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We have studied the Gamow-Teller (GT) transitions from N = Z + 2 neighbors to N = Z odd-odd nuclei in
the p-shell region by using isospin-projected and βγ -constraint antisymmetrized molecular dynamics combined
with the generator coordinate method. The calculated GT transition strengths from 0+1 states to 1+0 states such
as 6He(01

+1) → 6Li(11
+0), 10Be(01

+1) → 10B(11
+0), and 14C(01

+1) → 14N(12
+0) exhaust more than 50% of

the sum rule. These N = Z + 2 initial states and N = Z odd-odd final states are found to dominantly have
S = 0,T = 1 nn pairs and S = 1,T = 0 pn pairs, respectively. Based on the two-nucleon (NN ) pair picture,
we can understand the concentration of the GT strengths as the spin-isospin-flip transition nn(S = 0,T = 1) →
pn(S = 1,T = 0) in LS coupling. The GT transition can be a good probe to identify the spin-isospin partner
states with nn pairs and pn pairs of N = Z + 2 and N = Z odd-odd nuclei, respectively.

DOI: 10.1103/PhysRevC.96.044318

I. INTRODUCTION

Proton and neutron (pn) correlation is one of the key
phenomena to understand properties of N = Z odd-odd nuclei
(see Ref. [1] and references therein). In particular, a deuteron-
like T = 0 pn pair plays an important role in low-lying states
of light N = Z odd-odd nuclei. Recently, a three-body model
calculation of two nucleons with a doubly magic core nucleus
was performed to study low-lying states of N = Z odd-odd
nuclei, and the result indicates that deuteron-like S = 1,T = 0
and dineutron-type S = 0,T = 1 pairs (LS-coupling pn pairs)
are predominantly formed at the surface of double magic cores
such as 16O [2]. Moreover, in our previous work, we have
studied pn correlation in 10B and found the low-lying T = 0
and T = 1 states dominantly have the S = 1,T = 0 and S =
0,T = 1 pairs around a 2α core, respectively [3]. This indicates
that LS coupling is better than jj coupling to understand
pn pairs in light N = Z odd-odd nuclei even though the
LS-coupling pn pairs may change to jj -coupling pn pairs in
heavy-mass systems because of the spin-orbit mean potential.

The Gamow-Teller transition is one of the useful ob-
servables to verify the LS-coupling pn pairs because it is
sensitive to the spin-isospin configuration. For light N = Z
odd-odd nuclei, the GT operator flips nucleon spins and
isospins of a pair and changes the dineutron-type nn pair
to the deuteron-like pn pair. Similarly to the GT transition,
the M1 transitions are analyzed to study spin-flip phenomena
in N = Z odd-odd nuclei, as done in Refs. [4,5] with shell
model calculations for 10B. However, one of the merits of
the GT transition is that it is completely free from orbital
contributions, which is different from the M1 transition.
Moreover, if a system has two nucleons around a spin-isospin
saturated core, collectivity of the proton-neutron pair can be
probed by the ratio of the GT transition to the sum rule value.
The spin-isospin-flip phenomena of pn pairs are different
from so-called Gamow-Teller giant resonances which are
contributed by collectivity of the excess neutrons. Recently,
the super-allowed GT transitions in the low-energy region have
been observed and discussed in relation to the pn correlations
[6]. The LS-coupling pn pairs may play an important role in
the low-energy superallowed GT transitions.

Although proton-neutron pairing correlations in medium
and heavy mass N = Z odd-odd nuclei have been discussed
in jj coupling with mean field approaches [7–11], there are
few theoretical works on study of LS-coupling pn pairs in
light N = Z odd-odd nuclei. For GT transitions in light nuclei,
shell-model approaches [4,12–15] have been also applied, but
they do not focus on descriptions of the collective excitation
such as the spatial developments of the NN pairs and nuclear
clusterizations, which are significant in particular in light
nuclei. To extract information of NN pairs in light nuclei from
the spin-isospin-flip phenomena, it is necessary to perform a
systematic study of the GT transitions for ground and excited
states while dealing with such collective excitations.

The authors have constructed a new framework, isospin-
projected βγ -constraint antisymmetrized molecular dynamics
(Tβγ -AMD), which is useful for description of a pn pair in
deformed or clustered systems [3]. In this paper, we investigate
the GT transitions and pn pairs in p-shell nuclei by applying
Tβγ -AMD to 6Li, 10B, and 14N. We discuss strong GT
transitions in terms of an LS-coupling NN pair and propose
an interpretation of the initial and final states as spin-isospin
partners. Particular attention is paid to the roles of nonzero
intrinsic spin (S = 1) of the T = 0 pn pair and its coupling
with the orbital angular momentum of the pn center-of-mass
motion and that of core rotation.

The paper is organized as follows. We briefly explain our
framework in Sec. II. We show the results of nuclear properties
of energy spectra, B(M1), B(E2), and B(GT), in Sec. III. We
discuss the strong GT transitions in terms of the LS-coupling
NN pair in Sec. IV by analyzing the obtained wave functions.
A summary and an outlook are given in Sec. V.

II. METHOD

A. Tβγ -AMD

For N = Z odd-odd nuclei, we apply Tβγ -AMD [3] in
order to deal with the pn pair formation as well as nuclear
deformation and clustering. For N = Z + 2 nuclei, we use
βγ -constraint AMD [16], which has been used for structure
studies of light neutron-rich nuclei as well as Z = N even-even
nuclei. We here briefly explain the formulation of Tβγ -AMD.
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FIG. 1. Spectra of 6Li, 10B, and 14N calculated by Tβγ -AMD+GCM and those of the experimental data [22–24].

Details of the two methods, Tβγ -AMD and βγ -AMD, are
described in Refs. [3,16].

In the original framework of AMD, a basis wave function
is written by a Slater determinant of Gaussian wave packets,

|�(β,γ )〉 = A[|φ1〉|φ2〉 · · · |φA〉], (1)

|φi〉 =
(

2ν

π

) 3
4

exp

[
− ν

(
r i − Zi√

ν

)2]
|ξ i〉|τi〉. (2)

In the present work, we use ν = 0.235 for p-shell nuclei as
used in Refs. [16–21]. In Tβγ -AMD, we perform parity and
isospin (πT ) projections before variation as

|�πT (β,γ )〉 = P̂ π P̂ T |�(β,γ )〉, (3)

where P̂ π and P̂ T are the parity projection operator and
isospin projection operator, respectively. For the πT -projected
AMD wave function, we perform energy variation under the
constraint on quadrupole deformation parameters βγ and
obtain the optimum solution for each set of β and γ values. In
order to obtain wave functions for the nth JπT state (denoted
by Jπ

n T ), we superpose the angular momentum eigenstates
projected from the obtained wave functions |�πT (βi,γi)〉,∣∣Jπ

n T ; M
〉 =

∑
iK

ciK
n P̂ J

MK |�πT (βi,γi)〉, (4)

where P̂ J
MK is the angular momentum projection operator.

