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Dependence of two-proton radioactivity on nuclear pairing models
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Sensitivity of two-proton emitting decay to nuclear pairing correlation is discussed within a time-dependent
three-body model. We focus on the 6Be nucleus assuming α + p + p configuration, and its decay process
is described as a time evolution of the three-body resonance state. For a proton-proton subsystem, a schematic
density-dependent contact (SDDC) pairing model is employed. From the time-dependent calculation, we observed
the exponential decay rule of a two-proton emission. It is shown that the density dependence does not play a
major role in determining the decay width, which can be controlled only by the asymptotic strength of the
pairing interaction. This asymptotic pairing sensitivity can be understood in terms of the dynamics of the wave
function driven by the three-body Hamiltonian, by monitoring the time-dependent density distribution. With this
simple SDDC pairing model, there remains an impossible trinity problem: it cannot simultaneously reproduce
the empirical Q value, decay width, and the nucleon-nucleon scattering length. This problem suggests that a
further sophistication of the theoretical pairing model is necessary, utilizing the two-proton radioactivity data as
the reference quantities.
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I. INTRODUCTION

Description of nuclear pairing correlation has been a
major subject in recent nuclear physics. For instance, in self-
consistent meanfield (SCMF) description of atomic nuclei,
there have been various approaches in order to take the
nuclear pairing correlation into account [1–6]. These ap-
proaches based on the SCMF or the nuclear density functional
theory (DFT) have provided considerable agreement with the
measured binding energy as well as its odd-even staggering for
bound nuclei. Even with these efforts, however, the complete
character of the nuclear pairing correlation has not been
revealed. For example, whether the phenomenological pairing
interaction should have the volume or surface type of the
density dependence is still an open question [7–10]. At present,
one can find several candidates for the sophisticated nuclear
pairing model [7–12]. In order to validate these models, one
may need reference observables to fit not only for bound nuclei.
Also, it should be emphasized that the pairing correlation near
and beyond the neutron and proton drip lines could play a
fundamental role to determine the limit of existence on the
nuclear chart [13,14].

Recently, it has been expected that the two-proton (2p)
radioactivity may provide novel information on the nuclear
pairing correlation. In the true 2p emission [15–20], a
pair of protons is emitted simultaneously from the parent
nucleus, whereas the single-proton emission is forbidden or
strongly suppressed due to the pairing correlation energy. The
proton-proton pairing plays an essential role to determine the
observables, especially the released energy (Q value) as well
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as the 2p-decay width or lifetime [19–26]. The released Q
value can be related to the proton-proton pairing strength in
bound nuclei. On the other hand, the 2p-decay width has no
correspondence in bound systems, whose lifetime is trivially
infinite. Thus, 2p decays may provide another lodestar with
new experimental input to optimize and validate the pairing
models. Thanks to the experimental developments, there has
been a considerable accumulation of data for the 2p-emitting
nuclei [18–20]. On the other side, however, theoretical studies
have not been sufficient to clarify the relation between the 2p
radioactivity and the pairing correlation. Because 2p emission
is a typical many-body problem, its elucidation could also
provide a universal knowledge on the multiparticle quantum
phenomena in various domains. Those include, e.g., the
quantum entanglement [27], BCS-BEC crossover [28,29], and
Efimov physics [30–32].

In this article, we discuss how the theoretical characters of
pairing models are reflected on 2p-decay properties, connected
to a specific interest in sophisticating those models. For this
purpose, we employ the time-dependent three-body model
[33], whose simplicity enables us to phenomenologically
understand the pairing model dependence of 2p radioactivity.
We focus on the 2p emission from the ground state of the 6Be
nucleus, assuming the configuration of two valence protons
and a rigid α core.

The formalism of our model is given in Sec. II. In Sec. III,
we present numerical calculations and discussions. Finally
Sec. IV is devoted to summarize the article.

