Properties of γ -decaying isomers and isomeric ratios in the ¹⁰⁰Sn region ``` J. Park, ^{1,2}, * R. Krücken, ^{1,2} D. Lubos, ^{3,4,5} R. Gernhäuser, ³ M. Lewitowicz, ⁶ S. Nishimura, ⁴ D. S. Ahn, ⁴ H. Baba, ⁴ B. Blank, ⁷ A. Blazhev, ⁸ P. Boutachkov, ⁹ F. Browne, ^{4,10} I. Čeliković, ^{6,11} G. de France, ⁶ P. Doornenbal, ⁴ T. Faestermann, ^{3,5} Y. Fang, ¹² N. Fukuda, ⁴ J. Giovinazzo, ⁷ N. Goel, ⁹ M. Górska, ⁹ H. Grawe, ⁹ S. Ilieva, ¹³ N. Inabe, ⁴ T. Isobe, ⁴ A. Jungclaus, ¹⁴ D. Kameda, ⁴ G. D. Kim, ¹⁵ Y.-K. Kim, ^{15,16} I. Kojouharov, ⁹ T. Kubo, ⁴ N. Kurz, ⁹ G. Lorusso, ⁴ K. Moschner, ⁸ D. Murai, ⁴ I. Nishizuka, ¹⁷ Z. Patel, ^{4,18} M. M. Rajabali, ¹ S. Rice, ^{4,18} H. Sakurai, ¹⁹ H. Schaffner, ⁹ Y. Shimizu, ⁴ L. Sinclair, ^{4,20} P.-A. Söderström, ⁴ K. Steiger, ³ T. Sumikama, ¹⁷ H. Suzuki, ⁴ H. Takeda, ⁴ Z. Wang, ¹ H. Watanabe, ²¹ J. Wu, ^{4,22} and Z. Y. Xu¹⁹ ¹TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A3 ²Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1 ³Physik Department, Technische Universität München, D-85748 Garching, Germany ⁴RIKEN Nishina Center, Wako-shi, Saitama 351-0198, Japan ⁵Excellence Cluster Universe, Technische Universität München, D-85748 Garching, Germany ⁶Grand Accélérateur National d'Ions Lourds (GANIL), CEA/DSM-CNRS/IN2P3, Boulevard H. Becquerel, 14076 Caen, France ⁷Centre d'Etudes Nucléaires de Bordeaux-Gradignan, 19 Chemin du Solarium, CS 10120, F-33175 Gradignan Cedex, France ⁸Institute of Nuclear Physics, University of Cologne, D-50937 Cologne, Germany ⁹GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt, Germany ¹⁰School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, United Kingdom ¹¹Vinča Institue of Nuclear Sciences, University of Belgrade, 11000 Belgrade, Serbia ¹²Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka, Japan ¹³Technische Universität Darmstadt, D-64289 Darmstadt, Germany ¹⁴Instituto de Estructura de la Materia, IEM-CSIC, E-28006 Madrid, Spain ¹⁵Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811, Republic of Korea ¹⁶Department of Nuclear Engineering, Hanyang University, Seoul 133-791, Republic of Korea ¹⁷Department of Physics, Faculty of Science, Tohoku University, Sendai 980-0845, Japan ¹⁸Department of Physics, University of Surrey, Guildford GU2 7XH, United Kingdom ¹⁹University of Tokyo, 7-3-1 Hongo Bunkyo, Tokyo 113-0033, Japan ²⁰University of York, York YO10 5DD, United Kingdom ²¹Beihang University, Beijing 100191, China ²²Department of Physics, Peking University, Beijing 100871, China (Received 4 July 2017; published 9 October 2017; publisher error corrected 16 October 2017) ``` Half-lives and energies of γ rays emitted in the decay of isomeric states of nuclei in the vicinity of the doubly magic 100 Sn were measured in a decay spectroscopy experiment at Rikagaku Kenkyusho (The Institute of Physical and Chemical Research) of Japan Nishina Center. The measured half-lives, some with improved precision, are consistent with literature values. Three new results include a 55-keV $E2~\gamma$ ray from a new (4+) isomer with $T_{1/2}=0.23(6)~\mu s$ in 92 Rh, a 44-keV $E2~\gamma$ ray from the (15+) isomer in 96 Ag, and $T_{1/2}(6^+)=13(2)$ ns in 98 Cd. Shell-model calculations of electromagnetic transition strengths in the $(p_{1/2}, g_{9/2})$ model space agree with the experimental results. In addition, experimental isomeric ratios were compared to the theoretical predictions derived with an abrasion-ablation model and the sharp cutoff model. The results agreed within a factor of 2 for most isomers. From the nonobservation of time-delayed γ rays in 100 Sn, new constraints on the $T_{1/2}, \gamma$ -ray energy, and internal conversion coefficients are proposed for the hypothetical isomer in 100 Sn. DOI: 10.1103/PhysRevC.96.044311 ## I. INTRODUCTION The $N \sim Z$ region near 100 Sn is rich in nuclear structure phenomena while also being important for the astrophysical rapid-proton capture process. Among the relevant topics are the robustness of the N=Z=50 shell closures in 100 Sn and the superallowed Gamow-Teller decay [1]; the limit of bound N=Z heavy nuclei and the location of the proton dripline; the role of T=0 proton-neutron (pn) interactions in contrast to the T=1 seniority scheme in the $g_{9/2}$ orbit of N=Z nuclei [2,3]; and masses, half-lives, and β -delayed proton emission branching ratios along the rp-process path [4,5]. A comprehensive review of the experimental and the theoretical endeavor in this region of the chart of nuclides is given in Refs. [6,7] and references therein. Many of the topics listed above are manifest in numerous isomeric states of $N, Z \le 50$ nuclei [7], which offer important insights into their structure: E2 seniority isomers in N=50 isotones 92 Mo, 94 Ru, 96 Pd, and 98 Cd [8–11]; a high-spin, negative-parity isomer in 94 Pd [48] with $\ell=1,3$ electric transitions (E1, E3); multiple isomers in 95 Ag [12] decaying via $\ell=3,4$ electric transitions (E3, E4); N=Z spin-gap ^{*}Present address: Department