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We present the development of the extended Skyrme N2LO pseudopotential in the case of spherical even-even
nuclei calculations. The energy density functional is first presented. Then we derive the mean-field equations
and discuss the numerical method used to solve the resulting fourth-order differential equation together with the
behavior of the solutions at the origin. Finally, a fitting procedure for such an N2LO interaction is discussed
and we provide a first parametrization. Typical ground-state observables are calculated and compared against
experimental data.
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I. INTRODUCTION

The nuclear energy density functional (NEDF) theory
allows us to describe properties of nuclei from light to heavy
nuclei and from drip line to drip line [1]. Several functionals
have been developed in recent years, but the most widely
used [2,3] are those derived from the nonrelativistic zero-range
Skyrme interaction [4]. Because its first applications to atomic
nuclei [5], this interaction has proven to be very well suited
to describe nuclear observables at very reduced computational
cost [6].

A crucial aspect in building a functional is to determine
the values of its coupling constants. Despite its apparent
simplicity, this is a very delicate aspect: A badly determined
coupling constant can give rise to unphysical instabilities
[7–13] and thus to unphysical results. A possibility for
avoiding them is to find an adequate set of observables so
that all coupling constants are properly constrained during
the optimization procedure [14,15]. In Ref. [16], we have
presented an alternative solution to avoid unphysical insta-
bilities based on the linear response (LR) formalism in infinite
nuclear medium. This solution is particularly simple and very
efficient especially for some particular terms of the functional
that are odd under time reversal symmetry and give very
little contribution to masses of odd systems [8]. However,
avoiding unphysical instabilities is not the only requirement
to have an effecient functional: One also has to check how
it performs to describe nuclear observables. On this point,
the UNEDF collaboration [17] has recently studied much in
detail the properties of Skyrme functionals against a large set
of nuclear observables [18–20]. The main conclusion in their
last article [20] is that the standard Skyrme functional [2] has
reached its limits. If we want to improve the description of
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experimental data (as masses, radii, fission barriers, etc.) we
need to follow two paths: explore different functional forms
or develop functionals at the multireference level [21].

Following the idea of Carlsson and collaborators [3,22], we
have decided to explore the first path and to study the impact
of additional gradient terms into the Skyrme pseudopotential
[23]. The gradient terms have been introduced in a systematic
way by considering all possible combinations allowed by the
symmetries of the problem up to 6th power. The resulting
pseudopotential was called N�LO which by definition incor-
porates gradients up to order 2�. Within this language, the
standard Skyrme interaction [24] is named N1LO. In Ref. [25],
we have shown the explicit connection between the Taylor
momentum expansion of any finite range interaction and the
actual form of the N�LO pseudopotential [3]. In that article,
we have also proven that such an expansion works fairly well
in infinite nuclear medium and that the main properties of
the equation of state (EoS) of a finite-range interaction can
be fairly reproduced by truncating the momentum expansion
to fourth order (N2LO). The result is coherent with previous
findings based on density matrix expansion (DME) [26]: The
role of fourth-order terms is important and it leads to a
remarkable improvement of the DME results when compared
to finite-range interactions. Higher order terms can thus be
neglected as a first step because their contribution becomes
systematically less important.

At present, the only existing parametrizations of the
extended Skyrme N2LO/N3LO pseudopotentials have been
obtained by considering only properties of infinite nuclear
medium [27,28], that is, without taking into account properties
of finite nuclei. To remedy this aspect, we present here
a new Skyrme Hartree-Fock-Bogoliubov (HFB) code that
incorporates higher order derivative terms appearing in N2LO.
It is worth remembering at this point that an alternative
code named HOSPHE [29] was already published. This code,
based on the harmonic-oscillator (HO) basis also considers
the most general functional form of the N3LO functional [22]
using spherical basis representation. However, following our
previous findings of Ref. [23], we have decided to express the

2469-9985/2017/96(4)/044330(17) 044330-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.044330


BECKER, DAVESNE, MEYER, NAVARRO, AND PASTORE PHYSICAL REVIEW C 96, 044330 (2017)

N�LO pseudopotential in Cartesian coordinates and to develop
for this specific case a numerical code to work in coordinate
space: the r-space representation is in fact more convenient to
be used in a fitting procedure because we do not need to use a
very large number of basis states to achieve convergence. See
Ref. [30] for more details.

The article is organized as follows: In Sec. II we present the
general functional formalism for the N2LO pseudopotential
and in Sec. III we specialize the formalism for the spher-
ically symmetric case. In Sec. IV we present in detail the
generalization of the Hartree-Fock-Bogoliubov equations to
include the N2LO pseudopotential. In Sec. V we present the
fitting protocol to determine the parameters of the new N2LO
functionals. Finally we give our conclusions in Sec. VI.

II. N2LO SKYRME FUNCTIONAL

The N2LO Skyrme pseudopotential as described in
Refs. [3,22] is a generalization of the standard Skyrme
interaction, corresponding to the expansion of the momentum
space matrix elements of a generic interaction in powers of the
relative momenta k,k′ up to the fourth order. Following [31],
the form considered in this article respects both Galilean and
local gauge invariance [32]. It is written as the sum of three
terms:

VN2LO = V C
N2LO + V LS

N1LO + V DD
N1LO. (1)

The central term reads

V C
N2LO = t0(1 + x0Pσ )

+ 1
2 t1(1 + x1Pσ )(k2 + k′2)

+ t2(1 + x2Pσ )(k · k′)

+ 1
4 t

(4)
1

(
1 + x

(4)
1 Pσ

)
[(k2 + k′2)2 + 4(k′ · k)2]

+ t
(4)
2

(
1 + x

(4)
2 Pσ

)
(k′ · k)(k2 + k′2). (2)

In these expressions, a Dirac function δ(r1 − r2) is to be
understood, but was omitted for the sake of clarity. See Ref. [1]
for details on the adopted notations. The spin-orbit term V LS

N1LO
is not affected by the inclusion of higher order gradient terms:
In Ref. [25], we have shown that other possible spin-orbit
terms are suppressed once the local gauge invariance [3,33]
is imposed. In Ref. [25], we have discussed in detail the
problem of local gauge invariance for the spin-orbit term
and in particular the possible violation of such a symmetry
for finite-range spin-orbit terms. The density-dependent term
V DD

N1LO has also exactly the same structure as in the standard
Skyrme interaction [24], because its nature is to mimic the
effect of a three-body term [5,34]. Tensor terms should be
also included into Eq. (2). In Ref. [27], we have discussed
them based on the partial-wave decomposition of the total
EOS. In finite nuclei it is actually very difficult to constrain
them in NEDF [35] because of their strong competition with
the spin-orbit term in modifying the underlying single-particle
structure [36]. For this preliminary exploration, we have thus
decided to neglect them. Finally, it is worth mentioning that in
the present article we will always use the complete interaction
in the sense that we will not discard the so-called J 2 tensor
terms [36] as is often done in the literature. For the Coulomb

interaction between protons, we adopt the same procedure
as described in Ref. [24], i.e., using the standard Slater
approximation for the exchange term [37].