II. THREE-BODY MODEL

Details of the time-dependent three-body calculations are
present in Ref. [33]. In this article, we employ this method but
with some changes. The 2p decay from 6Be is described as a
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time evolution of the two protons in the spherical mean field
generated by the α core. The three-body Hamiltonian is given
as [29,34–37]

H3b = h1 + h2 + p1 · p2

Acm
+ vp-p(r1,r2), (1)

where hi = p2
i /2μ + Vc-p(ri) (i = 1,2) is the single particle

(s.p.) Hamiltonian between the core and the ith proton. μ ≡
mAc/(Ac + 1) is the reduced s.p. mass with Ac = 4.

The core-proton potential is given as Vc-p(r) = VWS(r) +
VCoul(r). The Woods-Saxon potential is expressed as

VWS(r) = V0f (r) + Uls(l · s)
1

r

df (r)

dr
, (2)

with a function

f (r) = 1

1 + e(r−Rf )/af
, (3)

where Rf = 1.68 fm and af = 0.615 fm. VCoul describes
the Coulomb potential. For VWS(r) and VCoul(r), we em-
ploy the same parameters as in Ref. [33], in order to reproduce
the resonance energy and width in the (p3/2) channel of α-p
scattering, εr = 1.96 MeV and �r � 1.5 MeV, respectively
[38]. Note that this resonance is attributable to the centrifugal
potential barrier [33].

The p-p pairing potential is introduced as vp-p = v(N)
p-p +

e2/|r1 − r2|. Here, we employ a schematic density-dependent
contact (SDDC) potential,

v(N)
p-p (r1,r2) = w[|(r1 + r2)/2|]δ(r1 − r2),

w(r) = w0[1 − ηf (r)], (4)

for the nuclear pairing interaction: two protons have a
contact pairing correlation, whose density dependence is
schematically approximated as the ηf (r) term. For the sake
of generality, the density dependence is not limited to have the
same f (r) in Eqs. (2) and (4). In this work, however, we use the
same function for simplicity, except in Sec. III D. Notice also
that w(r −→ ∞) = w0. For intrinsic two-nucleon structures,
including the dinucleon correlation, similar three-body model
calculations with SDDC pairing models have been utilized
[29,34–37], with a consistency between other theoretical
results [39–42].

With the contact interaction, it is generally known that
one should introduce the energy cutoff Ecut in order to avoid
the ultraviolet divergence [43]. In the present case, the bare
strength w0 can be determined so as to reproduce the empirical
scattering length of nucleons in vacuum, a0 = −18.5 fm,
consistently to the energy cutoff [34,35]. That is,

w0 = 4π2h̄2a0

m(π − 2a0kcut)
, (5)

with kcut = √
mEcut/h̄. The cutoff energy is set as

Ecut = 40 MeV similarly as in Ref. [33], yielding w0 =
−767.398 MeV fm3.

Total expectation value of H3b, which is conserved during
the time evolution, corresponds to the released Q value of the

three-body decay. That is,

Q2p = 〈�(t) | H3b | �(t)〉,
= 〈h1 + h2〉(t) + 	pair(t), (6)

	pair(t) =
〈
�(t) | p1 · p2

Acm
+ vp-p(r1,r2) | �(t)

〉
, (7)

where 	pair is the pairing correlation energy (PCE). In order
to reproduce the empirical Q value, 1371 ± 5 keV [38], we
should employ a density-dependence parameter, η = 1.04, in
Eq. (4). Namely, the empirical Q value requires almost the
surface type of the SDDC pairing interaction, which imitates
the surface version of the density-dependent pairing energy
in DFT calculations [7–9]. Note also that PCE approximately
corresponds to the pairing gap when the system is bound.