of Physics, Lund University, Lund 22100, Sweden; joochun.park@nuclear.lu.se isomers in 94 Ag, 96 Cd, and 98 In [3,13–19]; and core-excited isomers in 96 Ag and 98 Cd [20–22]. This is by no means an exhaustive list. Isomers decaying by γ -ray transitions with half-lives $T_{1/2}$ on the order of μ s preserve the excited states for γ -ray spectroscopy in fragmentation and in-flight separation experiments. In addition to accessing the structure of nuclei below the isomers, properties of electromagnetic transitions can be used to determine experimental transition strengths $B(\sigma \ell; J_i^\pi \to J_f^\pi)$ for given multipolarities $\sigma \ell$ through which shell-model (SM) calculations [23–32] in the vicinity of 100 Sn can be scrutinized. Properties of a few γ -decaying isomers in this region of nuclides are only partially known. For example, the (15^+) state in 96 Ag has been previously designated as isomeric with $T_{1/2}=1.56(3)~\mu s$ [20], but the transition energy to the (13^+) state has not been observed. An upper limit of 50 keV was placed on the electric quadrupole $E2~\gamma$ -ray transition energy based on the isomer's $T_{1/2}$, supplemented by theoretical B(E2) calculations. Another example is the (6^+) state in 98 Cd, predicted to be isomeric with $T_{1/2}$ ranging from 10 to 20 ns [11], for which the half-life analysis using $\gamma\gamma$ time differences with high-purity germanium (HPGe) detectors would be challenging owing to poor time resolutions at $E_{\gamma} < 200$ keV. The upper limit on the half-life of this (6^+) isomer was confirmed in Ref. [21]. As for 100 Sn, several different calculations have suggested an isomer decaying with a low-energy E2 transition with half-lives ranging from 90 ns to 2.6 μ s: large-scale shell model (LSSM) with the Nowacki-Sieja interaction in the (g,d,s) model space [31,33] used in multiple works [1,3,17,20,21,30], SM-gd5 [32], and Hartree-Fock random particle approximation (HF-RPA) [34]. While the LSSM and the SM-gd5 calculations predict the isomer's spin to be 6^+ , the HF-RPA calculation proposes an 8^+ isomer above the 6^+ state. E2 transition strengths of 0.7–1.1 W.u. and γ -ray energies between 80 and 260 keV were predicted by those calculations. With a significantly increased production rate, the hypothetical isomer and its cascade of γ rays may be observed experimentally to unveil the excited states of 100 Sn unless a direct proton emission branch (b_p) is much more favored. #### II. EXPERIMENT AND ANALYSIS ¹⁰⁰Sn and nuclei with similar N and Z were produced by a fragmentation reaction of a 345 MeV/u ¹²⁴Xe primary beam on a 740 mg/cm² ⁹Be target at the Rikagaku Kenkyusho (RIKEN, The Institute of Physical and Chemical Research) of Japan RI Beam Factory [35]. Isotopes of similar mass over charge ratios A/q and atomic number Z were separated at the first stage of BigRIPS by a $B\rho - \Delta E - B\rho$ method with a 3-mm Al wedge degrader, dipole magnets, and slits at the dispersive foci. The filtered beam was further separated and identified on an event-by-event basis by $B\rho - \text{ToF} - \Delta E$ measurements at the later stages of BigRIPS and the ZeroDegree spectrometer [36,37] using position-sensitive parallel-plate avalanche counters [38], plastic scintillators, and an ionization chamber [39]. Figure 1 shows two regions of the particle identification plot, where contaminations in each identified nucleus were typically FIG. 1. Particle identification plots of nuclei produced in this experiment. Nuclei with isomeric γ -decay $T_{1/2}$ measurements listed in Table I are highlighted and labeled. The doubly magic $^{100}{\rm Sn}$ is labeled as a reference. below 1%. The flight time T_F through the separation and identification systems was calculated with LISE++ [40], where T_F in the rest frame of the ions ranged from 600 to 630 ns. This experiment has enabled the discovery of several new isotopes— 90 Pd, 92 Ag, 94 Cd, and 96 In [41]—as well as the measurement of half-lives, β -decay endpoint energies, and β -delayed proton branching ratios of N = Z - 1 nuclei 91 Pd, 95 Cd, 97 In, and 99 Sn [42]. Ion implantation and particle decay $(\beta, \beta p, p)$ measurements were carried out by the Wide-range Active Silicon Strip Stopper Array for Beta and Ion detection (WAS3ABi) [43]. The majority of the ions were implanted in the middle module of the three 1-mm-thick double-sided silicon strip detectors (DSSSDs) of WAS3ABi, where each DSSSD was segmented into 60×40 1-mm-wide strips in the x and y directions, respectively. Particle decay events were correlated to ion implantation events as described in Ref. [19], which used a similar set of segmented Si detectors. γ