Starting from Eq. (2), it is possible to derive the explicit
form of the Skyrme functional in Cartesian coordinates. We
write it as

E =
∑

t

(E (1)
t + E (2)

t

)
, (3)

where t = 0,1 is the isospin index. In the above equation, we
have explicitly separated the contributions originated from the
N�LO terms E (�=1,2). The standard terms E (1)

t read [36]

E (1)
t = C

ρ
t [ρ0] ρ2

t + Cs
t [ρ0] s2

t + C
�ρ
t ρt �ρt + C�s

t st · �st

+Cτ
t

(
ρt τt − j2

t

) + CT
t

(
st · Tt −

z∑
μ,ν=x

Jt,μνJt,μν

)

+C∇J
t (ρt ∇ · Jt + st · ∇ × jt ), (4)

while the new terms can be written as

E (2)
t = C

(�ρ)2

t (�ρt )
2 + C

(�s)2

t (�st )
2

+C
Mρ
t MMρ

t + CMs
t MMs

t , (5)

where

MMρ = ρ Q + τ 2 + 2 [τμντμν − τμν∇μ∇νρ ]

− (∇ · j)2 − 4 j · �, (6)

MMs = s · S + T2 + 2 [KμνκKμνκ − Kμνκ∇μ∇νsκ ]

− (∇μJμν)2 − 4JμνVμν. (7)

These terms contain six new densities: τμν , Vμν , �,Kμνκ,Q,
and S. Their explicit definition is given in Appendix B.

III. N2LO FUNCTIONAL IN SPHERICAL SYMMETRY

In the present section, we limit ourselves to the case of
spherical symmetry. In this case, the single-particle wave
function can be written as follows

ψn�jmq(r) = 1

r
Rn�jq(r) ��jm(r̂), (8)

where n is the principal quantum number, ��jm(r̂) is a solid
spherical harmonic [38], and �jm refer, respectively, to the
orbital angular momentum, the total angular momentum, and
its relative projection along the z axis. Here q ≡ n,p stands
for proton (p) or neutron (n). In our formalism the two nuclear
species are not mixed explicitly [2,39]. By considering only
even-even systems, we can further simplify the expressions
given in Eqs. (4) and (5),

E (1)
t = C

ρ
t [ρ0] ρ2

t + C
�ρ
t ρt�ρt + Cτ

t ρtτt

− 1
2 CT

t J 2
t + C∇J

t ρt ∇ · Jt , (9)

E (2)
t = C

(�ρ)2

t (�ρt )
2 + C

Mρ
t

[
ρt Qt + τ 2

t

]
+ 2C

Mρ
t [τt,μντt,μν − τt,μν∇μ∇νρt ]

+ 2 CMs
t [Kt,μνκKt,μνκ − 2Jt,μνVt,μν ]. (10)
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A. Local densities

Let us introduce the short-hand notation α = {n�jq} and
Cα = j (j + 1) − �(� + 1) − 3

4 . The explicit expressions of the
densities in spherical symmetry (we limit ourselves to systems
that are even under time reversal) up to second order take the
form [40],

ρ0(r) =
∑

α

(2j + 1)

4π

R2
α(r)

r2
, (11)

τ0(r) =
∑

α

(2j + 1)

4πr2

[(
R′

α(r) − Rα(r)

r

)2

+ �(� + 1)

r2
R2

α(r)

]
, (12)

J0(r) =
∑

α

(2j + 1)

4π
Cα

R2
α(r)

r3
. (13)

τ0(r) can be conveniently decomposed in a radial and centrifu-

gal part as τ0 = τR,0 + τC,0 where

τR,0(r) =
∑

α

(2j + 1)

4πr2

[
R′

α(r) − Rα(r)

r

]2

, (14)

τC,0(r) =
∑

α

(2j + 1)

4π

�(� + 1)

r2

R2
α(r)

r2
. (15)

Equation (13) corresponds to the radial part of the Jμν,0(r)

spin-orbit vector density defined as

Jμν,0(r) = 1

2
εμνκ Jκ,0(r) = 1

2
εμνκ

Xκ

r
J0(r), (16)

where Xμ represents the Cartesian coordinates. If we now
come to fourth order, the explicit expressions of the new
densities in spherical symmetry take the form,

τμν,0(r) = 1

2
τC,0(r) δμν + XμXν

r2

[
τR,0(r) − 1

2
τC,0(r)

]
,

(17)

V0(r) =
∑

α

(2j + 1)

4πr2
Cα

[
R2

α(r)

r3
[�(� + 1) + 2]

+ R′2
α (r)

r
− 4

R′
α(r)Rα(r)

r2

]
, (18)

Q0(r) =
∑

α

(2j + 1)

4πr2

[
R′′

α(r) − �(� + 1)
Rα(r)

r2

]2

, (19)

Kμνκ,0(r) = −i K10(r)εμνκ − i K20(r)

[
εμκM

XMXν

r2

+ εμνM

XMXκ

r2
+ εκνM

XMXμ

r2

]
. (20)

We have defined K10(r) and K20(r) as

K10(r) =
∑

α

(2j + 1)

16πr3
CαR′

α(r)Rα(r), (21)

K20(r) =
∑

α

(2j + 1)

16πr3
Cα

[
2

r
Rα(r)2 − R′

α(r)Rα(r)

]
. (22)

τμν,0(r) is the kinetic density tensor. The usual N1LO τ0(r)
density is given by its trace∑

μ

τμμ,0(r) = τ0(r). (23)

The even part of the N2LO functional only receives a
nonvanishing contribution from the real part of this density
[Eq. (10)]. Given that the imaginary part is zero under spherical
symmetry, we will write τμν,0(r) instead of Re(τμν,0(r)) in the
following. Similarly to J0(r), V0(r) is the radial part of the
vector density Vμν,0(r),

Vμν,0(r) = 1

2
εμνκ

Xκ

r
V0(r), (24)

and it can be decomposed in a radial and centrifugal part as
V0 = VR,0 + VC,0 where

VR,0(r) =
∑

α

(2j + 1)

4πr3
Cα

[
R′2

α (r) − 4

r
R′

α(r)Rα(r)

+ 2

r2
R2

α(r)

]
. (25)

VC,0(r) =
∑

α

(2j + 1)

4πr3
Cα

[
�(� + 1)

r2
R2

α(r)

]
. (26)

Because the Kμνκ,0(r) density is imaginary in spherical
symmetry, the N2LO functional [Eq. (10)] only receives a
contribution of this density multiplied by itself. As for the
τμν,0(r), we will use Kμνκ,0(r) without mentioning anymore
that it actually stands for the imaginary part of this density.

Some additional expressions which represent the new
contributions to the functional are also written below for
completeness.

