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Emergence of low-energy monopole strength in the neutron-rich calcium isotopes
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Background: The isoscalar monopole response of neutron-rich nuclei is sensitive to both the incompressibility
coefficient of symmetric nuclear matter and the density dependence of the symmetry energy. For exotic nuclei
with a large neutron excess, a low-energy component emerges that is driven by transitions into the continuum.
Purpose: While understanding the scaling of the giant monopole resonance with mass number is central to this
work, the main goal of this paper is to explore the emergence, evolution, and origin of low-energy monopole
strength along the even-even calcium isotopes: from 40Ca to 60Ca.
Methods: The distribution of isoscalar monopole strength is computed in a relativistic random phase
approximation (RPA) using three effective interactions that have been calibrated to the properties of finite
nuclei and neutron stars. A nonspectral approach is adopted that allows for an exact treatment of the continuum
without any reliance on discretization. This is particularly critical in the case of weakly bound nuclei with
single-particle orbits near the continuum. The discretization of the continuum is neither required nor admitted.
Results: For the stable calcium isotopes, no evidence of low-energy monopole strength is observed, even as the
1f 7/2 neutron orbital is being filled and the neutron-skin thickness progressively grows. Further, in contrast to
experimental findings, a mild softening of the monopole response with increasing mass number is predicted.
Beyond 48Ca, a significant amount of low-energy monopole strength emerges as soon as the weak-binding neutron
orbitals (2p and 1f 5/2) become populated. The emergence and evolution of low-energy strength is identified with
transitions from these weakly bound states into the continuum—which is treated exactly in the RPA approach.
Moreover, given that models with a soft symmetry energy tend to reach the neutron-drip line earlier than their
stiffer counterparts, an inverse correlation is identified between the neutron-skin thickness and the inverse energy
weighted sum.
Conclusions: Despite experimental claims to the contrary, a mild softening of the giant monopole resonance
is observed in going from 40Ca to 48Ca. Measurements for other stable calcium isotopes may be critical in
elucidating the nature of the discrepancy. Moreover, given the early success in measuring the distribution of
isoscalar monopole strength in the unstable 68Ni nucleus, new measurements along the unstable neutron-rich
calcium isotopes are advocated in order to explore the critical role of the continuum in the development of a soft
monopole mode.
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I. INTRODUCTION

What are the relatively few combinations of neutrons and
protons that form a bound atomic nucleus is a question of
critical importance to both nuclear structure and astrophysics
[1,2]. Probing the limits of nuclear existence lies at the heart
of the commissioning of state of the art rare isotope facilities
throughout the world. However, mapping the precise bound-
aries of the nuclear landscape is enormously challenging.
Given that the Coulomb interaction severely limits the number
of neutrons that may be removed from a given isotope, the
proton drip lines remains relatively close to the valley of
stability. Indeed, the proton drip line has been determined
experimentally up to protactinium, an isotope with atomic
number Z=91. In stark contrast, the neutron drip line has
been mapped only up to oxygen [3]. Thus, the neutron-rich
landscape constitutes a fertile ground for research in nuclear
structure and—due to its relevance to the r process and to the
composition of the neutron-star crust—also in astrophysics [4].

*jpiekarewicz@fsu.edu

Exceptional experimental advances have led to a paradigm
shift in fundamental core concepts that have endured the
test of time, such as the traditional nuclear magic numbers.
Understanding the impact of such a paradigm shift in the
development of novel modes of excitation in exotic nuclei
has become a fruitful area of research [5]. Given the richness
of these excitations, they offer a unique window into the
nuclear dynamics that is often closed to other means [6]. In
particular, the isovector dipole resonance has been shown to
be highly sensitive to the equation of state of neutron-rich
matter, specifically to the density dependence of the symmetry
energy [7–10]. Indeed, measurements of the electric dipole
polarizability in a variety of stable neutron-rich nuclei [11–14]
and in the unstable 68Ni isotope [15,16], provide an attractive
alternative to parity-violating experiments to determine the
neutron-skin thickness of 208Pb [17,18] as well as the density
dependence of the symmetry energy.

Of specific interest in this paper is the emergence and
evolution of isoscalar monopole strength along the calcium
isotopes. There are several reasons for undertaking such a
study. First, the compressibility of neutron-rich matter is
sensitive to both the incompressibility coefficient of symmetric
nuclear matter and the density dependence of the symmetry
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energy [19]. Particularly interesting is to examine this sensitiv-
ity along an isotopic chain having several stable isotopes, such
as calcium and tin. Note that although a decade has already
passed since the “fluffiness” of tin was first identified [20–22],
a theoretical explanation continues to elude us [23–36]. That is,
theoretical models that account for giant monopole resonance
(GMR) energies in 90Zr, 144Sm, and 208Pb, overestimate the
GMR energies in all stable tin— and cadmium (Z=48)
[37]—isotopes. The imminent report of the GMR energy of
the unstable 132Sn nucleus may prove vital in elucidating the
softness of tin [38]. In turn, an exploration of the evolution of
the GMR energies along the isotopic chain in calcium above
and beyond the already measured 40Ca and 48Ca isotopes
[39–41] may be highly illuminating. This is particularly
relevant given that existing experimental data seem to suggest
an increase in the GMR energies with increasing mass, a fact
that is difficult to reconcile with theoretical expectations [41].
Second, theoretical and computational advances have evolved
to such an extent that ab initio calculations in the calcium
region are now possible. Ab initio calculations now exist that
can predict the electric dipole polarizability as well as the
charge and weak form factors of both 40Ca and 48Ca [42].
Indeed, a primary motivation for the calcium radius experiment
(“CREX”) at Jefferson Lab is to bridge ab initio approaches
with nuclear density functional theory [43]. Finally, extending
GMR calculations beyond 48Ca highlights the role of the
continuum in the emergence of low-energy monopole strength.
One expects that transitions out of the weakly bound pf
neutron orbitals will result in the development of a soft
monopole mode.