rays following decay events were detected with the Euroball-RIKEN Cluster Array (EURICA) [44], featuring a total of 84 HPGe crystals that surrounded WAS3ABi in a 4π geometry. During the experiment, 47 channels of EURICA were operational. The γ -ray time (T_{γ}) measurement window was set to 12 μ s to detect isomeric γ rays with long-range time-to-digital converter (TDC) modules. The digital γ finder (DGF) modules provided a longer time window up to 100 μ s with better γ -ray detection efficiencies at low energies, but their time resolution was poorer compared to the TDC. The energy range of EURICA was 35 < E_{γ} (keV) < 6200. Internal conversion (IC) electrons associated with low-energy electromagnetic transitions could be measured with WAS3ABi only if the electron energies were well above the 100-keV software threshold cut and the half-life of the isomer was greater than the 600- μ s dead time of WAS3ABi, during which the radioactive ion implantation event was read out by the data acquisition system. With the help of high-resolution selection cuts in particle identification and characteristic γ -ray energies, the half-lives of γ -decaying isomers were measured with several methods. Most of the isomers presented in this work were populated before ion implantation, whose half-lives could be determined with the plastic scintillator trigger (\sim 10-ps resolution) at the last focal plane of the ZeroDegree spectrometer as the start time (T_{start}) and the EURICA trigger as the stop time (T_{stop}) . However, certain isomers were populated from the decays of parent isomers after implantation. If the parent isomer had a comparable or a longer half-life than the daughter, then the half-life of the daughter isomer was measured by fitting the $T_{\rm stop} - T_{\rm start}$ time difference distribution in $\gamma \gamma$ coincidence matrix. There were two instances of this scenario: the (8^+) and the (6⁺) isomers in ⁹⁸Cd. However, if the parent isomer had a sufficiently shorter $T_{1/2}$ than the daughter, then the time distribution of the γ rays depopulating the daughter was fit with a sufficiently delayed time window to attenuate the feeding from the parent isomer. This was the case for the 14⁺ isomer in ⁹⁴Pd and the (15⁺) isomer in ⁹⁶Ag. The half-life of the isomer in ⁹⁸Ag was determined by fitting the time distribution of the 107-keV γ ray emitted after the $\tilde{\beta}$ decay of 98 Cd rather than the isomeric decay of ⁹⁸Ag for higher statistics. In this case the start time trigger was provided by WAS3ABi, and the γ rays feeding the isomer were assumed to be prompt. After setting energy gates on γ -ray energy peaks belonging to the decay cascade of the isomer, the γ -ray time distribution was fitted with an exponentially modified Gaussian. The Gaussian component characterized the energy-dependent time jitter of the TDC and DGF modules, where the time resolution was typically less than 20 and 40 ns, respectively. Unbinned maximum likelihood (MLH) methods were used to determine the half-lives with the exception of the (4^+) isomer in 98 Ag, on which the binned χ^2 method was applied. This was attributable to the necessary background subtractions of randomly correlated β decays of the parent nucleus 98 Cd. The probability density function contained the main decay component and the background time profile deduced from γ ray energy gates on the sides of the peaks of interest. Following $T_{1/2}$ and E_{γ} measurements, experimental $B(\sigma \ell; J_i^{\pi} \to J_f^{\pi})$ were determined with branching ratios and IC coefficients α . In this work, α was obtained using the software BRICC [45]. Experimental isomeric ratios $R_{\rm exp}$ as defined in Ref. [46] were determined for a majority of isomers in the $^{100}{\rm Sn}$ region, including those that decay by particle emission. The mathematical expression for $R_{\rm exp}$ is $$R_{\rm exp} = \frac{I_{\rm abs}}{N_{\rm imp} \Pi_i \epsilon_i},\tag{1}$$ where $I_{\rm abs}$ is the absolute intensity of the isomeric decay, $N_{\rm imp}$ is the number of implanted nuclei, and $0 < \epsilon_i < 1$ are various correction factors which depend on the decay mode. For γ -decaying isomers, ϵ_i originate from losses during the flight time through the separator and the finite T_{γ} window of 12 μ s. For all other types of isomeric decays ϵ_i are decay correlation efficiencies, WAS3ABi dead-time correction factors, and normalization factors owing to finite time windows for the decay correlation. ## III. RESULTS AND DISCUSSION ## A. Half-lives and transition strengths of the known isomers Previously measured half-lives of γ -decaying isomeric states in proton-rich Zr, Nb, Mo, Tc, Ru, Pd, Ag, and Cd nuclei were remeasured from this data set. The plots of γ -ray decay curve analyses are presented in Fig. 2, and the properties of the isomers (including new measurements) are summarized in Table I. The list is not exhaustive, as only the transitions with sufficient statistics and 10 ns $< T_{1/2} < 10 \mu s$ were measured. The half-lives determined from this experiment are consistent with the NUBASE2016 values [47], but significant deviations have been observed for the following isomers: the 14⁺ isomer in ⁹⁴Pd, the (4⁺) isomer in ⁹⁸Ag, and the (8⁺) isomer in ⁹⁸Cd. Though not as severe, the