We assume the 0+ configuration for two protons and the
α core, consistently with the total spin parity which is also
0+ for the ground state of 6Be. Thus, the eigenstates of the
three-body Hamiltonian, satisfying H3b |EN 〉 = EN |EN 〉, can
be expanded on the 0+-configuration basis:

|EN 〉 =
∑
M

UNM |
M〉 , (8)


M (r1,r2) = Â[
φnaljm(r1) ⊗ φnblj (−m)(r2)

]0+
, (9)

with the simplified notation, M = (na,nb,l,j ). Here Â is the
antisymmetrization operator. The expansion coefficients UNM

are determined by diagonalizing the Hamiltonian matrix for
H3b. Each s.p. state satisfies hiφnljm(r i) = εnljφnljm(r i), with
the radial quantum number n, the orbital angular momentum
l, the spin-coupled angular momentum j , and the magnetic
quantum number m. We employ the s.p. states up to the (h11/2)
channel. In order to take into account the Pauli principle, we
exclude the first s1/2 state, which is occupied by the protons
in the core nucleus. The continuum s.p. states (εnlj > 0) of
Vc-p are discretized in the radial box of Rbox = 80 fm. Thus,
continuum eigenstates of H3b are also discretized. As we
present in Sec. III C, this radial box is sufficiently large to
provide a good convergence in terms of the decay width.

It is worthwhile to mention that, if one can neglect PCE,
a 2p-resonance state locates at Q2p = 〈h1 + h2〉 = 2εr , where
εr is the α-p resonance energy. In this case, where the 2p-wave
function keeps the pure (p3/2)2 configuration, it was confirmed
that the decay process is well described as a sequential 2p
emission [33].

Taking PCE into account, the resonance energy is decreased
mainly due to the attractive pairing interaction. Figure 1
schematically describes this situation. In Ref. [33], the finite-
range, density-independent Minnesota potential was employed
to describe the pairing force [44], and then the strongly corre-
lated 2p emission was suggested.1 For the spatial correlation
in this process to occur, a mixture of other configurations from
(p3/2)2 plays an essential role [29,36]. Also, especially with
the light core nucleus, the induced correlation by the recoil

1We found a typo in Table I of Ref. [33]: “S = 0(1)” should be
corrected as “S = 1(0)”.
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FIG. 1. Schematic figure of level scheme, in which the correlated
2p emission becomes dominant.

term, ( p1 · p2)/Acm, can be noticeable. We check its effect on
the Q value in the next section.

III. NUMERICAL CALCULATION

A. Initial state

In order to fix the initial state for time evolution, we employ
the same confining potential, V conf

c-p (r), as in Ref. [33]. This
confining potential method has provided good approximations
for quantum resonance phenomena [23,45–47], together with
an intuitive way to understand their dynamics. The initial state
solved within the confining Hamiltonian can be expanded
on the eigenbasis of the original Hamiltonian: |�(0)〉 =∑

N FN (0) |EN 〉. Thus, the time evolution is represented as

|�(t)〉 ≡ exp

[
−it

H3b

h̄

]
|�(0)〉 =

∑
N

FN (t) |EN 〉 , (10)

where FN (t) = e−itEN /h̄FN (0). It is worthwhile to note that the
time-invariant discrete energy spectrum can be given as

d(EN ) = |FN (0)|2 = |FN (t)|2. (11)

If one takes the continuous energy limit, d(E) resembles
the Breit-Wigner spectrum, which characterizes the quantum
resonance properties of concerning radioactive process [48].

In Fig. 2, we plotted the normalized density distribution for
the initial state. That is,

ρ(t ; r1,r2,θ12) = 8π2r2
1 r2

2 sin θ12|�(t ; r1,r2,θ12)|2, (12)

at ct = 0 fm. For convenience, ρ is translated to a function
of the relative distance between the two protons, rp-p = (r2

1 +
r2

2 − 2r1r2 cos θ12)1/2, and that between the core and the center
of mass of two protons, rc-pp = (r2

1 + r2
2 + 2r1r2 cos θ12)1/2/2.