Although the compressibility of neutron-rich matter is
primarily sensitive to the incompressibility coefficient of
symmetric nuclear matter, a sensitivity to the symmetry
energy develops in heavy nuclei with a significant neutron
excess. Unfortunately, this sensitivity is often hindered by the
relatively small neutron excess of the stable nuclei investigated
up to date; note that the contribution from the symmetry energy
scales as the square of the neutron-proton asymmetry α≡
(N−Z)/A [19]. Hence, measuring the distribution of isoscalar
monopole strength in unstable nuclei with a large neutron
excess is highly appealing. Despite the relatively modest value
of α68 =0.18 (and α2

68 =0.03) the measurement of the isoscalar
monopole response of 68Ni by Vandebrouck and collaborators
represents an important first step in the right direction [44].
Although this pioneering experiment established the great
potential of inelastic α scattering in inverse kinematics to
probe the distribution of isoscalar monopole strength in
unstable neutron-rich nuclei, a controversy ensued on the
interpretation of the observed low-energy structure. Based on
RPA predictions that used a discretized continuum, it was
suggested that the observed low-energy strength consisted
of individual peaks that were well separated from the main
giant resonance [45,46]. Shortly after, Hamamoto and Sagawa
concluded based on Skyrme–random phase approximation
(RPA) calculations that did not rely on a discretization of
the continuum, that the development of isoscalar monopole
peaks in the low-energy region was very unlikely [47];
for an earlier account of the role of the continuum in the

dynamics of the GMR in neutron-rich nuclei see Ref. [48].
Subsequently, relativistic RPA calculations confirmed that
while a significant amount of low-energy strength in 68Ni is
indeed generated, such low-energy structure lacks any distinct
features [49]. These findings suggest that a proper treatment
of the continuum is critical. As is shown below, the continuum
plays a fundamental role in the development of a soft monopole
mode in all unstable neutron-rich calcium isotopes.

The paper has been organized as follows. In Sec. II a
brief summary of the relativistic RPA formalism is presented
highlighting the role of the continuum. In Sec. III I display
both uncorrelated and RPA predictions for the distribution
of isoscalar monopole strength along the isotopic chain in
calcium for all even-even isotopes, from 40Ca up to 60Ca. In
particular, special attention is paid to the role of the continuum
in shaping the distribution of low-energy strength. Finally, a
summary of the most important findings and suggestions for
future work are provided in Sec. IV.

II. FORMALISM

The main goal of this section is to provide the technical
material necessary to follow the discussion presented in
Sec. III. The relativistic RPA formalism as implemented here
has been reviewed extensively in earlier publications; see for
example Refs. [33,49] and references contained therein. In
particular, the critical role that the continuum plays on the
emergence of low-energy isoscalar monopole strength has
been extensively addressed in Ref. [49].

Isoscalar monopole response

In the relativistic mean-field (RMF) approach pioneered
by Serot and Walecka [50,51], the basic constituents of the
effective theory are protons and neutrons interacting via the
exchange of the photon and various mesons of distinct Lorentz
and isospin character. Besides the conventional Yukawa
couplings of the mesons to the relevant nuclear currents,
the model is supplemented by a host of nonlinear meson
couplings that have been found essential to improve the
standing of the model [52–54]. In the widely used mean-field
approximation, the nucleons satisfy a Dirac equation in the
presence of strong scalar and vector potentials that are the
hallmark of the relativistic approach. In turn, the photon and
the mesons satisfy classical Klein-Gordon equations with the
relevant nuclear densities acting as a source term. As in most
mean-field approaches, this close interdependence demands
that the equations be solved self-consistently. In particular, the
self-consistent procedure culminates with a few observables
that fully characterize the mean-field ground state.