discrepancy in the half-lives of the 8^+ isomer in 96 Pd was 2σ . In all four cases, the half-lives determined from this experiment are smaller than those in Ref. [47], but consistent with other literature values [10,21,48–52]. One publication [53], reports consistently longer half-lives for these isomers, possibly pointing towards some systematic effect in that analysis. Thus, new weighted averages of literature half-lives were calculated after excluding the $T_{1/2}$ values in Ref. [53]. A good agreement in $T_{1/2}$ was achieved for all four isomers between the revised literature and this work. To compare experimental isomeric E2 transitions within the ¹⁰⁰Sn core to theoretical predictions, SM calculations were performed with the code NUSHELLX [54] with the single-particle energies (SPEs) and two-body matrix elements (TBMEs) derived by Serduke, Lawson, and Gloeckner (SLG) [23] in the $\pi v(p_{1/2}, g_{9/2})$ model space (pg) for both protons (π) and neutrons (ν) with a ⁷⁶Sr core. In particular, the SPE and TBME based on a seniority-fit total-energy scheme (SLGM) found in the NUSHELLX package were used. Two sets of effective charges were used to calculate the theoretical B(E2): $e_p = 1.5$ e, $e_n = 0.5$ e (a) being the standard for large model spaces and $e_p = 1.72 \ e$, $e_n = 1.44 \ e$ (b), which has been tuned for proton-rich $A \sim 90$ nuclei in the small pg model space [55]. The results are listed in Table I, along with additional $B(\sigma \ell)$ values from other interactions and model spaces. Figure 3 shows graphical comparisons of experimental/theoretical transition strengths, which agree generally within different sets of interactions and effective charges. Notable differences were found for the isomers in 92,93 Ru, and the core-excited (12⁺) isomer in 98 Cd. ## B. A new (4⁺) isomer in ⁹²Rh Following 92 Rh implantation, a new time-delayed γ -ray transition was observed at 55.3(3) keV, as shown in Fig. 4. An FIG. 2. Energy-gated γ -ray time distributions and half-lives of known isomers in the 100 Sn region, having $T_{1/2} < 10 \ \mu$ s. The full fit functions (solid red line) contain the signal (solid black line) and the background (dashed blue line) components. unbinned MLH fit of the time distribution of the events in this energy peak yielded $T_{1/2} = 0.23(6) \mu s$. The newly measured transition energy and the half-life are similar to the 54.6(2)-keV E2 transition from the (2⁺) isomer to the (4⁺) ground state in ⁹⁴Rh, with a half-life of 0.48(4) μs [56]. Because the 55-keV γ ray does not correspond to any of the known transitions or energy gaps in 92 Rh, a new isomeric state is proposed. Given only one time-delayed γ ray, the isomer should lie 55 keV above any of the two near-degenerate β -decaying states with the given spins: (\geqslant 6⁺) or (2⁺) [57]. To examine low-energy states in this nucleus not unveiled by previous experiments [16,58,59], SM calculations of the low-energy states of 92 Rh were performed (see Fig. 5). The SLGM interaction reproduces the two lowest-lying states and the excitation energy of the low-lying (8⁺) state in 92 Rh. A 4⁺ state is predicted above the 2⁺ and the 6⁺ states with energy differences of 71 and 36 keV, respectively, and other low-energy states are predicted at least 150 keV above the ground state. The similarity in excitation energy was supplemented by the transition strength comparison, where three pure multipolarities were assumed for the 55-keV γ ray: E1, M1, and E2. Higher multipolarities would correspond to unphysical transition strengths based on the experimental half-life, the γ -ray energy, and the corresponding IC coefficient. According to the SM results shown in Fig. 5, an E1 transition with $E_{\gamma} \approx 200$ keV is possible from the 4^- state to the 4^+ state. However, the predicted energy difference between the two states is rather large compared to the experimental γ -ray energy. M1 transitions may originate from a 1^+ state or a 7^+ state, but the experimental B(M1) value of $9.7(25) \times 10^{-6}$ W.u. is much smaller than the theoretical predictions. Alternatively, the experimental B(E2) = 15.8(42) W.u. is compatible with the theoretical B(E2) from the 4^+ state to the 2^+ state using either of the effective charge sets (a) or (b). The SLGM interaction predicts a much smaller E2 strength to the 6^+ state, so