τμν,0(r)τμν,0(r) = τ 2
R,0(r) + 1

2
τ 2
C,0(r), (27)

τμν,0(r)∇μ∇νρ(r) = ρ
(2)
0 (r)τR,0(r) + ρ

(1)
0 (r)

r
τC,0(r), (28)

Jμν,0(r)Vμν,0(r) = 1

2
J0(r)V0(r), (29)

Kμνκ,0(r)Kμνκ,0(r) = 6K10(r)2 + 6K20(r)2

− 4K10(r)K20(r). (30)

To have a qualitative and quantitative idea of all these densities,
we represent in Fig. 1, the isoscalar densities in 208Pb. These
densities have been determined using a single-particle basis
obtained from a fully converged Hartree-Fock (HF) solution
based on the SLy5 functional [24]. We observe that all the
densities used here are well behaved at the origin of the
coordinate system.
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FIG. 1. Isoscalar densities in 208Pb calculated using single-
particle wave functions obtained by a SLy5 mean-field solution. See
text for details.

IV. HARTREE-FOCK-BOGOLIUBOV EQUATIONS IN
SPHERICAL SYMMETRY

In this section we describe the method used to solve the
complete Hartree-Fock-Bogoliubov (HFB) equations and the
numerical tests we have performed.

A. Hartree-Fock

We start considering closed-shell nuclei for which the HFB
equations can be safely reduced to the standard Hartree-Fock
(HF) equations. They read [5,41]

hq(r)Rnljq(r) = ε
q
nljRnljq (r), (31)

where Rnljq(r) is the radial part of the single-particle wave
function given in Eq. (8). The corresponding Hamiltonian is
derived as a functional derivative as

hq(r) = A
q
4

d4

dr4
+ A

q
3

d3

dr3
+ A

q
2R

d2

dr2
+ A

q
1R

d

dr
+ A

q
0R + �(� + 1)

r2

[
A

q
2C

d2

dr2
+ A

q
1C

d

dr
+ �(� + 1)

r2
A

q
0CC + A

q
0C

]

+
[
j (j + 1) − �(� + 1) − 3

4

][
W

q
2R

d2

dr2
+ W

q
1R

d

dr
+ W

q
0R + �(� + 1)

r2
W

q
0C

]
. (32)

We observe that the inclusion of the fourth-order term in the interaction translates into a fourth-order differential equation.
Although this is quite unusual in nuclear physics, a fourth-order differential equation is routinely solved in other physical
systems, as, for example, to describe the behavior of a bending solid beam [42].

The coefficients in Eq. (32) are defined as

A
q
4 = C

Mρ
− ρ0 + 2 C

Mρ
1 ρq, (33)

A
q
3 = 2 C

Mρ
− ρ

(1)
0 + 4 C

Mρ
1 ρ(1)

q , (34)

A
q
2R = − h̄2

2m
− Cτ

− ρ0 − 2Cτ
1 ρq + C

Mρ
−

[
3ρ

(2)
0 − 6τR,0 − 2τC,0

] + 2 C
Mρ
1

[
3ρ(2)

q − 6τR,q − 2τC,q

]
, (35)

A
q
2C = −2 C

Mρ
− ρ0 − 4 C

Mρ
1 ρq, (36)

A
q
1R = − Cτ

−ρ
(1)
0 − 2Cτ

1 ρ(1)
q + 2 C

Mρ
−

[
ρ

(3)
0 − 3τ

(1)
R,0 − τ

(1)
C,0

] + 4 C
Mρ
1

[
ρ(3)

q − 3τ
(1)
R,q − τ

(1)
C,q

]
, (37)

A
q
1C = 2 C

Mρ
−

(
−ρ

(1)
0 + 2

ρ0

r

)
+ 4 C

Mρ
1

(
−ρ(1)

q + 2
ρq

r

)
, (38)

A
q
0R = Uq(r) + Cτ

−
ρ

(1)
0

r
+ 2 Cτ

1

ρ(1)
q

r
+ 2 C

Mρ
−

[
3
τ

(1)
R,0

r
+ τ

(1)
C,0

r
− ρ

(3)
0

r

]
+ 4 C

Mρ
1

[
3
τ

(1)
R,q

r
+ τ

(1)
C,q

r
− ρ(3)

q

r

]
, (39)

A
q
0C = h̄2

2m
+ Cτ

−ρ0 + 2Cτ
1 ρq + C

Mρ
−

[
2 τR,0 + 4τC,0 + 2

ρ
(1)
0

r
− ρ

(2)
0 − 6

ρ0

r2

]

+ 2 C
Mρ
1

[
2 τR,q + 4τC,q + 2

ρ(1)
q

r
− ρ(2)

q − 6
ρq

r2

]
, (40)

A
q
0CC = C

Mρ
− ρ0 + 2 C

Mρ
1 ρq. (41)

Here we used the shorthand notation Cx
− = Cx

0 − Cx
1 with x = ρ,�ρ, . . . . The exponent (i = 1,2,3,4) in the densities stands for

the derivative order. Finally, the central field appearing in the previous equation reads

Uq(r) = 2C
ρ
−ρ0 + 4 C

ρ
1 ρq + 2C

�ρ
− �ρ0 + 4 C

�ρ
1 �ρq + Cτ

−τ0 + 2 Cτ
1 τq + 2C

(�ρ)2

− ��ρ0 + 4 C
(�ρ)2

1 ��ρq

+C
Mρ
− [Q0 − 2∇μ∇ντμν,0] + 2C

Mρ
1 [Qq − 2 ∇μ∇ντμν,q] + C∇J

− ∇ · J0 + 2C∇J
1 ∇ · Jq. (42)
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FIG. 2. Radial dependence of the coefficients defined in Eq. (32) for 208Pb obtained using the SN2LO1 and SLy5 interactions. See text for
details.

This field is obtained through the variational principle varying
the matter density ρ, and it receives contributions from both
N1LO and N2LO terms. In Fig. 2 we show the coefficients
A

q
R and the central field Uq obtained with a fully converged

HF calculation (cf Table V) in 208Pb using a N2LO pseu-
dopotential. We refer the reader to Sec. V for more details
on this parametrization. On the same figure we also report
the corresponding values obtained with SLy5. As it should
be, SLy5 induces nonzero contributions only for the terms
originating from the N1LO part of the functional. In Fig. 3
we show the other set of fields appearing in Eq. (32) and
corresponding to the centrifugal parts. These fields are active
only for nonzero orbital momentum states. All the fields
behave normally around r = 0 apart from the A

q
1c,A

q
0c that

present a divergency. Such a behavior, which already exists
at the N1LO level for the centrifugal field, is actually not
a problem as we will see in Sec. IV B when we examine the
asymptotic properties of our fourth-order differential equation.

We will then demonstrate that there exists a particular solution
of Eq. (32) that exhibits no divergency. Although we have only
one explicit spin-orbit term in the effective interaction, we
obtain four distinct contributions to the mean-field equation,

W
q
0R(r) = −

[
CT

−
J0

r
+ 2CT

1
Jq

r
+ C∇J

−
ρ

(1)
0

r
+ 2C∇J

1

ρ(1)
q

r

]

(43)

+
[

2CMs
−

(
J0

r3
− J

(1)
0

r2
− V0(r)

r
+ 2

K0(r)

r

)

+ 4CMs
1

(
Jq

r3
− J (1)

q

r2
− Vq(r)

r
+ 2

Kq(r)

r

)]
,

W
q
0C(r) =

[
−2CMs

−
J0(r)

r
− 4CMs

1
Jq(r)

r

]
, (44)
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FIG. 3. Same as Fig. 2, but for centrifugal fields given in Eq. (32).