With these observables in place, one may proceed to
compute the linear response of the mean-field ground state to
an external perturbation. All dynamical information relevant
to the excitation spectrum of the system is encoded in the
polarization propagator, which is a function of both the energy
and momentum transfer to the nucleus [55,56]. The first step
in the calculation of the nuclear response is the construction
of the uncorrelated (or mean-field) polarization propagator.
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That is,

�ab(x,y; ω)

=
∑

0<n<F

Un(x)�aGF (x,y; +ω + E(+)
n )�b Un(y)

+
∑

0<n<F

Un(y)�bGF (y,x; −ω + E(+)
n )�a Un(x), (1)

where E(+)
n and Un(x) are single-particle energies and Dirac

wave functions obtained from the self-consistent determina-
tion of the mean-field ground state, �a contains information on
the Lorentz and isospin structure of the operator responsible
for the transition, and GF is the “Feynman” propagator. Note
that the sum is restricted to positive-energy states below the
Fermi level. In turn, GF may also be expressed as a sum over
states by relying on its spectral decomposition:

GF (x,y; ω) =
∑

n

(
Un(x)Un(y)

ω − E
(+)
n + iη

+ Vn(x)V n(y)

ω + E
(−)
n − iη

)
,

(2)

where now E(−)
n and Vn(x) represent single-particle energies

and Dirac wave functions associated with the negative-energy
part of the spectrum; recall that in the relativistic formalism the
positive energy part of the spectrum by itself is not complete.
However, note that now the spectral sum is unrestricted,
as it involves bound and continuum states of positive and
negative energy. In practice, one avoids carrying out this
infinite sum by invoking a nonspectral representation of the
Feynman propagator. This involves solving the following
inhomogeneous differential equation for the Green’s function
in the mean-field approximation. That is,

(ωγ 0 + iγ · ∇ − M − �MF(x))GF (x,y; ω) = δ(x − y), (3)

where γ 0 and γ = (γ 1,γ 2,γ 3) are Dirac γ matrices, and �MF

is the same exact mean-field potential obtained from the self-
consistent solution of the ground-state problem [33].

The uncorrelated mean-field polarization together with the
residual interaction constitute the two main building blocks
of the RPA polarization depicted in Fig. 1. By iterating the

= +

= +RPA RPA00 V
FIG. 1. Diagrammatic representation of the RPA equations. The

ring diagram with the thick black lines represents the fully correlated
RPA polarization while the one depicted with the thin blue lines
is the uncorrelated mean-field polarization. The residual interaction
denoted with the red wavy line must be identical to the one used to
generate the mean-field ground state.

uncorrelated polarization to all orders, coherence is built
through the mixing of all particle-hole excitations of the
same spin and parity. If many particle-hole pairs get mixed,
then the resulting RPA response displays strong collective
behavior that manifests itself in the appearance of one “giant
resonance” that often exhausts the classical sum rule [6]. If
the residual interaction is attractive in the channel of interest
(as in the case of the isoscalar monopole response) then the
RPA distribution of strength is softened and enhanced relative
to the uncorrelated response. If instead the residual interaction
is repulsive (as in the case of the isovector dipole response)
then the RPA response is hardened and quenched. For further
details see Refs. [33,49].

Given that the distribution of isoscalar monopole strength
is the main focus of this paper, a brief description is now given
on how to extract the response from the RPA polarization. To
excite the appropriate Jπ = 0+,T = 0 channel, it is sufficient
to use for the transition operator given in Eq. (1) the timelike
component of the Dirac γ matrices, namely, �a = �b = γ 0.
That is,

S(q,ω; E0) = − 1

π
Im

(
�RPA

00 (q,q; ω)
)
. (4)

The above expression is still a function of both the energy and
momentum transfer to the nucleus. In particular, “peaks” in
the energy transfer are associated to the nuclear excitations
and the area under the peaks are proportional to the transition
form factor at the given momentum transfer. Since inelastic
α scattering at forward angles is the experimental method
of choice in isolating the isoscalar monopole strength from
the overall cross section, S(q,ω; E0) is evaluated in the long
wavelength limit. That is,

R(ω; E0) = lim
q→0

(
36

q4

)
S(q,ω; E0). (5)

Often one is interested in computing moments of the strength
distribution to extract centroid energies of the GMR. The
moments of the distribution are defined as suitable energy
weighted sums:

mn(E0) ≡
∫ ∞

0
ωnR(ω; E0) dω. (6)

Here special attention is paid to the energy weighted m1,
energy unweighted m0, and inverse energy weighted m−1

sums [6].
A few comments that highlight the power of the nonspectral

approach are in order. First, concerning the uncorrelated mean-
field polarization depicted by the thin blue “bubble” in Fig. 1,
the nonspectral framework adopted here is immune to most of
the features that hinder the spectral approach, such as an energy
cutoff and the discretization of the continuum. Indeed, some of
these artifacts were responsible for the faulty interpretation of
the structure of the low-energy monopole strength observed in
68Ni [44]. Second, besides avoiding any reliance on artificial
cutoffs and truncations, the nonspectral approach has the added
benefit that both the positive- and negative-energy continua are
treated exactly. Finally, in the context of the RPA response, it
is important to underscore that in the interest of consistency,
both the mean-field potential �MF appearing in Eq. (3) as well
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TABLE I. Parameter sets for the three models adopted in the text. All meson masses (ms, mv, and mρ) as well as κ are given in MeV. The
nucleon mass has been fixed in all models at M = 939 MeV. See Ref. [71] for a definition of the model parameters.