the (2^+) state was tentatively assigned as the final state. Owing to low statistics, tagging the implanted 92 Rh nuclei with the 55-keV isomeric γ ray and measuring the β -decay half-life to determine the final state was not conclusive. In either case, there is sufficient evidence to suggest the existence of a (4^+) isomer in 92 Rh with an E2 transition. Furthermore, this conclusion agrees well with results based on the Gross-Frenkel (GF) interaction in the pg model space [24]. ## C. Transition energy of the (15⁺) isomer in ⁹⁶Ag The transition energy from the (15^+) isomer to the (13^+) state in 96 Ag was measured for the first time, which has been postulated to be <50 keV [20]. Figure 6 shows a time-delayed γ -ray spectrum with a peak at 43.7(2) keV, with signatures of $\gamma\gamma$ coincidence relation with the known 667-keV γ ray depopulating the (13^+) state. A decay curve analysis of the time distribution of the 44-keV γ ray yielded a half-life of 1.48(27) μ s, which is consistent with both 1.543(28) μ s [47] and 1.55(3) μ s deduced in this work using the 630- and 667-keV γ rays that belong to the isomer's decay cascade [20]. A γ -ray intensity analysis using the efficiency of EURICA yielded $\alpha = 33(6)$, which is consistent with the BRICC value of 27.9(7) [45]. The γ -ray energy measurement enables the comparison of the experimental E2 transition strength to SM predictions. From $\Delta E=43.7(2)$ keV, $\alpha=27.9(7)$ and a weighted average $T_{1/2}=1.546(20)$ μ s, the experimental B(E2) value is TABLE I. γ -decaying isomers with measured half-lives. Isomeric decay information (excitation/transition energy, total internal conversion coefficient α calculated from BRICC [45], branching ratios, and multipolarity $\sigma \ell$) is given. Literature $T_{1/2}$ values are taken from NUBASE2016 [47] unless otherwise specified. Weighted averages of half-lives obtained from this work and the literature were used to calculate experimental transition strengths. For E2 transitions in the pg model space, SM calculations with the NUSHELLX code [54] with the SLGM interaction [23] are listed with two sets of effective charges: (a) $e_p = 1.5$ e, $e_n = 0.5$ e and (b) $e_p = 1.72$ e, $e_n = 1.44$ e. Theoretical transition strengths calculated with other model spaces and interactions are also listed. | Nucleus | $T_{1/2} (\mu s)$ | | E_{γ} (keV) | α | BR(%) | $\sigma\ell; J_i^\pi o J_f^\pi$ | $B(\sigma\ell)$ /W.u. | | | |------------------|-------------------|------------------------|--------------------|-------------|-----------|-------------------------------------|-------------------------|-------------------|-------------------| | | This work | Literature | | | (with IC) | | Exp | (a) | (b) | | ⁸⁸ Zr | 1.40(7) | 1.320(25) | 77 | 2.87(4) | 100 | $E2; 8^+ \to 6^+$ | 1.75(4) | 0.55 | 2.40 | | 90Nb | 0.415(67) | 0.472(13) | 1067 | $<10^{-2}$ | 73(7) | $M2;(11^{-}) \rightarrow (9^{+})$ | $8.6(7) \times 10^{-5}$ | | | | | | | 71 | 3.97(6) | 27(7) | $E2;(11^{-}) \rightarrow (9^{-})$ | 1.50(29) | 1.92 | 2.59 | | ⁹⁰ Mo | 1.15(5) | 1.12(5) | 63 | 6.30(9) | 100 | $E2; 8^+ \to 6^+$ | 2.84(10) | 1.63 | 4.00 | | ⁹² Mo | 0.200(37) | 0.190(3) | 148 | 0.291(4) | 100 | $E2; 8^+ \rightarrow 6^+$ | 1.31(2) | 1.12 | 1.48 | | ⁹² Tc | 1.02(17) | 1.03(7) | 56 | 9.79(14) | 100 | $E2; (4^+) \to (6^+)$ | 3.64(23) | 1.37 | 4.81 | | ⁹² Ru | 0.091(18) | 0.100(14) | 163 | 0.225(4) | 100 | $E2;(8^+) \to (6^+)$ | 1.67(19) | 4.54 | 9.43 | | ⁹² Rh | 0.23(6) | | 55.3(3) | 11.2(2) | 100 | $E2; (4^+) \to (2^+)$ | 15.8(42) | 7.4 | 18.3 | | ⁹³ Ru | 2.36(12) | 2.27(17) | 146 | 0.331(5) | 100 | $E2; (21/2^+) \rightarrow (17/2^+)$ | 0.109(6) | 0.455 | 0.596 | | ⁹⁴ Pd | 0.225(32) | 0.197(22) | 1651 | $< 10^{-2}$ | 80(4) | $E3;(19^{-}) \rightarrow (16^{+})$ | 0.28(3) | 0.10^{a} | 0.18^{a} | | | | | 106 | 0.129(2) | 20(4) | $E1;(19^{-}) \to (18^{+})$ | $2.5(5)\times10^{-7}$ | | | | | 0.495(7) | $0.489(11)^{b}$ | 96 | 1.65(2) | 100 | $E2; 14^+ \rightarrow 12^+$ | 2.16(7) | 1.43 | 3.30 | | | | | | | | | | 2.69 ^a | 5.49 ^a | | ⁹⁶ Pd | 1.80(1) | 1.76(4) ^c | 106 | 1.11(2) | 100 | $E2;(8^+) \to (6^+)$ | 0.417(4) | 0.249 | 0.327 | | 96 Ag | 0.160(41) | 0.16(3) | 4265 | $< 10^{-2}$ | 19(9) | $E4;(19^+) \to (15^+)$ | 0.9(4) | 0.7^{d} | | | | | | 98 | 1.55(2) | 81(9) | $E2;(19^+) \to (17^+)$ | 4.7(8) | 3.57 ^d | | | | 1.57(2) | 1.543(28) | 43.7(2) | 27.9(7) | 100 | $E2;(15^+) \to (13^+)$ | 3.04(11) | 2.99 | 4.27 | | | | | | | | | | 3.83 ^d | | | 98 Ag | 0.161(7) | $0.154(8)^{e}$ | 107 | 1.12(2) | 100 | $E2; (4^+) \to (6^+)$ | 4.47(15) | 1.69 ^f | 4.75 ^f | | ⁹⁸ Cd | 0.224(5) | 0.24(4) | 4207 | $< 10^{-2}$ | 88(2) | $E4;(12^+) \to (8^+)$ | 3.03(8) | $0.77^{\rm g}$ | | | | | | 49.2(2) | 18.9(3) | 12(2) | $E2;(12^+) \to (10^+)$ | 1.99(25) | 0.72^{g} | | | | 0.154(16) | $0.17^{+0.06}_{-0.04}$ | 147 | 0.377(6) | 100 | $E2;(8^+) \to (6^+)$ | 1.42(14) | 1.46 | 1.91 | | | | 0.01 | | | | | | 2.12^{g} | | | | 0.013(2) | < 0.020 | 198 | 0.133(2) | 100 | $E2; (6^+) \to (4^+)$ | 4.7(7) | 3.6 | 4.8 | | | | | | | | | | 5.35 ^g | | ^aFrom SM calculations in the $\pi \nu(f_{5/2}, p, g_{9/2})$ model space, reported in Ref. [48]. 