Here, the parameters β and γ are treated as generator
coordinates in the generator coordinate method (GCM), and
the K mixing is taken into account. We call this method
Tβγ -AMD+GCM.

B. Effective interactions

We use the Hamiltonian

H = K − Kcm + Vc + VLS + VCoulomb, (5)

where K is the kinetic energy, Kcm is the kinetic energy of
the center of mass, and Vc, VLS , and VCoulomb are the central,

spin-orbit, and Coulomb forces, respectively. For the central
and spin-orbit forces, we use the effective nucleon-nucleon
(NN ) forces; the same as those used for 10B in the previous
work [3]. Namely, we use the Volkov No. 2 force of the central
force with the Majorana exchange parameter m = 0.6 and the
G3RS force of the spin-orbit force with the strength parameters
u1 = −u2 = 1300 MeV.

For the Bartlett and Heisenberg parameters, b and h, of
the Volkov No. 2 force, we use b = h = 0.125 for 6Li, which
reproduce the S-wave NN scattering lengths in the T = 0 and
T = 1 channels. For 10B and 14N, we adopt a parametrization
b = h = 0.06, phenomenologically modified so as to describe
energy difference between the lowest T = 0 and T = 1 states
in each nucleus. The parameters b and h control the ratio
(f ) of the central force in the T = 0 channel to that in
the T = 1 channel. The present choices, b = h = 0.125 and
b = h = 0.06, give the ratios f = 1.67 and 1.27, respectively.
The decrease of f is consistent with the naive expectation that
the T = 0 interaction is somewhat suppressed by a nuclear
medium effect. We should comment that, even though relative
position between T = 1 and T = 0 spectra is sensitive to b and
h, we obtain almost the same energy spectra in each isospin
channel and also qualitatively similar results for structure
properties of 10B and 14N in the cases of b = h = 0.125 and
b = h = 0.06.

III. RESULTS

A. Tβγ -AMD results

Calculated energy spectra of 6Li, 10B, and 14N obtained
by Tβγ -AMD+GCM are shown in Fig. 1 compared with
experimental spectra. The present calculation reasonably
reproduces the low-energy spectra of these nuclei.

The calculated binding energies, magnetic dipole moments
(μ), electric quadrupole moments (Q), and E2 and M1
transition strengths of 6Li, 10B, and 14N are listed in Table I
together with experimental data. The present calculation
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TABLE I. Binding energies, μ and Q moments, and M1 and
E2 transition strengths of 6Li, 10B, and 14N. The calculated values
obtained by Tβγ -AMD+GCM are shown. For comparison, the
values calculated by shell models are shown. Experimental data are
taken from [22–24].

Observable Tβγ -AMD+GCM SM Expt.

6Li

|E(11
+0)| (MeV) 29.55 31.036 [13] 31.994

μ(11
+0) (μN ) 0.87 0.840 [13] 0.82205

Q(11
+0) (fm2) 0.09 −0.025 [13] −0.0818(17)

B(E2; 31
+0 → 11

+0) 3.79 3.040 [13] 10.7(8)
B(M1; 01

+1 → 11
+0) 13.73 15.374 [13] 15.4(3)

B(E2; 21
+0 → 11

+0) 5.15 3.129 [13] 4.4(23)

B(M1; 21
+1 → 11

+0) 0.01 0.113 [13] 0.15(3)

10B
|E(31

+0)| (MeV) 60.35 60.567 [13] 64.751
μ(31

+0) (μN ) 1.83 1.847 [13] 1.8006
μ(11

+0) (μN ) 0.84 0.802 [13] 0.63(12)
Q(31

+0) (fm2) 8.45 5.682 [13] 8.47(6)
B(E2; 11

+0 → 31
+0) 4.03 1.959 [13] 4.147(20)

B(M1; 01
+1 → 11

+0) 14.98 14.3 [5] 7.5(34)
B(M1; 12

+0 → 01
+1) 0.05 0.09 [4] 0.192(20)

B(E2; 12
+0 → 11

+0) 9.23 3.384 [13] 15.6(17)
B(E2; 12

+0 → 31
+0) 2.02 1.010 [13] 1.70(20)

B(E2; 21
+0 → 31

+0) 0.34 1.0 [4] 1.2(4)
B(E2; 32

+0 → 11
+0) 10.56 3.543 [13] 19.7(17)

B(M1; 21
+1 → 21

+0) 1.84 3.1 [4] 2.52(68)
B(M1; 21

+1 → 12
+0) 2.60 2.0 [4] 3.06(82)

B(M1; 21
+1 → 11

+0) 0.31 0.2 [4] 0.32(9)

14N
|E(11

+0)| (MeV) 108.60 108.41 [12] 104.66
μ(11

+0) (μN ) 0.34 0.347 [12] 0.40376
Q(11

+0) (fm2) 0.53 1.19 [12] 1.93(8)
B(M1; 01

+1 → 11
+0) 0.76 0.29 [12] 0.047(2)

B(M1; 12
+0 → 01

+1) 3.72 – 1.8(11)
B(E2; 12

+0 → 11
+0) 3.25 – 4.4(24)

B(E2; 21
+0 → 11

+0) 2.95 – 3.6(8)
B(M1; 21

+1 → 21
+0) 4.65 – 1.7(3)

B(M1; 21
+1 → 11

+0) 0.00 – 0.59(4)

quantitatively or qualitatively reproduces the experimental
data of these properties.

μ moments and B(M1) as well as the GT transition
strengths are observables that sensitively reflect spin con-
figurations. The calculated μ moments of the ground states,
6Li(11

+0), 10B(31
+0), and 14N(11

+0), and that of 10B(11
+0)

agree well with the experimental data. For the M1 transition in
6Li, the remarkably large B(M1; 01

+1 → 11
+0) is well repro-

duced by the calculation. For 10B, the M1 transitions between
T = 1 and T = 0 states are qualitatively described although
quantitative reproduction is not satisfactory in the present cal-
culation. For 14N, the present calculation describes the general
trend of the relatively strong M1 transitions for 12

+0 → 01
+1

and 21
+1 → 21

+0 compared with those for other transitions.

TABLE II. Gamow-Teller transition strengths of 6He → 6Li,
10Be → 10B, and 14C → 14N. Calculated values of B(GT) defined in
Eq. (6) are shown. For comparison, the B(GT) values calculated by
shell models are shown. Experimental data are taken from [24,29–32].
The values in the parentheses are for the mirror transitions.