Model ms mv mρ g2
s g2

v g2
ρ κ λ ζ �v

NL3 508.194 782.501 763.000 104.3871 165.5854 79.6000 3.8599 −0.015 905 0.000 000 0.000 000
FSUGold 491.500 782.500 763.000 112.1996 204.5469 138.4701 1.4203 +0.023 762 0.060 000 0.030 000
FSUGarnet 496.939 782.500 763.000 110.3492 187.6947 192.9274 3.2602 −0.003 551 0.023 500 0.043 377

as the residual particle hole interaction V depicted by the red
wavy line in Fig. 1 must be fully consistent with the interaction
used to generate the mean-field ground state. It is only in this
manner that one can guarantee both the conservation of the
vector current and the decoupling of the center-of-mass motion
from the physical response [57–59].

I close this section by briefly addressing the emergence of
low-energy strength in neutron-rich nuclei and its connections
to fundamental parameters of the equation of state (EOS).
Evidence of a soft dipole mode in exotic nuclei has generated
considerable excitement as both a novel mode of excitation
and as a possible constraint on the EOS [60–66]. One of
the goals of the present study is to investigate how the
distribution of isoscalar monopole strength in the calcium
isotopes—particularly the appearance of a soft monopole
mode—scales with mass number. To quantify the sensitivity of
the bulk parameters of infinite nuclear matter to the isoscalar
monopole response, the energy per particle of asymmetric
nuclear matter at zero temperature is introduced:

E/A(ρ,α) − M ≡ E(ρ,α) = ESNM(ρ) + α2S(ρ) + O(α4),

(7)

where ρ = ρn + ρp is the nuclear density, ESNM is the
energy per particle of symmetric nuclear matter, S is the
symmetry energy, and α is the neutron-proton asymmetry. Now
expanding the energy per particle around saturation density
(ρ0) one obtains

E(ρ,α) = (
ε0 + 1

2K0x
2 + 1

6Q0x
3 + · · · )

+α2
(
J + Lx + 1

2Ksymx2 + 1
6Qsymx3 + · · · )

+O(α4), (8)

where x = (ρ − ρ0)/3ρ0 quantifies the deviation of the density
from its value at saturation—and ε0, K0, and Q0 denote the
binding energy per nucleon, curvature (i.e., incompressibility),
and skewness parameter of symmetric nuclear matter. In turn,
J , Ksym, and Qsym represent the corresponding quantities
for the symmetry energy. However, unlike symmetric nuclear

matter which saturates, the symmetry pressure—or equiva-
lently the slope of the symmetry energy L—does not vanish.
In particular, L induces changes in the saturation density
and incompressibility coefficient of asymmetric neutron-rich
matter [19] that are given by

ρ0(α) = ρ0 + ρτα
2; with ρτ ≡ −3ρ0

L

K0
, (9a)

K0(α) = K0 + Kτα
2; with Kτ ≡ Ksym − 6L − Q0

K0
L. (9b)

The above expression for Kτ suggests that measurements
of the isotopic dependence of the giant monopole resonance
in exotic nuclei with a very large neutron excess—such as
the calcium isotopes—may place important constraints on the
density dependence of the symmetry energy [20,23]. Important
first steps along this direction have been already taken by Garg
and collaborators [21,22,37].

III. RESULTS

I start this section by computing the distribution of isoscalar
monopole strength for three relativistic mean-field models:
(a) NL3 [67,68], FSUGold [69], and FSUGarnet [70]. Among
these three, FSUGarnet is a recently calibrated parametrization
that has been fitted to the ground-state properties of magic
and semimagic nuclei, a few giant monopole energies, and
well established properties of neutron stars [71]. In particular,
FSUGarnet predicts that the isotopic chain in oxygen can
be made to terminate at 24O, as it has been observed
experimentally [3]. The parameters for the three relativistic
models adopted in this work are listed in Table I in terms of
the Lagrangian density defined in Ref. [71].

Using the model parameters listed in Table I, one can then
proceed to make predictions for a variety of bulk properties
of infinite nuclear matter as defined in Eqs. (8) and (9).
This set of bulk properties is displayed in Table II alongside
quantities denoted as K40, K48, and K60 that represent the
incompressibility coefficient of asymmetric matter having

TABLE II. Bulk parameters characterizing the behavior of infinite nuclear matter at saturation density as defined in Eqs. (8) and (9); M∗

is the (Dirac) effective nucleon mass at saturation density. Here K40, K48, and K60 represent the incompressibility coefficient of asymmetric
matter having the same neutron excess as 40Ca, 48Ca, and 60Ni, respectively. All quantities are given in MeV except for ρ0 which is given in
fm−3 and M∗ which is given in units of the free nucleon mass.