3.04(11) W.u. The B(E2) value agrees very well with the predictions with standard effective charges (a) based on SLGM interactions, and also with GF interactions in the same pg model space [20] that both yield B(E2) = 2.99 W.u. However, B(E2) = 4.27 W.u. when enhanced effective charges (b) are employed. This overestimation of the B(E2) can be explained by the fact that the wave function of the (15^+) isomer is a fully stretched configuration of three-proton and one-neutron holes in the $g_{9/2}$ orbit. Enhanced effective charges account for nucleon excitations in the $p_{3/2}$ and $f_{5/2}$ orbits that cannot be calculated in the reduced pg model space, but the (15^+) isomer is a pure state composed of $g_{9/2}$ holes and thus requires no extra compensation. This argument is supported by the negligible difference in the calculated B(E2) value in the extended $f_{5/2}$, p, $g_{9/2}$ model space [48], as reported in Ref. [20]. When the gds model space and the interaction parameters provided in Refs. [60,61] are used, the B(E2) value of this isomeric transition is slightly overestimated at 3.83 W.u. [20]. Therefore, core excitation is suggested to be negligible for the (15^+) isomer in 96 Ag. A similar phenomenon occurs with the (8^+) isomer in 98 Cd, which is a fully stretched configuration of two proton holes in the $g_{9/2}$ orbit. Based on $T_{1/2} = 149(14)$ ns measured in this work, $B[E2; (8^+) \rightarrow (6^+)] = 1.48(14)$ W.u. agrees better with 1.46 W.u. calculated with (a) than 1.91 W.u. from (b). ## D. Low-spin states in 98 Ag The half-life of the isomer in 98 Ag was measured to be 160(7) ns with a gate on the delayed 107-keV γ ray, which is consistent with the following literature values: 160(10) ns [51], and 142(13) and 158(26) ns [52]. In addition, those ^bWeighted average from Refs. [48,49]. ^cWeighted average from Refs. [10,49,50]. ^dFrom LSSM calculations in the $\pi \nu(g,d,s)$ model space, reported in Ref. [20]. ^eWeighted average from Refs. [51,52]. ^fBased on the SR88MHJM interaction [6,32] in the $\pi(p_{1/2}, g_{9/2})\nu(g_{7/2}, d, s, h_{11/2})$ model space, reported in Ref. [52]. From LSSM calculations [33] in the $\pi v(g,d,s)$ model space, allowing up to five particle-hole excitations (t=5). ^hFrom Ref. [21]. FIG. 3. Comparisons between experimental and theoretical transition strengths listed in Table I, where the SLGM interaction, and effective charge sets (a) and (b) are described in Sec. III A. For the calculated values labeled as "Other," see the footnotes in Table I. previous works have proposed a reversed order of the 107-and 61-keV γ -ray transitions compared to the literature level scheme of the low-lying states of $^{98}{\rm Ag}$ [62]. Concordantly, FIG. 4. γ -ray energy spectrum between 300 and 1200 ns after 92 Rh implantation. The inset shows the time distribution of the 55.3(3)-keV γ ray (background component as a dashed blue line) and the corresponding $T_{1/2}$. FIG. 5. Experimental and theoretical level schemes of low-energy states in 92 Rh. γ -ray transitions are labeled with their theoretical B(E2) values in Weisskopf units, which were calculated with two sets of effective charges: $(e_p = 1.5e, e_n = 0.5e)$ and $(e_p = 1.72e, e_n = 1.44e)$, respectively. the absence of delayed 61-keV γ rays in this work suggests a placement of the 61-keV transition above the 107 keV with appropriate changes in spin assignments (see Fig. 7) to comply with $\sigma\ell$ values previously determined from comparisons of IC coefficients [63]. The revised level scheme was presented in previous works [51,52] supported by SM calculations employing the "SR88MHJM" interaction [6,32]; this model includes final monopole corrections to the "SR88MHJ" interaction [64], and was used to calculate the B(E2) value of the 107-keV transition. FIG. 6. γ -ray energy spectrum of 96 Ag for $500 < T_{\gamma}(ns) < 6500$ after implantation. The energy gates for the $T_{1/2}$ analysis are shown as green (total) and blue (background) histogram bins. Dashed red, γ -ray coincidence projection gated by the 667-keV transition from the (13⁺) state in 96 Ag, whose counts were multiplied by 15 for comparison. The inset shows a γ -ray time spectrum of the 44-keV peak and the deduced $T_{1/2}$ value, which is consistent with both 1.543(28) μ s [47] and 1.57(2) μ s measured in this work. FIG. 7. Black histogram, prompt γ -ray spectrum of 98 Ag, generated from the β -decay of 98 Cd. The counts were scaled down to 1/5 of the original values for comparison. Red histogram, time-delayed γ -ray spectrum from the same β -decay data. The inset shows a partial
level scheme of 98 Ag suggested previously in Refs. [51,52], which agree with the results of this work. ## E. Half-life of the (6⁺) isomer in ⁹⁸Cd Previously constrained as $T_{1/2} < 20$ ns [21], the half-life of the (6^+) state in 98 Cd was measured by fitting the $\gamma\gamma$ time difference distribution of a 147-keV transition populating the (6^+) state and any of the 198/688/1395-keV transitions below the (6^+) state. From this procedure, the order of the 147- and 198-keV transitions in the seniority scheme of this nucleus was confirmed for the first time. The time difference distribution featured a decay curve with a $\sigma\approx 10$ ns EURICA time resolution, which could be fitted with an exponentially modified Gaussian. As shown in Fig. 8, adding 688- and 1395-keV transitions in the coincidence condition was justified FIG. 8. Open squares, γ -ray time difference