Initial → finalTβγ -AMD+GCM SM Expt.

6He → 6Li

01
+1 → 11

+0 5.31 5.213 [13] 4.809(8)
01

+1 → 12
+0 0.00

21
+1 → 11

+0 0.01
21

+1 → 31
+0 0.97

21
+1 → 21

+0 1.00

21
+1 → 12

+0 1.10

10Be → 10B
01

+1 → 11
+0 4.95 (4.331) [13] (3.5101(57))

01
+1 → 12

+0 0.15 (0.497) [14] (<0.813)
01

+1 → 13
+0 0.00

21
+1 → 31

+0 0.63 0.092 [13] 0.11(4)
21

+1 → 11
+0 0.06

21
+1 → 12

+0 0.81
21

+1 → 21
+0 0.77

21
+1 → 32

+0 1.71
21

+1 → 13
+0 0.26

21
+1 → 22

+0 0.86
22

+1 → 31
+0 1.54 1.807 [13] 1.3(2)

22
+1 → 11

+0 0.01
22

+1 → 12
+0 0.23

22
+1 → 21

+0 0.71
22

+1 → 32
+0 0.26

22
+1 → 13

+0 0.82

22
+1 → 22

+0 0.79

14C → 14N
01

+1 → 11
+0 0.30 0.0175 [14] 3.53(2) × 10−6

1.69×10−4 [12]
01

+1 → 12
+0 4.32 (4.445) [14] 2.76(11)

21
+1 → 11

+0 1.13 0.27
21

+1 → 21
+0 1.77

21
+1 → 31

+0 2.35

For 10B, the calculated Q moment and B(E2; 32
+0 →

11
+0) are large because of the prolate deformation and this is

consistent with the experimental data. The prolate deformation
of 10B is caused by formation of a 2α core as shown later.

In order to calculate GT transition strengths, we apply βγ -
AMD and obtain wave functions for the ground and excited
states of 6He, 10Be, and 14C, which are isobaric analog states of
T = 1 states of 6Li, 10B, and 14N. Table II shows the calculated
B(GT):

B(GT) = 1

2Ji + 1

∣∣∣∣∣〈Jf ‖
∑

i

σ iτ i
± ‖ Ji〉

∣∣∣∣∣
2

. (6)

In the present paper, we define B(GT) by matrix elements of
the spin and isospin operators without the factor (gA/gV )2.
For all low-lying states of 6Li, 10B, and 14N, we find T = 0
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states that have strong GT transitions with large percentages
of the sum rule

∑
B(GT) = 3(N − Z) = 6. These final states

in Z = N odd-odd nuclei can be regarded as “spin-isospin
partners” of the corresponding T = 1 initial states because
they are approximately spin-isospin-flipped states having
spatial configurations similar to the initial states. The concept
of the spin-isospin partners is an extension of the isobaric
analog state (IAS) to the GT transition. The assignments of the
spin-isospin partners in the following discussions are based on
the calculated GT transition strengths and also spin and orbital
configurations of NN pairs.

For 6Li, the GT transition from the ground state 6He(01
+1)

to 11
+0 exhausts a large fraction of the sum rule, consistent

with the experimental data, whereas that to 12
+0 is weak. This

fact indicates that the ground states of 6Li and 6He are almost
ideal spin-isospin partners. For the GT transitions from the
excited state, 6He(21

+1), we obtain strong transitions to 12
+0,

21
+0, and 31

+0. The summation of B(GT) values for these
three states is about 50% of the sum rule, and therefore these
states are regarded as the set of spin-isospin partners with
Jπ = {1+,2+,3+} of the 6He(21

+1).
Also for 10B, the GT transition strength from the ground

state 10Be(01
+1) is concentrated to 11

+0. For the GT
transitions from the excited states 10Be(21

+1) and 10Be(22
+1),

significant strengths are obtained for transitions to 12
+0, 13

+0,
21

+0, 22
+0, 31

+0, and 32
+0, which can be assigned to two sets

of spin-isospin partners with Jπ = {1+,2+,3+} of 10Be(21
+1)

and 10Be(22
+1). In particular, the transitions from 10Be(21

+1)
are significantly strong to 12

+0 and 32
+0, indicating that

these states are regarded as spin-isospin partner states. In the
transitions from 10Be(22

+1), the strengths to 13
+0 and 31

+0
are significantly large, hence these states can be assigned to
the spin-isospin partners of 10Be(22

+1). For assignment of
Jπ = 2+ states, the strengths 21

+1 → 21
+0, 21

+1 → 22
+0,

22
+1 → 21

+0, and 22
+1 → 22

+0 are comparable. It indicates
that two Jπ = 2+ states corresponding to the partner states
of 10Be(21

+1) and 10Be(22
+1) are strongly mixed with each

other.
For 14N, the strongest GT transition from the ground

state 14C(01
+1) is obtained for 12

+0, consistent with the
experimental data. It indicates that not 11

+0 but 12
+0 of 14N is

the spin-isospin partner in the A = 14 systems. Compared
with the dominant transition 01

+1 → 12
+0, the calculated

transition 01
+1 → 11

+0 is relatively minor but it does not
reproduce the anomalously small value of the experimental
datum. Tensor and three-body forces may be necessary, as
discussed by many works [12,15,25–28], in order to obtain
the very small B(GT) for the 01

+1 → 11
+0 transition. Those

effects are not included in the present calculation. For the
transitions from the first excited state 21

+1, strengths to 11
+0,

21
+0, and 31

+0 are significant, and the sum of them exhausts
more than 80% of the sum rule; thus, these states are regarded
as the spin-isospin partners.

B. Comparison with shell model results

For comparison, we also list the shell model results of
nuclear properties and E2 transition strengths in Table I, and

those of GT transition strengths in Table II. The theoretical
data of shell models are taken from Refs. [4,5] for traditional
shell model calculations, from Ref. [13] for the no-core shell
model (NCSM) calculation in the 6h̄ω model space using the
Argonne V8′ nucleon-nucleon NN potential combined with
the Tucson-Melbourne TM′8(99) three-nucleon interaction,
and from Ref. [12] for the NCSM using the nuclear inter-
actions of two-body and three-body forces derived from chiral
perturbation theory. It should be noted that a coupling constant
for the three-body forces used in Ref. [12] is tuned to fit the
anomalously small B(GT; 14C(01

+1) → 14N(11
+0)).

For 10B, the Q(31
+0) moment and E2 transition strengths

are significantly improved by Tβγ -AMD compared with the
shell model calculations, because 10B is a well deformed
nucleus with a developed 2α cluster. The shell models
generally underestimate the experimental data of the Q
moment and B(E2). For instance, they give about factor 2
smaller values than the experimental data for B(E2; 11

+0 →
31

+0), B(E2; 12
+0 → 11

+0), B(E2; 12
+0 → 31

+0), and
B(E2; 32

+0 → 11
+0), meaning that the 6h̄ω model space

is still insufficient to describe the well deformed structure
induced by the spatially developed 2α core and the pn pair
structure.