From Fig. 2, we find a similar result in Ref. [33], where a
finite-range Minnesota pairing was used instead: the higher
peak at rp-p � 2.0 fm and rc-pp � 2.5 fm, as well as at
θ12 � π/6, indicates a strong localization of two protons.
The similar discussion can be found in, e.g., Refs. [29,49],
where the pairing correlation as well as the Pauli principle
play a fundamental role. Notice also that this localization
is attributable to the spin-singlet configuration, suggesting a
diproton correlation [37].
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FIG. 2. The density distribution for the initial 2p state obtained
with the surface SDDC pairing interaction. (i) Top panel: the
distribution as a function of rp-p and rc-pp. (ii) Bottom panel: the
angular distribution as a function of the opening angle, θ12, between
two protons. This is obtained by integrating ρ(r1,r2,θ12) for the radial
coordinates, r1 and r2. The spin singlet and spin-triplet components
are also plotted.

For this initial state, the Q value is obtained as

Q2p = 〈�(0) | H3b | �(0)〉 = 1.37 MeV (13)

with our surface SDDC pairing interaction. This includes the
negative PCE, where not only the pairing interaction but also
the induced correlation from the recoil term give finite values.
That is,

	pair =
〈

p1 · p2

Acm

〉
+ 〈vp-p〉 = −6.28 MeV, (14)

where 〈( p1 · p2)/Acm〉 = −1.46 MeV and 〈vp-p〉 = −4.82
MeV. Obviously, the pairing interaction makes a major
contribution in reproducing the empirical Q value. In our case,
the recoil term effect is also noticeable, which exhausts about
25% of total PCE. This feature of the center-of-mass effect
may take place when the masses of ingredient particles are
comparable.

B. Time evolution

In Fig. 3, we plotted the time development of 2p state,
in terms of the probability-density distribution. It is well
described that the confined two protons at ct = 0 are released
during the time development. The probability density outside
the core-proton barrier gradually increases, indicating an
evacuation of two protons. In order to monitor their decay
dynamics more preciously, it is helpful to focus on the
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FIG. 3. Time-dependent 2p-density distribution plotted as a function of rp-p and rc-pp. The surface SDDC pairing interaction is employed.

projected decay state [27]. That is,

|�d (t)〉 ≡ |�(t)〉 − β(t) |�(0)〉 , (15)

with β(t) = 〈�(0) | �(t)〉. Because the initial state is well
confined, this projected decay state mainly represents the
outgoing components released from around the core. In Fig. 4,
we plot the density distribution of the projected decay state
normalized at each point of time. That is,

ρd (t ; r1,r2,θ12) = 8π2r2
1 r2

2 sin θ12|�d (t ; r1,r2,θ12)|2
Nd (t)

, (16)

where Nd (t) = 〈�d (t) | �d (t)〉 = 1 − |β(t)|2 is the decay
probability. In Fig. 4, the strongly correlated 2p emission is
suggested with our surface SDDC pairing model. The diproton
correlation, which can be detected as a peak at rp-p � 5 fm
and rc-pp � 10 fm, as well as at θ12 � π/6, is dominant
during the time evolution. Notice also that the sequential 2p
emission, which is graphically indicated as a ridge along the

rc-pp � rp-p/2 line [33], is strongly suppressed. This dynamical
behavior of protons is similar to that suggested from the
finite-range Minnesota pairing model [33].

C. Decay width

We next investigate the decay width, which is one of the
directly measurable quantities of the 2p emission. From the
decay probability Nd (t), the 2p-decay width is calculated as

�(t) = −h̄
d

dt
ln[1 − Nd (t)] = h̄

1 − Nd (t)

d

dt
Nd (t), (17)

where 1 − Nd (t) indicates the survival probability. It is
worthwhile to note that, if the time evolution follows the
exponential decay rule, which is a fundamental property
of radioactive processes, the decay probability is given as
Nd (t) = 1 − exp(−t�c/h̄). Here �c is the constant decay
width. In this case, �(t) becomes identical to �c, which
determines the mean lifetime of this system, τ = h̄/�c.
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FIG. 4. Time-dependent 2p-density distribution of the decay state ρd (t), given by Eq. (16). The surface SDDC pairing interaction is
employed. These are plotted in the same manner as in Fig. 2.
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TABLE I. Parameters for the SDDC pairing interaction used in
this article. Ecut = 40 MeV. Resultant Q values of the 2p emission of
6Be and the corresponding total, spin-singlet, and spin-triplet decay
widths at ct = 1000 fm are also present. Same results but with the
softened, finite-range Minnesota pairing model are obtained from
Ref. [33].