W
q
1R(r) =

[
2CMs

−

(
J

(1)
0 (r)

r
− J0(r)

r2

)

+ 4CMs
1

(
J (1)

q (r)

r
− Jq(r)

r2

)]
, (45)

W
q
2R(r) =

[
2CMs

−
J0(r)

r
+ 4CMs

1
Jq(r)

r

]
, (46)

where K0(r) writes

K0(r) = −K2′
0 − 2

K20

r
+ K1′

0. (47)

This is a very interesting feature of our functional which
appears to have more flexibility than N1LO. This new depen-
dence could be of particular interest in different situations, for
instance, in adjusting centroids of single-particle states without
the need of using an explicit tensor term. Moreover, these terms
are associated with the first two derivatives in the differential
equation, contrary to the standard Skyrme interaction, and one
of them is a centrifugal term. Such a term could thus allow
one to act on the single-particle levels with a new dependency
in l. It is worth mentioning that several Skyrme functionals
use different coupling constants in the spin-orbit sector to
enrich the freedom of the corresponding field [43]. In such a
case, the link with the underlying interaction is then broken.
The new N2LO functional presented here has the advantage of
keeping such a link and also gaining a more complex spin-orbit
structure, thus making it a suitable candidate for multireference
calculations. In Fig. 4, we show the different spin-orbit contri-
butions. The current parametrization SN2LO1 leads to relative
small values, but we should not exclude a priori the possibility

of finding significative corrections with a different set of
parameters.

B. Asymptotic properties

Before entering the numerical details of the solution of
Eq. (31), we want to prove that a solution with a well-behaved
asymptotic behavior (origin and infinity) exists. It was well
established for the standard Skyrme second-order differential
equation [5] that the radial part of the wave function Eq. (8)
behaves as Rα ∝ rl+1 at the origin so that it compensates the
behavior of the centrifugal term which diverges as 1/r2. In the
case of the present fourth-order differential equation, this result
is a priori no longer true. We thus assume that Rα(r) ∝ rβ

around r = 0 and determine the possible physical value for
β. We insert it in HF equations given in Eq. (31) and we
obtain

εαr4 = β(β − 1)(β − 2)(β − 3)A4 + β(β − 1)(β − 2)A3r

+β(β − 1)A2Rr2 + βA1Rr3 + A0Rr4 + �(� + 1)

× [β(β − 1)A2C +βA1Cr + A0Cr2+�(� + 1)A0CC]

+
(

j (j + 1) − l(l + 1) − 3

4

)
[W0Rr4

+ �(� + 1)W0Cr2 + βW1Rr3 + β(β − 1)W2Rr2].

(48)

All nonrelevant single-particle quantum numbers are omit-
ted in this discussion to make the notation lighter. By
inspecting the formal expressions of the coefficients Ai in
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FIG. 4. Same as Fig. 2 but for the spin-orbit fields given in Eq. (32).

Eqs. (33)–(41), we observe that some fields diverge around the
origin,

A1C −−→
r→0

1

r
, (49)

A0C −−→
r→0

1

r2
. (50)

The term A0R does not diverge because the derivative of the
density is zero at the origin. This is typically the case of nuclear
densities, even in the case of strong shell effects [44]. The
spin-orbit fields have no divergence, so we can drop them. To
have a well-behaved wave function at r = 0 we thus need to
check that only the following terms give zero:

β(β − 1)(β − 2)(β − 3)A4 + β(β − 1)(β − 2)A3r

+β(β − 1)A2Rr2 + βA1Rr3 + A0Rr4

+�(� + 1)[β(β − 1)A2C + βA1Cr

+A0Cr2 + �(� + 1)A0CC] ≈ 0. (51)

First we notice that A3,A2R , and A1R do not diverge at the
origin. When multiplied by powers of r , they thus go to zero
at the origin. By inspecting Eqs. (33)–(41), we can then notice
that to leading order the following relations hold:

A2C = −2A4, A1C = 4A4, A0C = −6A4, A0CC = A4,

(52)

so that we can simplify

β(β − 1)(β − 2)(β − 3)A4 + �(� + 1)[β(β − 1)A2C

+βA1C + A0C + �(� + 1)A0CC] � 0. (53)

We finally obtain

β4 − 6β3 + β2(−2�2 − 2� + 11) + 6β(�2 + � − 1)

+�(� + 1)(�2 + � − 6) � 0. (54)

This equation has four solutions:

β = 2 − �, β = −�, β = � + 1, β = � + 3. (55)

The first two solutions diverge for some specific values of �
and cannot represent the physical behavior of the radial wave
function. The last two solutions are physically well behaved but
because the nuclear density needs to be nonzero at the center
of the nucleus, only the solution β = � + 1 can be accepted.
The radial part has therefore the same behavior for N1LO and
N2LO. At infinity, all the fields vanish as one can easily see
from Figs. 2–4, thus we can recover the typical asymptotic
behavior of the solutions of the N1LO functional.

C. Numerical methods to solve fourth-order equations

The solution of HF equations with fourth-order derivative
terms represent a major numerical challenge. The standard
technique for N1LO is usually to project the HF equations on
an harmonic oscillator basis, because one can use particular
properties of orthonormal polynomials to avoid the explicit
numerical derivation [29]. However, the main inconvenience
is the slow convergence as a function of the number of basis
states, as compared to the solution of the HF equations via
direct integration [30]. We have thus decided to develop a
new numerical solver namedWHISKY [45]: The code was built
in a modular way so it can accept the central part of the
N�LO Skyrme pseudopotential with � = 1,2,3. The code was
written aiming at using it in a fitting procedure. Therefore
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FIG. 5. Precision obtained with WHISKY against LENTEUR as a
function of the cutoff energy in the Wood-Saxon basis for 40Ca (+)
and 208Pb (×). See text for details.

it was conceived to be fast and accurate. To conciliate high
accuracy and reduced execution time, we have decided to use a
two-basis method to solve HF equations [46]. The fourth-order
differential equation governing the properties of single-particle
states is then solved using the finite-difference method and
more particularly the Hooverman method [47]. With this
method, we obtain a wave function for each point of the mesh
for each (�,j,q) block. As a consequence the number of basis
functions grows quite quickly, especially when we include
pairing correlations (see Sec. IV D) so that we introduced an
auxiliary Wood-Saxon (WS) basis and an additional energy
cutoff. Because the WS wave functions are reasonably close
to the final single-particle solutions, the number of basis states
to ensure convergence is quite reduced. An alternative to the
WS basis would be the use of the self-consistent HF basis.
However, we did not explore this possibility: Because we are
not currently working with very neutron-rich nuclei, a WS
approximation is expected to give a result close to the final
solution. We plan to add this option to explore the properties
of the extended N2LO functional close to stability in the next
version of the code.