In general, spatial development of a cluster structure
involves higher-shell components. In order to demonstrate
significant higher-shell components in the obtained 10B wave
functions because of the developed cluster structure, we show
in Table III the expectation values of the harmonic oscillator
quanta Nh̄ω = ∑

i a
†
i ai . Here, a

†
i and ai are the creation and

annihilation operators of a harmonic oscillator with width
parameter ν = 0.235 fm−2. The difference �Nh̄ω = 〈Nh̄ω〉 −
Nh̄ω,min from the minimum values for the 0h̄ω configurations
are listed. Nonzero �Nh̄ω values indicate significant mixing
of higher shell components beyond the p shell because of
the spatial development of two-nucleon pairs and α particles
(see Sec. IV A). In particular, A = 10 nuclei show significant
enhancement of �Nh̄ω compared with A = 6,14 systems
because of spatial development of the 2α cluster in addition
to that of two-nucleon pairs. Indeed, the �Nh̄ω of 10B(11

+0)
is larger than those of 6Li(11

+0) and 10N(11
+0) since 10B

contains the strongly deformed 2α core. In the 10B levels,
�Nh̄ω of 11

+0 is larger than that of 31
+0, reflecting the

spatially developed pn pair from the 2α core in 10B(11
+0). This

result indicates that higher-shell components are necessary to
describe the spatially developed NN pairs and α particles, as
expected.

For A = 6 and A = 14 nuclei with spherical cores, on the
other hand, most of the Tβγ -AMD values for the nuclear
moments and the transition strengths correspond well to
those of the shell model calculations. For 6Li, there is slight
difference in the nuclear moments, and the electric transition
strengths show almost same tendency. In detail, the large
experimental B(E2; 31

+0 → 11
+0) datum is underestimated

for our model and the shell models and the other transition data
are well reproduced qualitatively in both methods. For 14N,
binding energies and magnetic moments are almost consistent
between two calculations. The quadrupole moments and
B(M1; 01

+1 → 11
+0) are somewhat worse in our calculation

than the shell models.
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TABLE III. Expectation values of the squared intrinsic spin and orbital angular momentum (〈S2〉 and 〈L2〉) for 6Li, 10B, and 14N
obtained by Tβγ -AMD+GCM and 6He, 10Be, and 14C obtained by βγ -AMD+GCM. For harmonic oscillator quanta, values of the difference
�Nh̄ω = 〈Nh̄ω〉 − Nh̄ω,min from the minimum values for the 0h̄ω configurations are listed.Nh̄ω,min for A = 6,10,14 nuclei areNh̄ω,min = 2,6,10,
respectively.

N = Z + 2 N = Z odd-odd

Nuclide J π
n T 〈S2〉 〈L2〉 �Nh̄ω Nuclide J π

n T 〈S2〉 〈L2〉 �Nh̄ω J π
n T 〈S2〉 〈L2〉 �Nh̄ω

6He 01
+1 0.12 0.12 1.45 6Li 01

+1 0.12 0.12 1.71 11
+0 1.97 0.06 0.89

21
+1 0.19 5.65 1.63 21

+1 0.20 5.64 1.91 12
+0 1.90 5.75 1.20

21
+0 2.00 5.99 1.97

31
+0 2.01 6.01 0.70

10Be 01
+1 0.34 0.34 1.90 10B 01

+1 0.28 0.28 1.97 11
+0 1.94 0.35 2.37

21
+1 0.30 6.00 1.94 21

+1 0.27 6.04 1.90 12
+0 1.92 5.43 1.77

21
+0 2.02 6.49 2.03

32
+0 1.97 7.53 2.21

22
+1 0.12 6.11 2.08 22

+1 0.10 6.08 2.07 13
+0 1.99 5.94 3.03

22
+0 2.02 6.61 2.44

31
+0 2.05 7.15 1.46

14C 01
+1 0.55 0.55 0.50 14N 01

+1 0.61 0.61 0.70 12
+0 1.94 0.44 0.96

21
+1 0.19 5.79 0.74 21

+1 0.21 5.83 0.88 11
+0 1.89 5.56 0.45

21
+0 2.01 6.07 0.80

31
+0 2.02 6.22 1.32

The Gamow-Teller transition strengths of the shell model
[12,14] are compared with the present calculations as well
as the experimental data in Table II. The shell model values
are comprehensively comparable with the Tβγ -AMD values
except for B(GT; 01

+1 → 11
+0) of 14C → 14N. Although the

present calculation reproduces the trend of the GT transition
for 01

+1 → 12
+0 more strongly than that for 01

+1 → 11
+0,

it fails to quantitatively reproduce the anomalously small
B(GT; 01

+1 → 11
+0).

In the comparison of nuclear properties between the shell
model and the Tβγ -AMD calculations, we have found that
the present calculation describes the spatial development
of 2α particles and NN pairs in 10B better than the shell
model calculations. Nevertheless, for many of spin(-isospin)
observables such as the M1 and GT transitions, the results
calculated with Tβγ -AMD correspond well to the shell model
results. It may indicate that major-shell spin configurations,
which dominantly contribute to these observables, are similar
to each other in the Tβγ -AMD and shell model calculations.

IV. DISCUSSION

In the previous section, we assigned the spin-isospin part-
ners from the strong GT transitions based on the NN pair pic-
ture. In this section, we discuss detailed features of NN pairs in
the spin-isospin-partner states and show that the spin-isospin-
partner states can be simply understood by NN pairs moving
around α and 2α cores and two-hole pairs in the 16O core.

A. Intrinsic structure and spatial distribution
of a proton-neutron pair

In the obtained wave functions for the A = 6, A = 10,
and A = 14 systems, NN pairs are found to be formed
around α, 2α, and 12C cores, respectively. In order to see the

spatial distribution of the S = 1,T = 0 and S = 0,T = 1 NN
pairs in the spin-isospin partners, we calculate two-particle
density ρST (r) at the identical point r in the intrinsic states,
defined as

ρST (r) = 〈�T (β,γ ) | ρ̂ST (r) | �T (β,γ )〉
〈�T (β,γ ) | �T (β,γ )〉 , (7)

ρ̂ST (r) ≡
∑
ij

P̂ S
ij P̂

T
ij δ(r − r̂ i)δ(r − r̂j ), (8)

where P̂ S
ij and P̂ T

ij are the spin and isospin projection operators
for two particles. We define the two-nucleon-pair density
ρNN (r) ≡ ρ10(r) − ρ01(r) to cancel NN pair contributions
from α clusters which contain the same numbers of S =
1,T = 0 NN pairs as those of S = 0,T = 1 NN pairs. With
this definition, positive (negative) regions of ρNN (r) indicate
S = 1,T = 0 (S = 0,T = 1) pn-pair distributions in T = 0
(T = 1) states. In Fig. 2, we show the two-nucleon-pair density
ρNN (r) together with the one-body density distribution in the
single Slater-determinant state which has the largest overlap
in the βγ plane with the wave function for each of the ground
01

+1 states of 6He, 10Be, and 14C and their spin-isospin partner
1+0 states of the N = Z odd-odd nuclei.