w0 η Q2p � �S=0 �S=1

(MeV fm3) (keV) (keV) (keV) (keV)

SDDC (this work) −767.398 1.04 1370.7 34.7 33.4 1.3
Minnesota [33] 1370.7 88.2 87.1 1.1
Experiment [38] 1371 ± 5 92 ± 6

In the following, for a comparison with our SDDC model,
we fetch the same result with a softened finite-range Minnesota
pairing model [33]. Notice that, as presented in Table I, both
pairing models are adjusted so as to reproduce the same Q
value. This is an important constraint because, for radioactive
processes governed by the quantum tunneling effect, even a
small difference in the Q value can lead to a large change of the
decay width [21–25,50]. However, as an intuitive shortcoming
in Ref. [33], we should also warn that fitting Minnesota
potential to the Q value leads to the inconsistency in the
experimental scattering length. Also, the core-proton potential
and the cutoff parameters are common in both cases.

In Fig. 5, we plot the survival probability and decay width as
functions of time. After a sufficient time evolution, we finally

FIG. 5. (i) Top panel: survival probability, 1 − Nd (t), obtained
with the surface SDDC pairing interaction. For a comparison, the
same result but with the finite-range Minnesota pairing is taken from
Ref. [33]. These are plotted in logarithmic scale. (ii) Bottom panel:
2p-decay width of 6Be calculated with the surface SDDC and the
finite-range Minnesota pairing interactions. In SDDC case, the spin-
singlet (S12 = 0) and spin-triplet (S12 = 1) widths are both plotted.
Experimental result, �2p = 92 ± 6 keV, is indicated by the shaded
area [38].

obtain the exponential decay rule and thus the convergence
of decay width. From the Krylov-Fock theorem [48,51], this
exponential decay coincides with that of the energy distribution
d(EN ), and approximates the Breit-Wigner spectrum.

For the deviation from exponential decay rule in the
long-time scale, there have been several statements of its
existence in radioactive processes [52–56]. Investigation of
this long-time deviation is, however, not feasible with present
time-dependent model, because the reflected wave at Rbox

invokes an unphysical deviation. In order to disinfect this
“contamination” by the unphysically reflected wave, one needs
to employ, e.g., the absorption boundary condition [57,58].
Because this improvement is technically demanding, we leave
it for future work. We emphasize that our conclusion based
on the resultant decay width is independent of this reflected
contamination.

In Table I, the �(t) value at ct = 1000 fm is tabulated. In
our result, the SDDC pairing interaction underestimates the
experimental 2p-decay width, whereas the Minnesota pairing
showed a good agreement with it. In Fig. 5, the partial decay
widths for the spin-singlet and spin-triplet channels are also
plotted [33]: �(t) = �S=0(t) + �S=1(t). One finds again the
dominance of the spin-singlet configuration in 2p emission
consistently to the density distribution in Fig. 4. The exact
values of �S=0,1(t) at ct = 1000 fm are also summarized in
Table I. With the SDDC pairing, the spin-singlet 2p-decay
width is remarkably small compared with the Minnesota
pairing case, whereas the spin-triplet width shows the similar
values. Because of the same setting except the pairing models
in two cases, the different 2p-decay widths should be purely
attributed to the pairing properties.

Figure 6 displays the discrete energy spectra d(EN ) and
their continuous distributions smeared by a Cauchy-Lorentz
function. The spectrum width obtained with the SDDC pairing
model is narrower than that of the Minnesota pairing model.
This result coincides with the converged � values.