In Fig. 5, we compare the accuracy of our HF code against
the HF code named LENTEUR [48,49] as a function of the
intermediate WS basis size. The calculations are done in
both cases using the SLy5 interaction [24] with Coulomb
included and a mesh of h = 0.05 fm within a box of 20 fm.
It is worth remembering that the code LENTEUR works with a
similar two-basis method: HF and r-space representation with
direct integration of the HF equation in coordinate space [40].
The total energy difference for different nuclei obtained with
the two codes is defined as �E = |EWHISKY − ELENTEUR|.
We observe that the accuracy of our code is very good in
a reasonably small basis size. By considering states up to
300 MeV we obtain an accuracy of ≈1 keV and an execution
time of a few seconds. In Table I, we give a more detailed
comparison of the resulting energies for a fully converged
calculation in 208Pb using LENTEUR and WHISKY with a cutoff
of 300 MeV in the WS basis. We see that the agreement is
very good (8 keV at worst). We conclude that the basis size we

TABLE I. Energies obtained by WHISKY and LENTEUR with self-
consistent HF calculations using the SLy5 interaction. The differences
appear on the last digits and are written in bold.

208Pb

(MeV) WHISKY LENTEUR

Total energy −1636.106 −1636.105
Kinetic energy 3874.789 3874.795
Field energy −6209.642 −6209.650
Spin orbit −99.081 −99.081
Direct Coulomb 829.143 829.143
Exchange Coulomb −31.314 −31.314

have chosen is clearly an excellent compromise of efficiency
and accuracy because all energy contributions are described
by the two codes at the keV level of accuracy. This cutoff is
consequently used in the fit.

The code LENTEUR accepts only N1LO Skyrme-like func-
tionals. Therefore, to test the energy contribution of the terms
originated from higher order derivatives, we benchmarked our
code against the latest version of MOCCA [50,51]. MOCCA is a
3D solver working in a cubic box and using the imaginary-time
algorithm to solve the HF equations [52]. For the current
comparison, we used a mesh of dx = 0.4 fm and 32 points
in each direction. Because we deal with spherical even-even
nuclei, we can impose several symmetries and thus perform
the calculations only in one octant of the whole box. See
Ref. [50] for more details. For our tests we have used SLy5
and added a random set of higher order parameters. The results
are presented in Table II. The different energy terms refer to
the different components of the N2LO functional as given in
Eq. (5). In this case the total energy difference between the
two codes is at the level of 10 keV on the total energy. This is
also the typical discrepancy between the different fourth-order
terms of the N2LO functional. This is a very strong test
because the two codes have been developed in a completely
independent way and moreover they use completely different
algorithms to solve the HF equations.

TABLE II. Comparison of the results for WHISKY and MOCCA:
different N2LO functional contributions to the total energy after a self-
consistent calculation with a toy N2LO interaction. The discrepancies
are presented in bold.

208Pb

(MeV) WHISKY MOCCA

Total energy −1539.253 −1539.263
Total energy N2LO 89.278 89.360
E[(�ρ)2] 4.394 4.395
E[ρQ] 37.477 37.488
E[τ 2] 27.212 27.221
E[τμντμν − τμν∇μ∇νρ] 19.855 19.861
E[KμνκKμνκ ] 0.05460 0.05461
E[JμνVμν] 0.33850 0.33858
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D. Pairing correlations

Once we move away from closed-shell nuclei, we need to
consider extra pairing correlations [53]. To this purpose, we
have generalized the WHISKY code to solve the complete HFB
equations. Because we use a two-basis method, we first solve
the HF equations in coordinate space and then we transform
back to the WS basis. The HFB equations in this basis read [54]∑

α′

(
h

lj,q
α′α − μ

q
F

)
U

nlj,q
α′ +

∑
α′

�
lj,q
αα′ V

nlj,q
α′ = Enlj,qUnlj,q

α ,

(56)∑
α′

�
lj,q
αα′ U

nlj,q
α′ −

∑
α′

(
h

lj,q
α′α − μ

q
F

)
V

nlj,q
α′ = Enlj,qV nlj,q

α ,

(57)

where μ
q
F is the chemical potential and U

nlj,q
α and V

nlj,q
α are the

Bogoliubov amplitudes for the quasiparticle of energy Enlj,q ,
α is the index of the WS basis, and n is the index of the
quasiparticle state. The field h

lj,q
α′α is derived from Eq. (32) via

a unitary transformation.
For the pairing channel we used a simple pairing interaction

of the form [55,56],

v(r1,r2) = V
q

0

[
1 − η

(
ρ0(R)

ρsat

)]
δ(r), (58)

where R = (r1 + r2)/2 is the center of mass of the two
interacting particles and r = r1 − r2 is their mutual distance.
In the present article we use the so-called volume shape
[57] with parameter V n

0 = V
p

0 = −200 MeV fm3, η = 0, and
ρsat = 0.16 fm−3. Because this interaction has an ultraviolet
divergency [58], we use a simple cutoff procedure in quasipar-
ticle space Ecut = 60 MeV. For more details on this topic we
refer to Ref. [59]. The choice of the pairing interaction is cru-
cial to determine properties of nuclei far from stability [60,61].
At present we followed the Saclay-Lyon fitting protocol, so we
decoupled the problem in two steps. After the complete fit of
the N2LO functional, the V0 parameters can be fixed to pairing
effects. In this article we have used prefixed values of the V0

parameters, but we plan to extend our fitting procedure to
take into account also pairing effects more precisely [62]. The
pairing interaction for protons and neutrons is not necessarily
the same, because Coulomb effects should also taken into
account in the calculation of proton Cooper pairs [63]. We
plan to include such effects in the next version of the code.

In Table III, we compare WHISKY against LENTEUR for 120Sn
and SLy5 interaction plus volume pairing Eq. (58). We observe
that the accuracy is remarkably high. The small discrepancy
of 4 keV originates from a different definition of cutoff in
single-particle states: LENTEUR operates with a cutoff on the
total angular momentum j of the quasiparticle states entering
the calculation, while WHISKY operates with a cutoff on the
orbital angular momentum.

In Fig. 6, we compare the total density ρ(r) for 120Sn
obtained with the two codes and also the pairing density ρ̃.
Following Refs. [40,64] we define it as

ρ̃q(r) = −
∑
nlj

(2j + 1)

4π

V nlj,q (r)Unlj,q(r)

r2
, (59)

TABLE III. Comparison between the energies obtained by
WHISKY and LENTEUR with self-consistent HFB calculations using
the SLy5 interaction. See text for details.

120Sn

(MeV) WHISKY LENTEUR

Total energy −1018.814 −1018.818
Kinetic energy 2188.127 2188.142
Field energy −3485.115 −3485.131
Spin-orbit energy −55.000 −55.001
Coulomb (direct) 367.336 367.336
Coulomb (exchange) −19.147 −19.147
Neutron pairing energy −15.014 −15.017

where V nlj,q (r),Unlj,q(r) are the quasiparticle amplitudes
expressed in r space. The agreement is excellent, thus demon-
strating the very high accuracy of our new NEDF solver.