In the ground state of 6Li, an α particle and a T = 0 pn pair
are formed as seen in Fig. 2(d). The pn pair spatially develops
away from the α core and it shows deuteron-like nature. Also in
6He, the two-neutron pair appears around an α core [Fig. 2(a)].
The spatial distribution of the nn pair density in 6He is quite
similar to that of the pn pair density in 6Li, indicating that
these states are good spin-isospin partner states, in which the
two-nucleon spin S and isospin T flip from nn(T = 1,S = 0)
in 6He to pn(T = 0,S = 1) in 6Li.

In 14N(12
+0) [see Fig. 2(f)], a T = 0 pn pair is distributed

at the surface of the oblately deformed 12C core. In 14C(01
+1),
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FIG. 2. The colored contours show two-nucleon-pair density
ρNN (r) of (a)6He(01

+1), (b)10Be(01
+1), (c)14C(01

+1), (d)6Li(11
+0),

(e)10B(11
+0), and (f)14N(12

+0). The blue contours show the one-body
density distribution ρ(r).

the nn pair density around the 12C core shows a distribution
similar to the pn pair in 14N(12

+0). The NN pairs in 14N(12
+0)

and 14C(01
+1) show no spatial development and dominantly

consist of p-orbit nucleons. If we consider a 16O core, these
states can be understood as two-hole pairs in the p shell of the
16O core.

In 10B(11
+0), the deformation on β and γ is realized as

formation of the 2α clusters. In the total density in Fig. 2(e),
we can find one α particle near the point (x,z) = (0.0,2.0)
(fm) and the other near (0.0, − 2.0) (fm). It indicates that
the prolate deformation is caused by development of the 2α
cluster with an intercluster distance about 4.0 fm. This is the
major reason why our model gives as large a Q moment as the
experimental data. This is one of the advantages of the present
model, Tβγ -AMD, making it superior to shell models which
do not explicitly include the clustering effect.

A T = 0 pn pair is also formed around the 2α cluster [see
Fig. 2(e)]. The T = 0 pn pair develops away from the 2α
core similarly to 6Li, whereas the nn pair in 10Be(01

+1) is not
so developed spatially but is distributed at the nuclear surface,
showing a feature of two p-orbit neutrons [Fig. 2(b)]. Although
the single Slater-determinant state with the largest overlap
for 10Be(01

+1) shows less development of the two-nucleon
pair than that for 10B(11

+0), in the βγ -AMD+GCM result
the spatially developed nn pair components are largely mixed
because the two-neutron pair can move away from the 2α core
along a plateau toward a finite γ region in the Jπ = 0+ energy
surface of 10Be [3]. As a result, the nn pair distribution in
10Be(01

+1) has a large overlap with the pn pair distribution in

10B, and therefore these states have a strong GT transition and
are regarded as the partner states.

Let us discuss spatial development of the NN pairs with A
increasing in the A = 6, A = 10, and A = 14 systems. In the
0+1 ground states of N = Z + 2 nuclei, the nn pair is mostly
developed spatially in the A = 6 nucleus and comes down
to the p-shell configurations in A = 10 and A = 14 nuclei
with increasing mass number. In the partner 1+ states of the
N = Z odd-odd nuclei, the spatially developed T = 0 pn pair
is prominent in the A = 6 nucleus and it more or less weakens
but still remains even in the A = 10 nucleus, and finally comes
down to the p-shell configuration in the A = 14 nucleus. This
result reflects the feature that the T = 0 pn pairs in N = Z
odd-odd nuclei are more robust than nn pairs in N = Z + 2
nuclei. Indeed, the T = 0 pn pairs are described well by the
LS-coupling pairs, whereas nn pairs are somewhat broken
from the LS-coupling pairs and contain mixing of jj -coupling
components, in particular in the A = 10 and A = 14 nuclei,
as shown later in analysis of spin configurations.

B. LS-coupling pn pairs and spin-isospin partners

To quantitatively discuss the spin and orbital configurations,
we show the expectation values of the squared intrinsic spin
and orbital angular momentum (〈S2〉 and 〈L2〉) in Table III.
Note that 〈S2〉 approximately indicates the expectation value of
the squared intrinsic spin of a NN pair around a core because
core contribution is minor in the present case: the obtained
states of the A = 6 and A = 10 nuclei are understood by two
particles around S = 0 cores such as α and 2α and those of
the A = 14 nuclei are approximately interpreted as two-hole
states of 16O. T = 1 states of the N = Z odd-odd nuclei have
almost same expectation values as those of the N = Z + 2
nuclei because they are isobaric analog states. In this section,
we discuss spin and orbital configurations based on the picture
of two-nucleon (two-hole) pairs around cores.

In the following discussion, we focus on the LS-coupling
NN pairs, in particular, those around the 2α core in A = 10
nuclei. Note that the terminology “LS-coupling” here is used
for the coupling of intrinsic spin SNN and its orbital-angular
momentum LNN of two nucleons in the spatially developed
NN pairs, but it is different from the “LS-coupling scheme”
of the shell model, which are often used for the orbital-
angular momentum and intrinsic spin coupling of major-shell
nucleons. Even though a LS-coupling NN pair in the major
shell around a spherical core is a special case equivalent to
two nucleons in the “LS-coupling scheme” of the shell model,
in the case of the LS-coupling NN pairs around deformed
cores, the total angular momentum J is constructed by the
coupling of SNN and LNN of the pair, and also the orbital
angular momentum Lcore from collective rotation of the core.
This picture of the LS-coupling NN pairs around core nuclei is
useful in systematical discussion of properties of the NN pairs
in A = 6, A = 10, and A = 14 nuclei to figure out the role of
the NN pairs in A = 10 nuclei with the developed 2α cluster.