Model ρ0 M∗/M ε0 K0 Q0 J L Ksym Kτ K40 K48 K60

NL3 0.148 0.595 −16.24 271.5 209.5 37.29 118.2 100.9 −699.4 271.5 252.1 193.8
FSUGold 0.148 0.610 −16.30 230.0 −522.7 32.59 60.5 −51.3 −276.9 230.0 222.3 199.3
FSUGarnet 0.153 0.578 −16.23 229.5 4.5 30.92 51.0 59.5 −247.3 229.5 222.7 202.1
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FIG. 2. Distribution of isoscalar monopole strength for the
neutron-even calcium isotopes from 40Ca up to 48Ca as predicted
by a relativistic RPA calculation using the FSUGarnet parametriza-
tion [70]. The numbers in parentheses represent the centroid energies
defined as Ecen = m1/m0. The inset displays the integrated strength,
or “running sum,” with the value at large excitation energy equal to
the unweighted energy sum m0.

the same neutron excess as 40Ca(α = 0), 48Ca(α � 0.167),
and 60Ca(α � 0.333), respectively. Although NL3 predicts an
incompressibility coefficient K0 that is considerably larger
than the other two models, NL3 becomes the softest of the three
models for infinite nuclear matter with a neutron excess equal
to that of 60Ca. This rapid softening of the incompressibility
coefficient is attributed to NL3’s stiff symmetry energy
(L � 118 MeV) which in turn is responsible for generating
a large and negative value for Kτ . Hence, exploring the
isotopic dependence of the ISGMR over an isotopic chain
that includes exotic nuclei with a large neutron excess may
become instrumental in constraining the density dependence
of the symmetry energy.

The distribution of isoscalar monopole strength for all stable
even-even calcium isotopes from 40Ca to 48Ca is displayed in
Fig. 2 as predicted by the new FSUGarnet parametrization
with the centroid energies m1/m0 shown in parentheses; see

Eq. (6) and Table III. Although an enhancement of the response
is evident as the f 7/2 neutron orbital is progressively being
filled (see the inset in the figure) no appreciable softening
is observed. This is somehow surprising given that as the
f 7/2 orbital is being filled and the neutron-skin thickness
steadily increases, the appearance of a soft monopole mode
involving neutron-skin oscillations may have been natural. Yet,
no low-energy monopole strength is detected. Values for the
neutron-skin thickness of the calcium isotopes alongside other
ground state properties are listed in Table IV. When available,
experimental data for the binding energies [72] and charge radii
[73,74] have also been included. The disagreement between
theory and experiment typically amounts to a few percent.
However, one should note that understanding the underlying
physics behind the intriguing trend displayed by the charge
radii, both in the stable [73] and unstable [74] isotopes, has
been notoriously difficult; for a recent discussion of this topic
see Refs. [75,76].

The predicted trend displayed in Fig. 2, however, is consis-
tent with the expectation of a softening of the response with
increasing mass number [6]. Hence, experimental evidence in
favor of a centroid energy that is actually lower in 40Ca than
it is in 48Ca [39,40] has baffled theoretical explanations; see
Ref. [41] and references contained therein. As illustrated in
Table III, this apparent anomaly remains unexplained in the
present approach. Thus, mapping the experimental distribution
of strength in the intermediate region of stable isotopes, from
42Ca to 46Ca, is highly encouraged as it may ultimately prove
vital in solving the puzzle.

While no evidence of low-energy monopole strength was
found in the stable calcium isotopes as the 1f 7/2 neutron
orbital was being filled, the situation changes dramatically with
the occupation of the weakly bound 2p and 1f 5/2 orbitals.
In an effort to elucidate the nature of the low-energy
monopole strength observed in the unstable calcium isotopes
[see Fig. 5(a)] it is convenient to start by displaying in
Fig. 3 the single-particle spectrum of 60Ca as predicted by
FSUGarnet; the arrows are used to indicate three prominent
discrete proton excitations. Given that information about
the mean-field excitation spectrum is fully contained in the
uncorrelated response, the three discrete proton excitations in
the ω � 30-MeV region are clearly discernible in Fig. 4(a)
(the d5/2 and p1/2 excitations cannot be individually resolved
in the figure). Besides these discrete proton excitations, two
additional peaks are prominent in the 25–28-MeV region
that cannot be inferred from the single-particle spectrum, as

TABLE III. Predictions for the centroid energies (all in MeV) for all stable even-even calcium isotopes obtained through two different
moment ratios of the isoscalar monopole response displayed in Fig. 2 integrated up to a maximum value of ωmax = 50 MeV.

Isotope NL3 [67,68] FSUGold [69] FSUGarnet [70] Experiment [39,40]

m1/m0
√

m1/m−1 m1/m0
√

m1/m−1 m1/m0
√

m1/m−1 m1/m0
√

m1/m−1

40Ca 22.29 21.52 21.53 20.76 20.81 20.09 19.2 ± 0.4 18.3 ± 0.4
42Ca 22.04 21.28 21.39 20.74 20.64 20.02
44Ca 21.81 21.10 21.16 20.47 20.44 19.81
46Ca 21.56 20.89 21.00 20.34 20.31 19.69
48Ca 21.27 20.58 20.85 20.20 20.22 19.57 19.88+0.14

−0.18 19.04+0.11
−0.14
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TABLE IV. Predictions for the binding energy per nucleon, charge radius, neutron radius, and neutron-skin thickness for all even-even
N � 20 calcium isotopes. Binding energies are given in MeV and radii in fm. When available, experimental information is also provided.