V. FIT OF N2LO INTERACTION

To fit the N2LO pseudopotential we adopted a modified
version of the Saclay-Lyon fitting protocol [24,65]: The
protocol includes here both properties of some selected
double-magic nuclei and some basic properties of the infinite
nuclear medium as saturation density, incompressibility, and
the equation of state of pure neutron matter (PNM) derived
from realistic nucleon-nucleon interactions [66]. We consider
all terms of the interaction, and we treat spurious center-of-
mass motion with the usual one-body approximation [1,24].
We also assume equal neutron and proton masses and we use
the value h̄2

2m
= 20.73553 MeV fm2 [24].

A. Fitting protocol

To obtain the parameters of the pseudopotential we need to
minimize the following penalty function [14]:

χ2 =
M∑
i=1

(Oi − fi(p))2

�O2
i

, (60)
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FIG. 6. Isoscalar particle density and pairing density for 120Sn
obtained with a self-consistent mean-field calculation with the SLy5
interaction.
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TABLE IV. Constraints Oi used in the fitting procedure and the
associated error �Oi . See text for details.

Fit constraints Oi �Oi Units Reference

Infinite nuclear matter
ρsat 0.1600 0.001 fm−3 [68,69]
E/A (ρsat) −16.0000 0.2 MeV [68,69]
m∗/m 0.7000 0.02 [70,71]
K∞ 230.00 10.00 MeV [70]
J 32.00 2.00 MeV
EoS PNM [66]
E/N (ρ = 0.1) 11.88 2.0 MeV

E/N (ρ = 0.3) 35.94 7.0 MeV
E/N (ρ = 0.35) 44.14 9.0 MeV
Stability [10]
INM(S,M,T) ρcrit � 0.24 Asymmetric fm−3

constraint
Finite nuclei
Binding energies [72]
40Ca −342.02300 1.5 MeV
48Ca −415.98300 1.0 MeV
56Ni −483.95300 1.5 MeV
100Sn −825.13000 1.5 MeV
132Sn −1102.67300 1.0 MeV
208Pb −1635.86100 1.0 MeV
Proton radii [73]
40Ca 3.38282 0.03 fm
48Ca 3.39070 0.02 fm
56Ni 3.66189 0.03 fm
132Sn 4.64745 0.02 fm
208Pb 5.45007 0.02 fm
Parameter W0 120.0 2.0 MeV fm5

where the sum runs over all the M (pseudo)-observables Oi

we want to constrain in our fit, fi is the value obtained with our
solver for a given array of parameters p = {t0,t1,t2, . . . }, while
�Oi is the weight we give to each point in the fit. Let’s mention
that �Oi does not correspond necessarily to the experimental
uncertainty. In Table IV, we give the actual constraints we used
to build the χ2 function in Eq. (60). On top of these constraints,
we paid particular attention in tuning the spin-orbit parameter
W0 to some specific range of acceptable values. Finally, it is
worth noticing that during the χ2 minimization the parameters
p cannot vary freely: To avoid finite-size instabilities [10], the
critical densities in all channels are computed at each iteration,
and an asymmetric constraint is imposed in terms of a penalty
function,

χ2
f s =

∑
α

exp−2β(Oα−ρcrit) , (61)

where Oα=(S,M,T) is the lowest density at which an instability
appears in symmetric nuclear matter (SNM). ρcrit is an
empirical value defined in Refs. [10,11] to avoid unphysical
instabilities. β is an arbitrary parameter (β = 10 here) fixed
in such a way that the penalty function grows very fast when
we approach the critical density from below, but gives no
contribution when above it. This constraint is applied in all
channels for which we calculate the response function of the

TABLE V. Numerical values for N2LO parameters.

SN2LO1

n i t
(n)
i (MeV fm3+n) x

(n)
i

0 0 −2486.90786 0.57160369
2 1 497.51821 −0.05521333
2 2 −451.60715 −0.99803779
4 1 −11.95063 0.10279808
4 2 −15.04405 −0.93024200

t3 = 13707.18320 (MeV fm3(1+α)) x3 = 0.88704830
α = 1/6

W0 = 117.904418 (MeV fm5)

system (see Sec. V B). Finite-size instabilities may also have
important impact at high density on astrophysical applications
such as the neutrino mean free path [67]. However, in this
work, we concentrate ourselves on finite-size instabilities only
in density ranges that are relevant for finite nuclei. In other
words, we allow in this preliminary work the appearance of
instabilities at densities above ρcrit which is slightly above
saturation density.

At the end of the minimization procedure, we have obtained
the parameters p = {t0,t1,t2, . . . } given in Table V. Notice that
the exponent α of the density-dependent term was fixed from
the beginning (see Sec. V C). From the table, it is difficult
to judge the quantitative relative importance of the different
parameters. A way to bypass the problem is to use the concept
of naturalness. Following Ref. [74] we multiply each N2LO
coupling constant by

S = f 2(l−1)
π �n+l−2, (62)

where fπ = 93 MeV is the pion decay constant, � =
687 MeV, l is the power of the density of the corresponding
term, and n is the order. Special treatment is required for
the density-dependent coupling constant. See Ref. [74] for
details. It is important to keep in mind that the value of
� is somehow arbitrary because it was derived in Ref. [74]
by observing the behavior of several N1LO functionals. The
results are presented in Table VI. Owing to the arbitrariness
of the value of �, one should not look too close to the actual
numbers, but only to the order of magnitude. By inspecting

TABLE VI. Values of the parameters of the N2LO pseudopoten-
tial expressed in natural units.

SN2LO1
Natural units

C
ρ
0 −1.06 C

ρ
1 0.754

C
ρ
0 [ρα] 13.0 C

ρ
1 [ρα] −12.1

Cτ
0 0.892 Cτ

1 0.00624
C

�ρ
0 −1.06 C

�ρ
1 0.382

C∇J
0 −1.22 C∇J

1 −0.406
CT

0 −0.0882 CT
1 −0.816

C
(�ρ)2

0 −0.115 C
(�ρ)2

1 0.0396
C

Mρ
0 −0.288 C

Mρ
1 0.143

CMs
0 0.117 CMs

1 −0.0162
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the table, we clearly observe that there is a natural hierarchy
in the coupling constants: The N2LO coupling constants are
one order of magnitude smaller than the N1LO ones. This
is a very important aspect because the entire idea behind
the N�LO expansion is to have a fast convergence: From
these results, we can expect that within this scheme, the
N3LO coupling constants would be another order of magnitude
smaller.

B. Finite-size instabilities

As discussed in the introduction, several effective inter-
actions are biased by spurious instabilities [12,13,75]. To
avoid such a problem, we have developed in Ref. [16] a
new fitting protocol based on the LR formalism [76]. From
previous analysis of Refs. [10,11], we have noticed that when
a pole in the response function appears at densities lower
than ≈1.2 saturation density then it is very likely to observe
an instability also in the atomic nucleus. Of course, such a
criterion does not apply to the spinodal instability, that has
a well-defined physical meaning [77]. We have thus added
such an additional constraint on top of our fitting protocol to
guarantee stable results [see Eq. (61)]. In principle, finite-size
instabilities may appear in isospin asymmetric matter as well;
see discussion in Ref. [78]. However, we have not derived
the LR formalism for the N2LO functional in this case: As
an empirical rule, we decided to add a check on the behavior
of finite-size instabilities also in pure neutron matter even if
this does not guarantee that an instability may appear at lower
critical density for some specific asymmetry value. At present,
such a check is not possible and we leave this aspect for a near
future investigation.