In the obtained states of the A = 6, A = 10, and A = 14
nuclei, the spin expectation values of T = 0 (T = 1) states
are close to the value 〈S2〉 = 2 (〈S2〉 = 0) for S = 1 (S = 0)
component. It implies that LS-coupling NN pairs are formed
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FIG. 3. GT transitions 6He → 6Li, 10Be → 10B, and 14C → 14N calculated by Tβγ -AMD+GCM.

as leading components in particular in light nuclei. As the
mass number increases, the LS-coupling T = 1,S = 0 NN
pairs are somewhat broken into jj -coupling pairs because
of the spin-orbit mean potential. We can see this systematics
especially in 〈S2〉 for the 01

+1 states. 6He(01
+1) has almost

pure S = 0 component with only 6% mixing of S = 1
component estimated from 〈S2〉 = 0.12. However, 14C(01

+1)
has a broken S = 0 two-hole pair with significant S = 1
component up to 27%. In contrast to the T = 1 states, the
LS-coupling pn pairs in the T = 0 states is not broken; the
S = 0 mixing is found to be less than 6% for all the T = 0
states. This result implies that T = 0,S = 1 pn pairs are
robuster than T = 1,S = 0 NN pairs.

For the orbital angular momentum, values of 〈L2〉 ≈ 0 and
〈L2〉 ≈ 6 indicate dominant L = 0 and L = 2 components,
respectively. In A = 6 nuclei, the total orbital angular momen-
tum L is contributed only by the orbital angular momentum
LNN of the NN pair because the α core is spherical. Therefore,
the ground states 6He(01

+1) and 6Li(11
+0) are understood

well by S = 0,T = 1 and S = 1,T = 0 NN pairs moving
around the α in LNN = 0 wave, whereas the excited states
6He(21

+1) and 6Li(12
+0,21

+0,31
+0) contain S = 0,T = 1

and S = 1,T = 0 NN pairs in LNN = 2 wave. Also for the
A = 14 systems, the dominant components of 14C(01

+1) and
14N(12

+1) have two holes in the spherical 16O core coupled to
be S = 0,T = 1 and S = 1,T = 0 pairs in LNN = 0 wave,
whereas those of 14C(21

+1) and 14N(11
+0,21

+0,31
+0) are

understood by S = 0,T = 1 and S = 1,T = 0 two-hole pairs
in LNN = 2 wave.

Based on LS-coupling of NN pairs, we can easily under-
stand spin-isospin partners and their strong GT transitions.
The GT operator changes intrinsic spin configuration with
�S = 1 from T = 1 states to T = 0 states but it does not
affect orbital configurations. In the case of Lcore = 0, nn
pairs in [LNN = 0,SNN = 0]J=0 initial states change directly

into T = 0 pn pairs in [LNN = 0,SNN = 1]J=1 states with
strengths of the sum rule value:

∑
n B(GT; 0+1 → 1+

n 0) = 6
provided that core nuclei are spin-isospin saturated states and
do not contribute to the GT transitions. Similarly, we can easily
understand the spin-isospin partners of [LNN = 2,SNN =
0]J=2 initial states and [LNN = 2,SNN = 1]J=1,2,3 final states.
Although J in the final states is not unique because of angular
momentum coupling of SNN = 1 with nonzero LNN , we
can again obtain the sum rule:

∑
J=1,2,3

∑
n B(GT; 2+1 →

J+
n 0) = 6. It should be pointed out that, since S = 1 pn

pairs in LNN = 2 wave feel spin-orbit mean potentials from
core nuclei, energy spectra of the final J = 1,2,3 states show
spin-orbit splitting which plays an essential role in lowering
the T = 0 states into the ground states in 10B and 14N.

If the NN pairs are broken into jj -coupling pairs, the
concentration of GT transition strengths does not occur
because initial states change into various (jj ′) configurations.
In other words, the concentration of GT transition strengths
to specific final states is a good measure for realization of
LS-coupling NN pairs. Based on the LS-coupling picture of
NN pairs, we assigned the spin-isospin partners for T = 1
states and T = 0 states with strong GT transition strengths
which are qualitatively characterized by �T = 0, �S = 1,
�L = 0 transitions.

Figure 3 shows the calculated energy spectra and the GT
transitions for the spin-isospin partners in A = 6, A = 10, and
A = 14. The GT transition from 6He(01

+1) to 6Li(11
+0) is

enhanced because these states have the same LNN = 0 nature.
For the excited states, the GT transitions from 6He(21

+1)
to 6Li(12

+0,21
+0,31

+0) are strong because of the transition
from the T = 1,S = 0 pair to the T = 0,S = 1 pair in the
dominant LNN = 2 component. The sum of the GT strengths
from 6He(21

+1) exhausts a large fraction of the sum rule
value, indicating that the nature of spin-isospin partners still
remains also in the excited states. In the energy spectra of
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6Li(12
+0,21

+0,31
+0), the ordering of 31

+0, 21
+0, and 12

+0 is
easily understood by the spin-orbit splitting for the S = 1 pn
pairs in LNN = 2.

In 14N spectra, low-lying states are understood as spin-
isospin partners of 14C for NN hole pairs in the spherical 16O
core. 14C(01

+1) has a strong GT transition not to the lowest
1+0 state but to the excited 1+0 state, 14N(12

+0) because these
states have NN hole pairs in the same LNN = 0 orbit. Then,
the GT transition occurs from the S = 0 pp hole pair to the
S = 1 pn hole pair. The GT transitions from 14C(21

+1) to
14N(11

+0,21
+0,31

+0) show spin-isospin-flip features of NN
hole pairs. Indeed, 14N(11

+0,21
+0,31

+0) spectra show the
spin-orbit splitting of the S = 1 pn hole pairs in LNN = 2.
Note that the ordering 11

+0, 21
+0, and 31

+0 is opposite to that
of the particle-particle pair case because the spin-orbit mean
potentials for hole states are repulsive.

Our assignments are consistent with the strong GT transi-
tion for 14C(01

+1) → 14N(12
+0) experimentally measured by

charge exchange reactions. Moreover, for the transitions from
14N(11

+0), relatively strong GT transitions to 14C(21
+1) and

14C(22
+1) have been observed by charge exchange reactions

[29]. They support a significant LNN = 2 component in
14N(11

+0), consistent with the present assignment, though
quantitative reproduction of the B(GT) values is not satis-
factory in the present calculation.