Last, we confirmed that our conclusion does not change
even if we employ a smaller value of Ecut: we calculated
the decay width with Ecut = 32 MeV, with the SDDC pairing

FIG. 6. Time-invariant discrete energy distribution d(EN ) ob-
tained with the surface SDDC pairing interaction. Its continuous
distribution, plotted in an arbitrary scale, is obtained by smearing
d(EN ) with a Cauchy-Lorentz function, whose full width at the half
maximum is 0.1 MeV. The same plot for the Minnesota pairing case
is also displayed.
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TABLE II. Parameters for SDDC pairing interactions used in
Sec. III D (upper three rows) and Sec. III E (middle two rows).
Resultant Q2p and � are displayed in the same manner as Table I.

w0 Rf af η Q2p �

(MeV fm3) (fm) (fm) (keV) (keV)

Default SDDC − 767.398 1.68 0.615 1.04 1370.7 34.7
Steep (same) 0.84 (same) 2.53 1370.8 33.3
Smooth (same) 4.50 (same) 0.349 1369.6 33.5
Volume −525.5 1.68 0.615 0 1370.6 19.7
Emitter − 1036.8 (same) (same) 1.80 1367.6 90.3
Experiment [38] 1371 ± 5 92 ± 6

interaction refitted to reproduce the empirical scattering length
and the Q value, Q2p = 1.37 MeV. Then we obtained the
same decay-width value as in the original energy cutoff case
in Table I.

D. Density dependence

In this part, we discuss in detail the inconsistency of �2p

and Q2p. First we should remember that the asymptotic pairing
strength w0 has been adjusted consistently to the vacuum
scattering length a0, which gives the first constraint from
experimental results. For the other two observables, Q2p and
�2p to be reproduced simultaneously, we can manipulate the
density dependence w(r), only around the core nucleus.

For this purpose, in addition to our default SDDC param-
eters, we test two sets of parameters, steep and smooth, as
summarized in Table II. Visual plots of these w(r) are shown
in Fig. 7. In these cases, we modify the radial parameter, Rf in
Eq. (4), from the default value. Then, we readjust the parameter
η to reproduce the empirical Q value. Consequently, in the
steep SDDC case, the density-dependent strength should be
positive deeply inside the core, meaning that the 2p interaction
should be repulsive there due to our Q-value fitting purpose.
On the other hand, in the smooth SDDC case, w(r) is always
attractive with a smooth change around the core-proton barrier.
We remind that the asymptotic value w0 is common in all
the cases. Note also that we change these parameters only
in the pairing interaction, whereas the core-proton interaction
VWS(r) has been common in all the cases. Namely, resonance
parameters of α-p remain unchanged.

In Fig. 7, our resultant �(t) are present: there is actually no
significant difference in the three cases. Namely, the density
dependence of pairing strength plays a minor role in the 2p
penetrability, whereas only the asymptotic strength can control
it. It also means that there has been no way to resolve the trinity
problem of Q2p, �2p, and a0, as long as with the simple SDDC
pairing model. Indeed, this impossible trinity was found also in
Ref. [33], where the softened Minnesota model should affect
the consistency to the experimental scattering length.

E. Sensitivity to asymptotic interaction

In order to investigate the effect of the asymptotic inter-
action, we repeat the same calculation but changing the w0

values in the following. Although it leads to an inconsistency
to the empirical scattering length, we expect to obtain a hint

FIG. 7. (i) Top panel: density dependence of the SDDC pairing
interaction w(r) in the default (surface), steep, and smooth cases. The
core-proton potential is also plotted in the arbitrary scale. (ii) Bottom
panel: corresponding result of 2p-decay width.

for further sophistication of the theoretical model. Those sets
of parameters are displayed in Table II, named volume and
emitter SDDC interactions. In the volume SDDC case, we
fix η = 0, and fit w0 to the empirical Q value. Thus, the
pairing strength becomes independent of the radial density.
This interaction imitates the so-called volume type of the
pairing energy functional in DFT calculations [7–9]. In
the emitter SDDC case, on the other hand, we search an
adequate set of (η,w0), which can reproduce the empirical
Q2p and �2p simultaneously. Consequently, η = 1.8 and w0 =
−1036.8 MeV fm3 are obtained.