We start by considering the properties of Landau pa-
rameters [79]. Their calculation for an extended Skyrme
pseudopotential was reported in Ref. [31]. These parameters
can be related to properties of infinite nuclear medium and
help us constraining some important parts of the effective
interaction [31,80–82]. In Fig. 7, we show the density
dependence of the Landau parameters in SNM. We observe
that apart from the physical spinodal instability observed
in the F0 parameters, all the Landau inequalities [75] are
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FIG. 7. Landau parameters in SNM for the SN2LO1 pseudopo-
tential as a function of the density of the system. See text for details.
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FIG. 8. Critical densities in SNM as a function of transferred
momentum q. The horizontal dashed lines represent the saturation
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respected up to two times the saturation density. The only
instability appears in the G′

0 parameter at ρ ≈ 0.35 fm−3.
This does not represent a major issue for this study because
we do consider only finite nuclei and not astrophysical
applications [83]. In Fig. 8, we show the position of the
critical densities obtained in SNM as a function of the
transferred momentum q. The LR is calculated for each spin
(S) spin projection (M) and isospin (I) channel (S,M,I). See
Ref. [12] for more details on the adopted notation. We observe
no finite-size instabilities, apart from the physical spinodal
one [77], around saturation density. This means that our
interaction is well stable in all spin-isospin channels [10,11].
This results confirm our preliminary findings in Ref. [16]:
The LR formalism can be considered as a very simple tool to
be added in a fitting procedure to avoid exploring regions of
parameters that induce unphysical instabilities.
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FIG. 9. Equation of state for SNM and PNM obtained with the
N2LO Skyrme interaction. The squares represent the values obtained
from BHF calculations.
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TABLE VII. Infinite matter properties at saturation for SN2LO1
and SLy5 [24]. See text for details.

SN2LO1 SLy5

ρ0 (fm−3) 0.162 0.1603
E/A(ρ0) (MeV) −15.948 −15.98
K∞ (MeV) 221.9 229.92
J (MeV) 31.95 32.03
L (MeV) 48.9 48.15
m∗/m 0.709 0.696

C. Infinite nuclear matter

In our fitting protocol, we include information of the infinite
nuclear medium. Following Ref. [24], we have used as a
constraint three points of the EoS in PNM dervied in Ref. [66].
We can now benchmark our results against other well-known
EoS as the one derived via Brueckner-Hartree-Fock (BHF)
[84]. In Fig. 9, we compare the EoS for symmetric matter
and neutron matter obtained with BHF and the SN2LO1
interaction. For completeness the results with SLy5 are also
given. The SN2LO1 follows quite closely the BHF results,
and in particular the EoS of PNM up to 3 times saturation
density. Beyond this point the EoS becomes slightly softer.
We remind the reader that SLy5 and SN2LO1 follow each
other quite closely in PNM at low density because they have
been constrained on the same points in this density region.

On the same figure, we also give the results for spin-
polarized symmetric matter and spin-polarized pure neutron
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FIG. 11. Difference of binding energies obtained with SN2LO1
and SLy5 and experimental values extracted from Ref. [72].

matter and compare SLy5 and SN2LO1 results. Although
these two quantities have not been fitted explicitly, we observe
a qualitative similar behavior in the two functionals. For
completeness, in Table VII, we give the main features of the
EoS of SN2LO1, i.e., saturation density ρ0, incompressibility
K∞, symmetry energy J , and slope of symmetry energy L
(not fitted). The values we obtained are in agreement with the
existing constraints [85].

As already discussed in Ref. [24], there is a strong model
correlation for N1LO between the nuclear incompressibility
and the effective mass. In our case, the correlation between K∞
and m/m∗ is of course different because the new parameters
give us more freedom in adjusting these two values. It
can be calculated analytically in infinite matter with the
result,

K∞ = −9(α + 1)
E

A
(ρ0) + 3

5

h̄2

2m
k2
F

(
3 (3α − 1)

− 2 (3α − 2)
m

m∗

)
+ 3

140
C

Mρ
0 ρk4

F (3α + 10). (63)

In Fig. 10, we observe that to obtain a reasonable value
of the nuclear incompressibility, the allowed range for α
is α ∈ [1/6,1/3]. In a future work, we plan to remove the
density-dependent term and to replace it with a real three-

Δrp = rth - rexp [10−2 fm]
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• ••••
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• SN2LO1
• SLy5

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

FIG. 12. Proton radii difference of two interactions
(SN2LO1/SLy5) calculated with WHISKY with experimental
radii obtained in Ref. [73].
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FIG. 13. Systematic comparison of binding energies for isotopic (isotonic) chains calculated with our extended Skyrme interaction SN2LO1
and experimental ones. On the same figure we also compare with the SLy5 parametrization. See text for details.

body term [34] to make the pseudopotential suitable also for
multireference calculations [86,87].

D. Finite nuclei

In this section, we analyze the properties of finite nuclei
obtained with the extended Skyrme pseudopotential. In Fig. 11,
we show the energy difference �E between the experimental
values and the ones calculated using either SLy5 or SN2LO1
for the few selected double-magic nuclei used in the fit. The
results obtained with SN2LO1 are of the same quality as SLy5.
Moreover they are all very close to the tolerance �Oi we used
for the fit given in Table IV.

In Fig. 12, we compare the differences of proton radii �rp

obtained with SLy5 and our new pseudopotential SN2LO1.
In this case we see that SN2LO1 behaves marginally better

than SLy5 giving a result typically closer to the experimental
values. It is worth noticing that compared to SLy5, we have
few additional constraints concerning finite-size instabilities
that were not present in the original fitting protocol of SLy5.
The closest functional to SN2LO1, in terms of fitting protocol,
is represented by SLy5∗ [16]. We do not report here the
direct comparison, but we have checked that the results are
qualitatively the same.

In Fig. 13, we compare the differences between the
binding energies calculated for isotopic (isotonic) chains with
Z(N)=20, 28, 50, 82 for our extended Skyrme interaction.
The experimental measurements are taken from Ref. [72]. On
the same figure, we also report the values obtained with SLy5.
Notice that we did not optimize the value of the pairing strength
to improve the reproduction of experimental data. Moreover,
because the effective masses are numerically quite similar
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for SLy5 and SN2LO1, we used exactly the same pairing
interaction. The main feature we observe is the strong archlike
structures. This is the main drawback of a fitting protocol
that fixes a very limited number of nuclei. A better fitting
protocol was designed, for example, for UNEDF functionals
[18–20] and we plan to use it for a systematic exploration of the
parameter space of higher order terms. In Fig. 14, we compare
the proton radii. The data are taken from Ref. [73]. The new
interaction is fairly closer to experimental data than the original
SLy5 and the main trends are reproduced. One of the biggest
discrepancies we observe in the data is related to the anomalous
isotopic dependence of proton radii of calcium isotopes. With
the current parametrization we have not been able to reproduce
both 40Ca and 48Ca. A recent article [88] suggests that a
different form of the pairing functionals based on Fayans form
[89] may be the key to solve this anomaly, while the specific
form of the functional used for the calculation of the central
potential is not relevant. Because we did not fix any particular
pairing functional in our fit, we plan to test the results of
Ref. [88] with our new functional.