Isotope NL3 [67,68] FSUGold [69] FSUGarnet [70] Expt. [72–74]

B/A Rch Rn Rskin B/A Rch Rn Rskin B/A Rch Rn Rskin B/A Rch

40Ca 8.543 3.456 3.329 −0.048 8.539 3.418 3.287 −0.051 8.531 3.425 3.293 −0.052 8.551 3.478
42Ca 8.552 3.453 3.412 0.038 8.538 3.421 3.372 0.030 8.539 3.426 3.369 0.022 8.616 3.508
44Ca 8.572 3.452 3.484 0.111 8.546 3.428 3.445 0.097 8.554 3.429 3.430 0.081 8.658 3.518
46Ca 8.603 3.454 3.548 0.172 8.561 3.436 3.508 0.152 8.578 3.433 3.482 0.128 8.669 3.495
48Ca 8.641 3.458 3.605 0.226 8.585 3.445 3.563 0.197 8.613 3.437 3.524 0.167 8.667 3.477
50Ca 8.489 3.477 3.732 0.334 8.421 3.467 3.693 0.305 8.448 3.463 3.651 0.267 8.550 3.519
52Ca 8.367 3.494 3.839 0.423 8.284 3.489 3.802 0.391 8.313 3.490 3.755 0.343 8.429 3.554
54Ca 8.204 3.516 3.962 0.524 8.115 3.513 3.921 0.486 8.135 3.518 3.874 0.434 8.248
56Ca 8.038 3.553 4.035 0.559 7.937 3.548 3.982 0.512 7.923 3.559 3.943 0.461 8.040
58Ca 7.903 3.590 4.100 0.586 7.789 3.582 4.036 0.530 7.746 3.599 4.002 0.478 7.835
60Ca 7.793 3.627 4.159 0.608 7.667 3.616 4.084 0.543 7.600 3.638 4.051 0.488

these involve transitions into the continuum. To illuminate the
structure of these additional transitions, the two valence 2s1/2

and 1d3/2 proton orbitals are artificially removed, both having
a binding energy of about 25 MeV (see Fig. 3). In particular,
the curve denoted by porbs = 5 (red line) was obtained by
removing the 2s1/2 orbital. The curve clearly shows how all the
strength below ∼25 MeV practically disappears. This effect is
further accentuated by removing both (2s1/2 and 1d3/2) proton
orbitals, resulting in the blue curve denoted by porbs = 4.
Essentially, no monopole strength remains below 30 MeV.

If the role of the continuum is important in elucidating
the character of the proton excitations, it becomes even
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FIG. 3. Single-particle spectrum for 60Ca as predicted by the
relativistic FSUGarnet parametrization. The blue (red) lines denote
occupied (empty) orbitals and the arrows indicate discrete transitions
into bound states.

more critical in understanding the nature of the neutron
excitations—given that they all involve transitions into the
continuum. Indeed, in Fig. 4(b) a significant amount of
low-energy monopole strength is observed as a consequence
of the excitation into the continuum of the weakly bound
2p and 1f 5/2 states; see black line. As in the proton
case, the role of these low-energy excitations is underscored
by suppressing either three (red line) or four (blue line)
transitions out of the valence 2p-1f orbitals. By doing so,
essentially no monopole strength remains below ω ∼ 18 MeV.
Moreover, it is interesting to note the two emerging discrete
transitions out of the 1p states at ω � 30 MeV. The fact that
these two Pauli-blocked transitions are completely suppressed
from the complete calculation (black line) further validates
the nonspectral treatment of the nuclear response. Before
addressing the fully correlated RPA response, it is important to
underscore the virtues of the nonspectral approach, especially
in the context of weakly bound nuclei. The nonspectral Green’s
function approach adopted here allows for an exact treatment
of the continuum without any reliance on artificial parameters.
Indeed, introducing an energy cutoff or the discretization of
the continuum is neither required nor admitted.

In Fig. 1 the diagrammatic representation of the RPA
equations indicates how the correlated RPA response (solid
black line) is obtained from the mean-field response (thin blue
line) and the residual particle-hole interaction (wavy red line).
Given that the RPA equations involve an iterative procedure to
all orders, the singularity structure of the polarization is often
changed dramatically. In the particular case of an attractive
residual interaction, mixing a large number of particle-hole
excitations results in the development of a single collective
peak that exhausts most of the energy weighted sum [6], as is
clearly evident in Fig. 2. However, for the unstable neutron-
rich isotopes a significant amount of low-energy strength is
expected to emerge as the result of transitions from weakly
bound states into the continuum. This notion is confirmed in
Fig. 5(a) that displays the distribution of isoscalar monopole
strength for all unstable even-even calcium isotopes from 50Ca
to 60Ca; the single-peak response of 48Ca is also shown for
reference. As in the case of Fig. 2, a giant resonance peak
in the ∼17−20-MeV region is noticeable. Yet, a significant
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FIG. 4. Distribution of “uncorrelated” isoscalar monopole strength for 60Ca as predicted by the FSUGarnet parametrization [70]. The
left-hand panel (a) describes proton particle-hole excitations while the right-hand panel (b) depicts the corresponding neutron excitations.
Transitions into bound states are easily identified both in this figure as well as in Fig. 3. See text for further details.