In the top panel of Fig. 8, we plot the contact pairing strength
for these SDDC parametrizations. It is worthwhile to mention
that, with the emitter SDDC model, due to its deeper w0 value,
two protons in vacuum have a larger correlation energy.

Figure 9 shows the decay width obtained with different
asymptotic strengths. Obviously, one can find that the stronger
pairing in the asymptotic region yields the larger decay width.
This is consistent with other theoretical results [19–25]. It is
also remarkable that this asymptotic-pairing sensitivity can be
concluded even in the equivalent kinematic condition, which
has been realized with the standard Q value in our calculations.

The asymptotic sensitivity may be found with other kinds of
the pairing model. In Appendix, we show another example with
the Minnesota pairing model, which is not density dependent
and has a finite range. In that section, by tuning the range and
strength parameters of the Minnesota pairing, the sensitivity
of the 2p-decay width is confirmed.

Our time-dependent model can provide an intuitive way to
study the asymptotic-pairing sensitivity of 2p dynamics. For
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FIG. 8. (i) Top panel: The radial strength w(r) for three SDDC
pairing potentials, v(N)

p-p (r1,r2) = w(r1) · δ(r1 − r2). (ii) Middle and
bottom panels: The one-proton density-distribution at ct = 0 and
1000 fm, respectively. These distributions are plotted in an arbitrary
scale. Confining and original potentials in the (p3/2) channel of α-p
subsystem are also plotted.

this purpose, in the lower two panels in Fig. 8, we present the
one-proton probability-density distribution of the initial and

FIG. 9. 2p-decay width of 6Be obtained with the default, volume,
and emitter SDDC pairing models.

time-developed states. That is,

ρ1(t ; r) = 8π2
∫ Rbox

0
dr2r

2
2

∫ 1

−1
d(cos θ12)|�(t ; r,r2,θ12)|2.

(18)

Because our 2p-basis functions are antisymmetrized,
|�(r1,r2)|2 is symmetric for the exchange of r1 and r2.
Thus, ρ1(t ; r) represents the mean radial distribution of 2p
probability. In these panels, with the default (surface) or emitter
SDDC, the probability density shows a dispersed shape. This is
of course a product of the strong p-p attraction in vacuum: the
two-proton subsystem more strongly favors the outside from
the potential barrier. This effect then yields a looser stability
corresponding to the larger decay width. On the other hand, in
the volume SDDC case, the two-proton density hardly diverges
with the isotropically attractive pairing.

In order to resolve the impossible trinity problem in
Sec. III D, now the qualitative suggestion appears: the pair-
ing model should satisfy both (i) the consistency with the
asymptotic scattering problem, and (ii) the dynamical effect
on two protons for tunneling, as seen in Fig. 8. Possible ways
in practice include a nontrivial parametrization of the density
dependence [59], and/or the phenomenological three-body
force [17,19,60]. Note also that, in our present model, this
dynamical process is driven by the total Hamiltonian, which
is not time dependent nor self-consistent to the 2p state. This
assumption will need to be addressed in forthcoming studies.

IV. SUMMARY

We have discussed the dependence of 2p radioactivity on
nuclear pairing models within the time-dependent three-body
model calculations. Comparing the zero-range SDDC and
the finite-range Minnesota pairing forces, the 2p dynamics
is interpreted as the correlated 2p emission similarly in both
cases.

Evaluating the absolute decay probabilities, we found that
the two-proton decay width is sensitive to the pairing model in
usage. Utilizing the SDDC parametrizations, we showed that
the asymptotic strength of the pairing interaction essentially
controls the 2p-decay width. This sensitivity exists even if we
exclude the kinematic effect by reproducing the equivalent
condition on the emitted Q value. On the other hand, the
density-dependence effect around the core plays a minor role
in this field.

With the simple SDDC pairing model, there remains an
impossible trinity problem of Q2p,�, and the two-nucleon
scattering length in vacuum, a0. In order to reproduce whole of
these two-body and three-body properties consistently to the
experiments, further model sophistication is necessary. One
possible approach is to employ a nontrivial parametrization of
the density dependence for the pairing interaction [59], and
another is the phenomenological three-body force [17,19,60].
Because these considerable solutions inevitably harm the
simplicity of the present model, we leave these developments
for future study.