For the GT transition between the ground states of 14C
and 14N, the experimental B(GT; 14C(01

+1) → 14N(11
+0))

is anomalously small, known as a long life problem of
14C. The suppression of the GT transition of 14C(01

+1) →
14N(11

+0) is partially understood by the NN pair picture
in LS coupling that 14N(11

+0) is the spin-isospin partner
not of the 14C(01

+1) but of 14C(21
+1), because of the large

spin-orbit splitting for the S = 1 pn hole pairs in LNN = 2.
It is different from the A = 6 and A = 10 systems, in which
the lowest 1+0 state is the spin-isospin partner of the ground
state of the N = Z + 2 nucleus. The GT transition from
the [LNN = 0,SNN = 0]J=0 component in 14C(01

+1) to the
[LNN = 2,SNN = 1]J=1 component in 14N(11

+0) is forbidden
because of the difference �LNN = 2 in spatial configurations.
In other words, the GT transition is suppressed because of the
LS-coupling pair correlation. Indeed, the calculated B(GT) =
0.30 is factor 1 smaller than the sum rule value and less
than half of the jj -coupling limit B(GT) = 2/3 for the pure
p−2

1/2 configuration without the pair correlation. Our result for

B(GT; 14C(01
+1) → 14N(11

+0)) is the same order as those of
a NCSM calculation [12] and AMD+VAP calculation [33] but
still largely overestimates the experimental data. In the present
calculation, the NN pairs in 14C(01

+1) and 14N(11
+0) dom-

inantly have [LNN = 0,SNN = 0]J=0 and [LNN = 2,SNN =
1]J=1 components, respectively, but they are not necessarily
ideal LS-coupling pairs. Moreover, [LNN = 2,SNN = 1]J=1

and [LNN = 0,SNN = 1]J=1 are somewhat mixed with each
other in the obtained 14N(11

+0) and 14N(12
+0). As a result

of significant mixing of configurations, the calculated GT
transition 14C(01

+1) → 14N(11
+0) does not vanish. Addi-

tional scenarios are required to solve the long-life problem
of 14C(01

+1). Traditionally, it is understood as accidental
cancellation of matrix elements because of the tensor force
[15]. Recently, the NCSM calculation [12] has also reproduced

the long lifetime by fine tuning of the three-body force in
chiral perturbation theory. In both cases, phenomenological
adjustment of the original interactions is needed to fit the GT
transition for 14C(01

+1) and 14N(11
+0).

In the above cases of A = 6 and A = 14 nuclei, the core
nuclei, α and 16O, have almost spherical shapes for both
ground and excited states. In the A = 10 nuclei, on the other
hand, not only LNN but also Lcore from collective rotation
of the deformed core contributes to L. Consequently, two
types of spin-isospin partners corresponding to LNN = 2 and
Lcore = 2 are found in the low-lying spectra of 10B. Namely,
we should also consider the spin-isospin partners of [Lcore =
2,LNN = 0,SNN = 0]J=2 initial states and [Lcore = 2,LNN =
0,SNN = 1]J=1,2,3 final states in addition to the transition from
[LNN = 0,SNN = 0]J=0 to [LNN = 0,SNN = 0]J=1 and those
from [LNN = 2,SNN = 0]J=2 to [LNN = 2,SNN = 0]J=1,2,3,
which we have already discussed for A = 6 and A = 14 nuclei.

For 10Be(01
+1) and 10B(11

+0), 〈L2〉 ≈ 0 indicates that
these states can be approximately described by the S = 0,T =
1 and S = 1,T = 0 NN pairs with LNN = Lcore = 0. The
orbital angular momentum L ≈ 2 of 10Be(21

+1) mainly comes
from the core rotation Lcore = 2, whereas that of 10Be(22

+1)
is contributed mainly by LNN = 2 from the NN pair rotation
because the former and the latter states are a member of
the K = 0 ground band and that of the K = 2 side band,
respectively. It means that 10Be(01

+1) and 10Be(22
+1) are

described by S = 0 nn pairs in LNN = 0 and LNN = 2 waves,
respectively, and 10Be(21

+1) is understood by an S = 0 nn
pair with collective rotation (Lcore = 2). The corresponding
spin-isospin partners in 10B should have S = 1,T = 0 pn pairs
with consistent spatial configurations.

We can also understand the GT transition from 10Be(01
+1)

to 10B(11
+0) in the picture of LS-coupling NN pairs as a GT

transition from a nn pair to a T = 0 pn pair in LNN = 0.
For the excited states 10Be(21

+1) and 10Be(22
+1), two sets

of Jπ = {1+,2+,3+} for the spin-isospin partners appear in
the T = 0 spectra, but the 2+0 states are strongly mixed
with each other because they almost degenerate energetically.
10Be(21

+1) has a rotating core with Lcore = 2 and it has
strong transition strength to 10B(12

+0,2+
1,20,32

+0), which
almost degenerates because there is no spin-orbit splitting for
the T = 0 pn pairs in [Lcore = 2,LNN = 0,SNN = 1]J=1,2,3.
10Be(22

+1) with a rotating S = 0 nn pair in LNN = 2 has a
dominant transition strength to 10B(13

+0,2+
1,20,31

+0), which
shows large spin-orbit splitting of the S = 1 pn pairs in
LNN = 2. As a result of the spin-orbit splitting, the 3+0 state
partnered with 10Be(22

+1) comes down to the ground state
of 10B. This assignment is consistent with the experimental
data of the strong GT transition for 10B(31

+0) → 10Be(22
+1)

measured by charge exchange reactions [30]. Strictly speaking,
it is in principle unable to definitely define Lcore and LNN

for N = Z odd-odd nuclei with deformed cores because core
nucleons and valence nucleons are identical fermions and
are indistinguishable in fully microscopic wave functions
of identical fermions. Nevertheless, the GT transitions from
N = Z + 2 neighbors are observables, and they enable us to
classify the final states in T = 0 N = Z odd-odd nuclei in
terms of T = 0 pn pairs in connection with nn pairs in the
initial states of N = Z + 2 nuclei.
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Similar discussions have been given in works with shell
model calculations for 10B to understand M1 transitions from
isobaric analog states in 10B [4,5] instead of the GT transitions
from 10Be. In Ref. [4], the M1 transitions between T = 0 and
T = 1 states of 10B are described well by SU(4)-supermultiplet
theory, in which strong transitions of 01

+1 → 11
+0, 21

+1 →
12

+0, 21
+1 → 21

+0, and 22
+1 → 31

+0 and weak ones of
21

+1 → 11
+0 and 21

+1 → 31
+0 can be understood from

the point of view of L- and KL-selection rules. The feature
of the M1 transitions shows good correspondence to that
of the GT transitions, and the discussion in Ref. [4] based
on the SU(4)-supermultiplet theory in the p shell is, in a
sense, analogous to the present discussion of the spin-isospin
flip partners for the GT transitions. However, as mentioned
previously, the obtained wave functions contain significant
higher shell components (see Table III) beyond the p shell
because of the spatial development of two-nucleon pairs as
well as that of the 2α cluster, and therefore we cannot apply
the strong-coupling picture within the p-shell configuration.