distribution of 198 keV (start) and 688/1395 keV (stop), which features only a Gaussian time jitter of the TDC; filled squares, γ -ray time difference distribution of 147 keV (start) and 198/688/1395 keV (stop), which exhibits an exponential decay component. The half-life of the (6⁺) state in ⁹⁸Cd was determined to be 13(2) ns from the decay curve analysis. by the prompt half-lives of the (2^+) and the (4^+) states. The resulting $T_{1/2} = 13(2)$ ns was combined with $\alpha = 0.133(2)$ for the 198-keV E2 γ ray to yield $B[E2; (6^+) \rightarrow (4^+)] =$ 4.7(7) W.u. The experimental B(E2) value agrees well with the theoretical value obtained from SLGM interactions with enhanced effective charges (b), which is 4.8 W.u. However, within 2σ uncertainty the theoretical B(E2) = 3.6 W.u. calculated with standard effective charges (a) is also consistent. LSSM calculations based on the Nowacki-Sieja interaction [33] in the extended $\pi v(g_{7/2},d,s)$ model space with up to four particle-hole (p-h) excitations were also performed [21]. The resultant B(E2) value of 5.13 W.u. based on the standard effective charges (a) is in great agreement with the experimental value. However, the $B[E2;(8^+) \rightarrow (6^+)]$ value was slightly overestimated at 2.03 W.u. from the LSSM calculations. Similar results were obtained from allowing up to five p-h excitations, as shown in Table I. ## F. Comparison of experimental isomeric ratios to theory The experimental isomeric ratios $R_{\rm exp}$ were compared to theoretical predictions $R_{\rm theo}$ as described in other experimental literature with various primary beam energies and projectile masses of fragmentation reactions [46,65,66]. The initial step of the theoretical calculations involves the final spin distribution of the fragments. The statistical abrasion-ablation model [67] was adopted to generate a probability density function in terms of the fragment's spin J [68], $$P_J = \frac{2J+1}{2\sigma_f^2} e^{-J(J+1)/2\sigma_f^2},\tag{2}$$ where σ_f is the spin cutoff parameter of the final fragment: $$\sigma_f^2 = \langle j_z^2 \rangle \frac{(A_p - A_f)(\nu A_p + A_f)}{(\nu + 1)^2 (A_p - 1)}.$$ (3) The first term $\langle j_z^2 \rangle$ is the average square of the spin projection of each nucleon in the fragment and is calculated based on the semiclassical treatment of the angular momentum distribution in the Woods-Saxon potential, $$\langle j_z^2 \rangle = 0.16 A_p^{2/3} \left(1 - \frac{2}{3} \beta \right),$$ (4) where β is the quadrupole deformation parameter of the fragmented nucleus. Negligible deformations are expected for nuclei in the vicinity of the doubly magic 100 Sn, so $\beta=0$ was assumed in this work. $A_p=124$ is the projectile nucleus's mass number (124 Xe primary beam), and A_f is the fragment nucleus's mass number. The parameter ν is the mean number of evaporated nucleons per abrasion of one nucleon which varied depending on the projectile nuclei and the primary beam energy. $\nu=2$ was assumed for primary beams of 750 MeV/u 238 U [66] and 1 GeV/u 208 Pb, while $\nu=0.5$ was used for a 60 MeV/u 92 Mo beam [65]. In comparison to the cited works, the 345-MeV 124 Xe beam used in this experiment has intermediate quantities in both mass and energy. Several values of ν were used to calculate different sets of R_{theo} . After having determined the formulas to calculate the distribution of J, the sharp cutoff model (SCM) was employed. For a given isomeric state with spin J_m , the SCM assumes TABLE II. Isomeric ratios of nuclei determined in this work. Three different sets of theoretical isomeric ratios were calculated for each ν (mean number of evaporated nucleons per abrasion of one nucleon), and the standard deviations to $R_{\rm exp}$ for J>4 positive-parity isomers are given for comparison. | Nucleus | J_m^π | Decay | R _{exp} (%) | R_{theo} (%) | | | |----------------------------------|---------------------------------------|---------------------------|----------------------|-----------------------|-----------|-----------| | | | mode(s) | | v = 0.5 | $\nu = 1$ | $\nu = 2$ | | ⁸⁸ Zr | (8 ⁺) | γ, IC | 69(5) | 63 | 56 | 44 | | 90Nb | (11^{-}) | γ, IC | 16(3) | 41 | 33 | 20 | | ⁹⁰ Mo | (8^{+}) | γ, IC | 61(3) | 62 | 55 | 42 | | 90 Rh | (7^{+}) | β , βp | 86(3) | 69 | 63 | 51 | | ⁹¹ Nb | ⁹¹ Nb (17/2 ⁻) | | 47(12) | 58 | 50 | 37 | | ⁹² Mo | 92 Mo (8 ⁺) | | 48(10) | 61 | 53 | 41 | | ⁹² Tc | ^{92}Tc (4 ⁺) | | 10(1) | 87 | 84 | 78 | | ⁹² Ru | 92 Ru (8 ⁺) | | 32(33) | 61 | 54 | 41 | | 92 Rh | (4^{+}) | γ , IC | 6.8(32) | 87 | 83 | 77 | | ⁹³ Tc | 3 Te $(17/2^{-})$ | | 54(5) | 55 | 47 | 34 | | ⁹³ Ru | $(21/2^+)$ | γ, IC | 53(2) | 42 | 33 | 20 | | ⁹⁴ Ru | 8^+ | γ, IC | 68(6) | 58 | 50 | 37 | | ⁹⁴ Pd | (19^{-}) | γ , IC | 6.8(29) | 5.9 | 2.8 | 0.6 | | | (14^{+}) | γ , IC | 30(1) | 21 | 14 | 5.8 | | 94 Ag | (7^{+}) | β , βp | 77(3) | 66 | 58 | 46 | | | (21^{+}) | β , βp , p | <3 | 3.2 | 1.3 | 0.2 | | ⁹⁵ Pd | $(21/2^+)$ | β | 77(11) | 40 | 31 | 18 | | 95 Ag | $(37/2^+)$ | γ , IC | 7.7(7) | 