Finally, we have explored the behavior of single-particle
spectra. In Fig. 15, we compare the Hartree-Fock neutron
single-particle states for 40Ca obtained using SLy5 and
SN2LO1. The values are compared with the experimental
values extracted from Ref. [90]. The HF states obtained with
the two functionals are very close to each other. SN2LO1
shows a slight compression of the spectrum, but this is simply
related to a slightly larger effective mass (see Table VII).
Similar behavior is also observed in Fig. 16 for neutron
single-particle states in 208Pb.

As discussed in Sec. IV, the higher order gradient terms
induce three extra spin-orbit fields Eqs. (43)–(46). In principle
this should provide us with some extra flexibility compared to
a standard Skyrme interaction. However, the major problem
encountered in this first analysis is to find the right observable
that may let us explore a new region of parameter space that
may increase their importance. We recall that we neglected
completely tensor terms at the N2LO level, which means two
extra tensor parameters [25,27]. This could also give an extra
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FIG. 16. Same as Fig. 15, but for 208Pb.

freedom to correct some known anomaly in the shell evolution
of some particular states [91]. The exploration of this particular
aspect is currently under investigation.

VI. CONCLUSIONS

In the present article, we have discussed the formalism
to include fourth-order gradient terms of the N2LO Skyrme
interaction. We have derived the functional, the complete
expression of the densities in the case of spherical symmetry
and the corresponding HF equation. The resulting fourth-order
differential equation was solved with a new numerical code
named WHISKY. This code was tested against two different
HFB solvers to check numerical accuracy of the new solver.
Thanks to this new code, we have been able to perform for
the very first time a complete fit of a stable N2LO Skyrme
interaction including finite nuclei. This achievement was made
possible by the use of the linear response formalism as a tool
to prevent unphysical instabilities.

For the very first time, we thus have been able to prove that
it is possible to go beyond the standard Skyrme interaction by
including physically motivated terms. Thanks to the work on
the foundations of various nonrelativistic effective interactions
[25], we have been able to clarify the inner nature of the
higher order gradient terms in the extended N�LO Skyrme
pseudopotential. The LR formalism we have been able to solve
also the long-standing problem of finite-size instabilities in
effective functionals. Finite-size instabilities seem to appear
in various functionals not only the Skyrme-like ones [13]. The
LR formalism thus represents a simple tool that should be
included in all modern fitting protocol to avoid the appearance
of nonphysical results.

Combining all the previous results, we have been able
to derive the complete set of parameters of the N2LO
pseudopotential, named SN2LO1 in this paper. We have
compared its performances on both infinite nuclear matter
(pseudo)-observables as well as ground-state properties of
some selected nuclei. The global performances are of the same
quality as the standard SLy5. However, it is very important
to underline here that because SN2LO1 has four additional
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parameters compared to SLy5, we have imposed extra stability
constraints to our functional: SLy5 has a finite-size instability
in the spin channel and thus cannot be used to perform
calculations where the time-odd channel is open. To the best
of our knowledge, SN2LO1 is free from pathologies and it can
be safely used in various numerical codes.

Finally we insist on the fact that the higher order terms
introduce several new features as, for example, three new spin-
orbit fields that have not been completely investigated in this
article and may give rise to new properties of the functional:
N2LO clearly offers some new degrees of freedom and goes
beyond N1LO.
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APPENDIX A: COUPLING CONSTANTS

In this section we give the explicit expressions of the
new coupling constants of the N2LO functional in terms of
Skyrme parameters. The expression of the coupling constants
for the standard Skyrme functional can be found in Ref. [36].
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APPENDIX B: DENSITIES IN CARTESIAN
REPRESENTATION

We define the density matrix in coordinate space as in [41]

ρq(rσ,r′σ ′) = 1
2ρq(r,r′)δσσ ′ + 1

2 sq(r,r′)〈σ ′|σ̂ |σ 〉, (B1)

where

ρq(r,r′) =
∑

σ

ρq(rσ,r′σ ′), (B2)

sq(r,r′) =
∑
σσ ′

ρq(rσ,r′σ ′)〈σ ′|σ̂ |σ 〉. (B3)

The Skyrme energy density functional up to second order is
composed by seven local densities whose explicit expression
can be found, for example, in Ref. [36]. The extension to fourth
order requires the definition of six additional local densities,

τμν,q(r) = ∇μ∇′
νρq(r,r′)

∣∣
r=r′ , (B4)

Kμνκ,q(r) = ∇μ∇′
νsκq(r,r′)

∣∣
r=r′ , (B5)

�μ,q(r) = ∇ · ∇′jμ,q(r,r′)
∣∣
r=r′ , (B6)

Vμν,q(r) = ∇ · ∇′Jμν,q(r,r′)
∣∣
r=r′ , (B7)

Qq(r) = ��′ρq(r,r′)
∣∣
r=r′ , (B8)

Sμ,q(r) = ��′sμ,q(r,r′)
∣∣
r=r′ . (B9)

Similarly to the spin-current pseudotensor Jμν,q(r), the
density τμν,q(r) can be decomposed into a pseudoscalar, vector,
and traceless pseudotensor term. For more details we refer to
Ref. [76].
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Nazarewicz, Phys. Rev. C 69, 014316 (2004).

[3] F. Raimondi, B. G. Carlsson, and J. Dobaczewski, Phys. Rev. C
83, 054311 (2011).

[4] T. H. R. Skyrme, Nucl. Phys. 9, 615 (1959).
[5] D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).
[6] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102,

152503 (2009).
[7] T. Lesinski, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev.

C 74, 044315 (2006).
[8] N. Schunck, J. Dobaczewski, J. McDonnell, J. Moré, W.

Nazarewicz, J. Sarich, and M. V. Stoitsov, Phys. Rev. C 81,
024316 (2010).

[9] S. Fracasso, E. B. Suckling, and P. D. Stevenson, Phys. Rev. C
86, 044303 (2012).

[10] V. Hellemans, A. Pastore, T. Duguet, K. Bennaceur, D. Davesne,
J. Meyer, M. Bender, and P.-H. Heenen, Phys. Rev. C 88, 064323
(2013).

[11] A. Pastore, D. Tarpanov, D. Davesne, and J. Navarro, Phys. Rev.
C 92, 024305 (2015).

[12] A. Pastore, D. Davesne, and J. Navarro, Phys. Rep. 563, 1
(2015).

[13] A. De Pace and M. Martini, Phys. Rev. C 94, 024342
(2016).

[14] J. Dobaczewski, W. Nazarewicz, and P. Reinhard, J. Phys. G:
Nucl. Part. Phys. 41, 074001 (2014).
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