amount of low-energy monopole strength that progressively
increases with mass number is also clearly evident. This can be
quantified by plotting the running sum in the inset of Fig. 5(a).
In contrast to the corresponding inset displayed in Fig. 2, a
considerable amount of low-energy strength appears below
10 MeV. By somehow artificially dividing the giant-monopole
region from the low-energy “pygmy” region at an excitation
energy of ω = 11.5 MeV, I display in Fig. 5(b) both the pygmy
and giant contributions to the total unweighted energy sum m0

as predicted by the FSUGold and FSUGarnet parametrizations.

The figure clearly indicates the important contribution from
the low-energy region to the overall m0 moment. As expected,
the pygmy contribution can be correspondingly enhanced or
quenched by computing the inverse energy weighted sum m−1

or energy weighted sum m1 as shown in Figs. 6(a) and 6(b),
respectively. In particular, I observe nearly equal contributions
from the pygmy and giant regions to the overall m−1 moment
for 54Ca. Recall that the electric dipole polarizability, which
is proportional to the m−1 moment of the isovector dipole
response, was identified as a strong isovector indicator that
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FIG. 5. (a) Distribution of isoscalar monopole strength for the neutron-even calcium isotopes from 48Ca to 60Ca as predicted by a
relativistic RPA calculation using the FSUGarnet parametrization [70]. The numbers in parentheses represent the centroid energies defined as
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is strongly correlated to both the neutron-skin thickness of
neutron-rich nuclei and the slope of the symmetry energy
[7]. As indicated in Table V and illustrated in Fig. 7, a
correlation is also found between the neutron-skin thickness
of the neutron-rich calcium isotopes and the total m−1 moment
of the isoscalar monopole response. As already alluded to
in earlier references, see for example Refs. [70] and [77],
the softer the symmetry energy the earlier the neutron-drip
line is reached. In essence, models with thin neutron skins
predict weak binding energies for the valence neutron orbitals
in neutron-rich nuclei. In the present case, FSUGarnet having
the softest symmetry energy of the models employed here (see
Table II) predicts the weakest binding for the valence 2p-1f 5/2

neutron orbitals in the neutron-rich calcium isotopes and, as
a consequence, the largest amount of low-energy monopole
strength. In turn, NL3 having the stiffest symmetry energy
displays the opposite trend: whereas it predicts the thickest
neutron skins, its displays the least amount of low-energy
monopole strength.

I conclude this section by displaying in Fig. 8 centroid
energies for all three models considered in the text. Energies

have been computed as both m1/m0 (black circles) and√
m1/m−1 (red squares). Note that m1/m0 values also appear

between parentheses in both Figs. 2 and 5(a). Besides these two
choices, I include for reference centroid energies computed
by assuming a Breit-Wigner (or Lorentzian) fit to only the
giant monopole resonance (purple triangles). As the strength
distribution for all stable calcium isotopes displayed in Fig. 2
is dominated by a single collective peak, fairly consistent
results are obtained for all three choices. However, with the
appearance of low-energy monopole strength in 50Ca—and
progressively more strength with increasing mass number—
significant distortions to the simple Lorentzian shape emerge.
This is reflected in a large dispersion among the three adopted
definitions. Naturally, the Lorentzian fit to the GMR peak
predicts the largest energy value, followed by m1/m0 , and√

m1/m−1 predicting the lowest value, because of the large
enhancement in m−1 . Finally, although the last panel in the
figure collects m1/m0 predictions from all three models, the
notion of a centroid energy for a distribution of strength that
is no longer dominated by a single collective peak loses most
of its appeal.

TABLE V. Predictions for the neutron-skin thickness, and pygmy, giant, and total contributions to the inverse energy weighted sum m−1

for all even-even calcium isotopes from 50Ca to 60Ca. An excitation energy of ω = 11.5 MeV was chosen to separate the pygmy from the giant
resonance region; see Fig. 5(a). The neutron-skin thickness is given in fm and the m−1 values in fm4/MeV.