Comparison with other kinds of experimental data, e.g.,
momentum distributions in Refs. [17,19,61], is also an
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important task for future work. For this purpose, however, the
present model space should be expanded sufficiently to handle
the long-range Coulomb effects. Although the computational
cost is highly increased, it may provide another procedure to
validate the pairing models.

Another direction of progress may be the implementation
of our idea to the mean-field calculations [62–65]. Because
our three-body Hamiltonian itself is not time dependent nor
self-consistent, it is not completely clear whether similar
pairing sensitivity exists in the SCMF or DFT calculations.
Implementing our procedure to this framework enables us to
perform the systematic investigation along the 2p-drip line,
utilizing the 2p-decay data as the reference quantities. A wide
experimental survey for the 2p-emitter candidates could be
profitable for this purpose [14].
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APPENDIX: CONTACT AND MINNESOTA PAIRING
MODELS

In this Appendix, we discuss a connection of the zero-range
pairing model to the Minnesota type, which was employed in
Ref. [33], with several results for the 2p-decay width. The p-p
Minnesota potential used in Ref. [33] was given as

v(N)
p-p = VMin = vre

−d2/2q2 + vse
−d2/2κ2

s q2
P̂S=0

+ vte
−d2/2κ2

t q2
P̂S=1, (A1)

where d ≡ |r1 − r2|, vr = 156 MeV, vs = −91.85 MeV,
vt = −178 MeV, q = 0.5799 fm, κs = 1.788, and κt = 1.525.
P̂S=0(1) is the projection to the spin-singlet (triplet) channel.
Remember that vr was softened from the original value,
vr = 200 MeV [44], in order to reproduce the reference Q
value, Q2p = 1.37 MeV. Here the first term describes a soft
repulsive core.

Decomposing d2 = x2 + y2 + z2, the first term in Eq. (A1)
reads

vre
−d2/2q2 = wr

e−x2/2q2
e−y2/2q2

e−z2/2q2

(2π )3/2q3
, (A2)

where wr = vr (2π )3/2q3 = 479.1 MeV fm3, and similarly as
expected for the following attraction terms. Utilizing a well
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FIG. 10. Time-dependent 2p-decay width of 6Be obtained with
several Minnesota-pairing forces.

known formula,

lim
q→0

e−x2/2κ2q2

q
√

2π
= δ(x/κ) = |κ|δ(x), (A3)

then at zero-range limit, we obtain

lim
q→0

VMin(r1,r2) = w0δ(r1 − r2), (A4)

where w0 = wr + κ3
s ws = −1133.4 MeV fm3. Indeed, this

zero-range form is identical to the volume type of the pairing
force used in Sec. III E. Notice also that, for the two-proton
basis in 0+ configuration, matrix elements of the spin-triplet
contact potential become zero automatically from the angular-
momentum algebra [66].

Employing the volume contact pairing given in Eq. (A4),
however, we confirmed that the α + p + p three-body system
fictionally becomes bound with Q2p � −1.3 MeV. In order
to reproduce the experimental Q value, we need to use the
shallower strength as in Table II in the main text. Then,
we obtain � = 88.2 and 19.7 keV with the finite-range and
zero-range Minnesota potentials, respectively. To reinforce our
result, we repeat the same calculation but with the shorter
range, q/

√
2 � 0.41 fm in Eq. (A1). In this case, we need to

employ the enhancement factor, f = 2.047, to reproduce the
reference Q value: v(N)

p-p = f · VMin(q/
√

2).
In Fig. 10, all the resultant 2p-decay widths are displayed.

As expected, the short-range Minnesota case yields the
medium value of the decay width between the default and
zero-range Minnesota cases. Because Minnesota forces are
density independent, this sensitivity of 2p-decay width is
purely attributable to the asymptotic scattering property, which
is governed by the choice of parameters.
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