through t-
channel exchange. A more complete description including

other sources of t dependence (such as the t dependence of s0)
as well as resonance contributions to the cross section, such
as found in Refs. [13,25,26], would likely describe the data
better. However, the fits in Fig. 9 are improvements upon the
simple exponential fits that can be seen in Fig. 3.

The purpose of this double-exponential fit is to test the
hypotheses that, in the region 5 < s < 8.1 GeV2, (1) the K+�
channel occurs almost entirely due to K Reggeon exchange,
and (2) the K+�0 channel occurs due to a mixture of K
and K∗ Reggeon exchange. Accordingly, we have applied
this fit to the recent CLAS data in the region 5 < s <
8.1 GeV2, and to world data at higher s to check whether
the Reggeon exchange contributions do change around
s ≈ 8 GeV2.

In Fig. 10, we can see the results of the double-exponential
fit plotted against s. In accordance with our previous hypothe-
sis, K+� production appears to occur predominantly through
K Reggeon exchange, in the 5 < s < 8.1 GeV2 region, while
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K+�0 production requires a mix of K and K∗ Reggeon
exchange at all s. Moreover, we have found that the K and
K∗ Reggeon exchange contributions are opposite in phase.
Additionally, at s ≈ 8 GeV2, the exchange behavior of both
channels does appear to change, with K∗ exchange suddenly
becoming significant in K+� production.

One of the peculiarities in the bottom panel of Fig. 10 is
the apparent convergence of the amplitudes for the K+�0

channel s ≈ 8 GeV2. We cannot say whether this is a robust
conclusion of our analysis. The simple form of Eq. (12), or
perhaps the other approximations used in this work, may be
inadequate for describing the K+�0 channel. This channel
did, after all, also evade description by the simple Reggeon
exchange model previously where the K+� proved amenable
to such a description.

It is worth emphasizing that the double-exponential fit
performed here is somewhat crude, and should not be taken as
more than a preliminary investigation. A theoretical analysis
of the data from [14] was previously done in Ref. [13], and
the conclusions reached for these data were that K and K∗
Reggeons contributed about equally (with opposite phases)
to the K+� channel, and that the K∗ Reggeon contribution
to K+�0 production overwhelmed the K contribution. Our
double-exponential fit is compatible with the previous obser-
vation that K and K∗ exchange both contribute significantly
to K+� production at large s, but we do not observe the K∗
exchange amplitude overwhelming the K exchange amplitude
for K+�0 production. The conclusions of [13] regarding the
K+�0 channel are likely more robust than ours, but we take the
consilience between [13] and this work for the K+� channel
to lend credence to our analysis of this channel.

V. CONCLUSIONS AND OUTLOOK

We have fit recent high-precision CLAS data for K+ meson
photoproduction to the exponential fit form AeBt , extracting
the t-slope factor B as a function of s for the K+� and K+�0

channels. In performing the extraction, we developed a scheme
for determining the range of t to which the fit should be applied,
and for estimating the systematic uncertainty due to our choice.

We found that K+� photoproduction is compatible with
exchange of a K+ Reggeon being the dominant contribution
in the region 5 < s < 8.1 GeV2. On the other hand, K+�0 pro-
duction could not be attributed to single-Reggeon exchange.
We then performed a fit to interfering exponential amplitudes
[using Eq. (12)], the results of which vindicate our conclusions
from the single exponential fit.

At s ≈ 8 GeV2, which coincides with the limit of recent
high-precision CLAS data, the behavior of the t-slope B
appears to change dramatically. However, the world data at
s > 8 GeV2 is sparse and imprecise. A better understanding
whether and how the production mechanisms for K+ meson
photoproduction change at s ≈ 8 GeV2 will require obtaining
more high-precision data at and above this energy. This will
be possible at Jefferson Lab with the 12 GeV upgrade.

The analysis done in this work is somewhat crude and
strictly phenomenological. A more complete analysis would
account for t dependence in the differential cross section other
than what is contained in the functional form AeBt , including
t dependence of the parameter s0 used in the theoretical
expression (3) for B. Additionally, a more complete analysis
would account for s-channel (resonance) contributions.

Nonetheless, our results hint at the production mechanisms
that may contribute to K+ meson photoproduction at interme-
diate energies. Additionally, phenomenological t slopes such
as those we have extracted may be potentially useful in a Monte
Carlo generator for t-channel production of hyperon channels.
For this reason, we have included a spreadsheet containing the
extracted t slopes as Supplemental Material [27].
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