In the present analysis, we can understand low-energy
spectra of A = 6, A = 10, and A = 14 nuclei from the
LS-coupling NN pair picture and assign spin-isospin partners
not only for the 0+1 initial states but also the 2+1 initial
states as shown in Fig. 3. The spin-orbit splitting of the
JπT = 1+0,2+0,3+0 states with LNN = 2 coupled with the
intrinsic spin S = 1 of the NN pair is essential in the spectra
of N = Z odd-odd nuclei. In the systematics of the spin-orbit
splitting shown in Fig. 3, we can see that the splitting becomes
large as A increases. It implies that the LS-coupling NN pairs
feel the stronger spin-orbit mean potential in heavier systems.

V. SUMMARY AND OUTLOOK

We have studied the Gamow-Teller transitions from
N = Z + 2 neighbors to N = Z odd-odd nuclei in the p-shell
region by using Tβγ -AMD+GCM. We have obtained that
the strong GT transitions exhaust more than 50% of the sum
rule for 6He(01

+1) → 6Li(11
+0), 10Be(01

+1) → 10B(11
+0),

and 14C(01
+1) → 14N(12

+0). We have also found the
concentration of the GT strengths of the transitions
from 21

+1 states, 6He(21
+1) → 6Li(12

+0,21
+0,31

+0),
10Be(21

+1) → 10B(12
+0,21

+0,22
+0,32

+0), 10Be(22
+1) →

10B(13
+0,21

+0,22
+0,31

+0), and 14C(21
+1) →

14N(11
+0,21

+0,31
+0). These states connected with the

strong GT transitions can be interpreted as “spin-isospin
partner” states.

For further analysis, we have introduced two-nucleon-pair
densities to see spatial development of the NN pairs around the
α, 2α, and 12C cores for A = 6, A = 10, and A = 14 nuclei.
We have found that S = 0,T = 1 nn pairs and S = 1,T = 0
pn pairs are dominantly formed in the N = Z + 2 and N = Z
odd-odd nuclei, respectively. Systematically, the T = 0 pn
pairs more remarkably develop away from the core nuclei
than the nn pairs do.

In 10Be,10B, we have found the largely deformed core be-
cause of spatial development of the 2α structure. It contributes
to better reproduction of the E2 and Q moment values than
those of shell-model calculations. From the collective rotation
of the deformed core and NN pairs, the rotational and side

bands are constructed in the low-lying spectra as the ground
band of 10Be(01

+1) and 10Be(21
+1) and the side band of

10Be(22
+1). Because of the spatial development of the NN

pairs and the core deformation, 10Be and 10B states contain
significantly higher shell components beyond p-shell as shown
in their large �Nh̄ω values.

The GT transitions is a good probe to clarify the dynamics of
the pn pairs in N = Z odd-odd nuclei through the connection
with the nn pairs in the neighboring nuclei. From such a point
of view, we have studied the spin and orbital configurations of
the LS-coupling NN pairs and discussed the behaviors of the
LS-coupling NN pairs in relation to the GT transitions. The
ground states of N = Z + 2 nuclei, 6He(01

+1), 10Be(01
+1),

and 14C(01
+1), and their partner states, 6Li(11

+0), 10B(11
+0),

and 14N(12
+0), have major L = 0 components, in which

both the NN pairs and the core nuclei are in L = 0 states.
The excited states, 6He(21

+1), 10Be(22
+1), and 14C(21

+1),
and their partner states have dominantly L = 2 components
mainly contributed by the NN rotation around the core,
whereas 10Be(21

+1) and its spin-isospin partners have L = 2
components with the deformed 2α core rotating in L = 2.

Based on the LS-coupling NN pairs, the strong
GT transitions between spin-isospin partners can be
understood as spin-isospin-flip phenomena from the
S = 0,T = 1 nn pairs in the N = Z + 2 initial states
to S = 1,T = 0 pn pairs in the N = Z odd-odd final
states. Namely, the transitions 6He(01

+1) → 6Li(11
+0),

10Be(01
+1) → 10B(11

+0) and 14C(01
+1) → 14N(12

+0) are
spin-flip phenomena of the NN pairs with [Lcore = 0,LNN =
0]L=0, whereas 6He(21

+1) → 6Li(12
+0,21

+0,31
+0),

10Be(22
+1) → 10B(13

+0,21
+0,22

+0,31
+0), and

14C(21
+1) → 14N(11

+0,21
+0,31

+0) are those with
[Lcore = 0,LNN = 2]L=2.

In the latter cases, the spectra of three final states with
Jπ = 1+,2+,3+ are split because of the spin-orbit interaction
for the S = 1,T = 0 pn pairs in the LNN = 2 wave. The
spin-orbit splitting describes J � 1 of the ground states in
N = Z odd-odd nuclei except for the case of two nucleons
around a magic number core. On the other hand, the spectra of
10B(12

+0,21
+0,22

+0,32
+0) partnered with 10Be(21

+1) show
small splitting because these states have a dominant [Lcore =
2,LNN = 0]L=2 component, in which the spin-orbit interaction
does not affect the S = 1,T = 0 pn pairs in the LNN = 0
wave.

In comparison with experimental data, the magnetic mo-
ments μ and the magnetic dipole transition strengths B(M1)
are reasonably reproduced in the present calculation. More-
over, relatively enhanced B(GT) for 6He(01

+1) → 6Li(11
+0),

10Be(01
+1) → 10B(11

+0), and 14C(01
+1) → 14N(12

+0) show
features consistent with the present results. The present
calculation also succeeds in describing the concentrations of
the GT strengths from the J = 2 excited states: 10Be(22

+1) →
10B(31

+0) and 14C(21
+1) → 14N(11

+0).
We have also compared our results with shell-model ones.

μ, B(M1), and B(GT) values have shown similar nature;
however, Q and B(E2) of 10B are much improved. It indicates
the advantage of our method, Tβγ -AMD+GCM, in describing
the spatial developments of pn pair and core deformation
originating from clusterizations in the same footing. However,
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we should comment that the anomalous suppression of the GT
transition 14C(01

+1) → 14N(11
+0) is not reproduced in our

calculation. Fine tuning of the interaction should be needed to
reproduce this value, as discussed in many works.

Our calculation generally overestimates the strong GT
transitions in A = 10 and A = 14 by about a factor 1.5. A
possible reason for the overestimations might be omission
of higher order correlations such as short-range and tensor
correlations in the present model space. To overcome this
problem, a more sophisticated structure model which can
explicitly take into account such higher order correlations may
be required.

In light nuclei, the LS-coupling pn pairs are formed. How-
ever, for heavier nuclei, the description of pn pair correlation

in LS coupling is no longer valid because jj -coupling pn
pairs and also the pn pair condensation are expected because
of the spin-orbit interactions. Further investigations of N = Z
odd-odd nuclei in a wide mass number region from light to
heavy mass nuclei are required for deeper understanding of
pn pair correlations.
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