Isotope NL3 [67,68] FSUGold [69] FSUGarnet [70]

Rskin Pygmy Giant Total Rskin Pygmy Giant Total Rskin Pygmy Giant Total

50Ca 0.334 23.78 96.55 120.33 0.305 35.50 100.61 136.11 0.267 28.27 102.99 131.26
52Ca 0.423 36.30 105.06 141.36 0.391 47.66 109.01 156.67 0.343 46.76 110.45 157.21
54Ca 0.524 75.42 114.24 189.66 0.486 104.15 117.62 221.77 0.434 98.61 118.15 216.75
56Ca 0.559 83.30 126.32 209.62 0.512 102.10 128.28 230.38 0.461 117.39 129.09 246.48
58Ca 0.586 68.16 138.88 207.05 0.530 98.52 139.36 237.88 0.478 113.47 140.13 253.60
60Ca 0.608 76.73 152.31 229.04 0.543 99.29 150.83 250.12 0.488 122.86 151.37 274.22
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IV. CONCLUSIONS

The fascinating dynamics of exotic nuclei has lead to a
paradigm shift in nuclear structure. “How does subatomic
matter organize itself and what phenomena emerge?” and
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FIG. 8. Centroid monopole energies predicted by all three rel-
ativistic models NL3, FSUGold, and FSUGarnet for all even-even
calcium isotopes from 40Ca to 60Ca. The various definitions adopted
for the centroid energy have been discussed in the text.

“What combinations of neutrons and protons can form a
bound atomic nucleus?” are only a few of the most interesting
questions energizing nuclear physics today. The main goal of
this contribution was to explore the nature of the isoscalar
monopole response in exotic calcium isotopes with extreme
combinations of neutrons and protons.

At the most basic level, one would like to understand the
scaling of the giant monopole resonance with increasing mass
number, as it encodes information on the incompressibility
of neutron-rich matter which, in turn, is sensitive to both the
incompressibility coefficient of symmetric nuclear matter and
the density dependence of the symmetry energy. Perhaps the
biggest challenge in uncovering the sensitivity of the monopole
resonance to the symmetry energy stems from the fact that
its contribution scales as the square of the neutron-proton
asymmetry. Thus, one most probe the dynamics of exotic
nuclei far away from the valley of stability where the neutron-
proton asymmetry is large. Important first steps along this
direction have been taken along the isotopic chains in tin and
cadmium. However, given that these measurements have been
limited so far to stable isotopes, the neutron excess, although
appreciable, is not yet sufficiently large. Yet, one is confident
that in the new era of rare isotope facilities experimental studies
of this kind will be extended well beyond stability.

An important motivation behind the current work was to
confront the experimental observation that the distribution
of isoscalar monopole strength in 40Ca appears softer than
in 48Ca, in stark contrast with theoretical expectations. To
do so, three relativistic mean-field models have been used
that are known to provide a good description of ground-state
properties throughout the nuclear chart. The disagreement with
the experimental trend was confirmed for all three models
considered here. Indeed, in examining the distribution of
monopole strength in all stable even-even isotopes from 40Ca
to 48Ca, a gradual, albeit small, softening of the monopole
response with increasing mass number was found. This in spite
of that one of the models adopted here (“FSUGarnet”) was
fitted to GMR energies of several magic and semimagic nuclei.
Hence, measurements of the isoscalar monopole response of
other stable calcium isotopes is strongly encouraged as it may
play a vital role in resolving this discrepancy.

Yet the central goal of the present work was to study the
emergence, evolution, and origin of low-energy monopole
strength as a function of neutron excess. Somehow surprising,
no evidence was found of a soft monopole mode in the stable
calcium isotopes despite a steady increase in the thickness of
the neutron skin. However, the situation changed dramatically
with the occupation of the weakly bound neutron orbitals.
Indeed, starting with 50Ca and ending with 60Ca, a well
developed soft monopole mode of progressively increasing
strength was clearly identified. The origin of the low-energy
monopole strength was attributed to neutron excitations from
the weakly bound orbitals into the continuum. As such,
the RPA formalism employed here, based on a nonspectral
approach that treats the continuum on the same footing as
the bound states, is particularly advantageous. One should
note that pairing correlations have been ignored throughout
the paper. In the particular case of tin, it appears that pairing
correlations do not provide the answer to the question of why
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is tin so soft? However, unlike tin where the softening has
only been observed in the well-bound stable isotopes, the
situation in calcium may be different because the emergence
of low-energy strength was evident along the weakly bound
unstable isotopes. Thus, examining the impact (if any) of
pairing correlations my be worthwhile.

Due to the prominent role played by the weakly bound
neutron orbitals in generating low-energy monopole strength,
a correlation to the density dependence of the symmetry energy
was uncovered. This was motivated by the realization that
models with a soft symmetry energy reach the neutron-drip
line before their stiffer counterparts. In turn, this was reflected
in the fact that the 2p-1f 5/2 neutron orbitals are more weakly
bound in FSUGarnet (the softest of the models employed in
this work) than in NL3 (the model with the stiffest symmetry
energy). As a result, FSUGarnet predicted a larger amount
of low-energy monopole strength than NL3. On the other
hand, models with a stiff symmetry energy generate thicker
neutron skins. Hence, the following inverse correlation

was proposed: the thinner the neutron skin, the larger the
m−1 moment of the monopole distribution. Given that the
isoscalar monopole response of the unstable 68Ni isotope has
already been measured in a pioneer experiment using inelastic
α scattering in inverse kinematics, one is confident that
such techniques may also be used to explore the monopole
response of the exotic calcium isotopes. Such experiments
will provide critical insights into the role of the continuum in
understanding the physics of weakly bound systems and on
the development of novel modes of excitation in exotic nuclei.
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