11 | 6.0 | 1.8 | | | $(23/2^+)$ | γ , IC | 41(7) | 33 | 25 | 13 | | | $(1/2^{-})$ | γ , IC | 2.9(8) | 99 | 99 | 99 | | ⁹⁶ Pd | (8^{+}) | γ , IC | 76(1) | 56 | 48 | 34 | | 96 Ag | (19^{+}) | γ , IC | 1.4(8) | 5.0 | 2.2 | 0.4 | | | (15^{+}) | γ , IC | 18.7(4) | 15 | 9.0 | 3.1 | | | (13^{-}) | γ , IC | 12.4(13) | 24 | 16 | 7.4 | | | (2^{+}) | β , βp | 22(3) | 95 | 94 | 92 | | ⁹⁶ Cd | (16^{+}) | β , βp | 22(3) | 12 | 6.5 | 2.0 | | ⁹⁷ Cd | $(25/2^+)$ | β , βp | 37(3) | 25 | 17 | 8.0 | | ⁹⁸ Ag | (4^{+}) | γ , IC | 4.2(10) | 85 | 81 | 73 | | ⁹⁸ Cd | (12^{+}) | γ , IC | 10(1) | 27 | 19 | 9.0 | | | (8^{+}) | γ , IC | 97(36) | 54 | 45 | 32 | | ⁹⁸ In | (9^{+}) | β , βp | 59(2) | 47 | 38 | 25 | | $\sigma(J_m^+ > 4 \text{ only})$ | | | | 18.1 | 23.2 | 32.3 | that only the states with $J>J_m$ undergo spin-decreasing electromagnetic transitions to populate the isomer. A possible underestimation of the isomeric ratio of the SCM is offset by another crude assumption that all of the transitions from $J>J_m$ states are funneled to the isomer. Then $R_{\rm theo}$ is given by $$R_{\text{theo}} = \int_{J_{-}}^{\infty} P_J dJ = e^{-J_m (J_m + 1)/2\sigma_f^2},$$ (5) with σ_f^2 given in Eq. (3). Table II lists the isomers' J_m^{π} , decay mode(s), $R_{\rm exp}$ and $R_{\rm theo}$ calculated with $\nu=0.5$, 1, and 2. $R_{\rm theo}$ calculated with $\nu=0.5$ resulted in the best agreement with $R_{\rm exp}$, and the corresponding $R_{\rm exp}/R_{\rm theo}$ ratios are plotted in Fig. 9. For positive-parity isomers with $J_m^+>4$, all of the ratios lie between 0.5 and 2. For $J_m^{\pi}\leqslant 4$, the SCM breaks down because FIG. 9. Comparisons between experimental and theoretical isomeric ratios of nuclei in the 100 Sn region. The theoretical isomeric ratios used in this plot were determined from the sharp cutoff model with $\nu = 0.5$. the isomers' spins are lower than the corresponding groundstate spins. In such cases, the population fractions of the ground states were compared to R_{theo} . They also demonstrate agreement within a factor of 2. For negative-parity isomers, two experimental fractions are lower than the predicted values: the (11^-) isomer in 90 Nb and the (13^-) isomer in 96 Ag. No trivial explanation exists at the moment for the low $R_{\rm exp}$ in 90 Nb. For 96 Ag, however, higher-energy isomers with $J_m^{\pi} = (15^+)$ and (19^+) siphon some of the feeding to the (13^-) isomer. When the upper limit of the integral in Eq. (5) was modified to J = 15, $R_{\text{theo}} = 9.5\%$, a much better agreement with $R_{\rm exp} = 12.4(13)\%$. Finally, two core-excited isomers report low $R_{\rm exp}/R_{\rm theo}$ ratios: the (19⁺) isomer in $^{96}{\rm Ag}$ and the (12⁺) isomer in ⁹⁸Cd. The reason for this phenomenon is attributed to the need to knock out a nucleon from the 100 Sn core, which is more bound than a nucleon above the N = Z = 50 shell by 4–5 MeV. ## G. Properties of the hypothetical E2 isomer in ¹⁰⁰Sn A search for a core-excited isomer decaying by an E2 transition in $^{100}{\rm Sn}$ [6] was carried out, but time-delayed γ rays were not observed in this nucleus. Owing to the high excitation energy, this hypothetical isomer may also possess a nonzero b_p with a half-life well below the 600- μ s dead time of WAS3ABi. The β -decay analysis of $^{100}{\rm Sn}$ with limited statistics did not yield a clear signature of $^{99}{\rm In}$. In this work, an upper limit on the half-life of an isomer assumed to decay by an E2 γ ray and $b_p=0$ is proposed based on the expression $$T_{1/2} < \frac{\ln(2)T_F}{H[\ln(\epsilon N_{\text{ion}}R) - \ln(N_{\nu}H)]},\tag{6}$$ where T_F is the flight time of the ¹⁰⁰Sn ions through the separator, ϵ
is EURICA's detection efficiency, $N_{\rm ion}$ is the number of implanted ¹⁰⁰Sn nuclei, R is the isomeric ratio, N_{γ} is the number of available γ rays for observation, and $H = 1 + \alpha$ is the hindrance factor for electromagnetic decays FIG. 10. Upper limits on the half-life of a hypothetical E2 isomer in $^{100}{\rm Sn}$ as a function of γ -ray energy and three different isomeric ratios. The green band displays the relationship between $T_{1/2}$ and E_{γ} for B(E2)=0.3-2.0 W.u. Conservative limits of $E_{\gamma}>125$ keV and $T_{1/2}<210$ ns are deduced for $^{100}{\rm Sn}$'s isomer, assuming R=12.5%. in bare ions without an IC branch. The details of R, N_{γ} , and H are summarized below. Using the SCM discussed in this work, $R(^{100m}Sn)$ can be reasonably estimated. Noting that the excited states of ¹⁰⁰Sn must involve core excitations, the weighted average of $R_{\rm exp}/R_{\rm theo}$ from the core-excited isomers in $^{98}{\rm Cd}$ [21] and 96 Ag [20] was used to calculate $R(^{100m}$ Sn). The isomer's spin was assumed to be 6^+ , yielding R = 25%. The alternative assumption of the isomer's spin being 8^+ results in R = 19%. In acknowledging the crudeness of the SCM and the possibility of the 8⁺ isomer, two additional fractions of 12.5% and 50% were also considered. Then $N_{\gamma} = 3.57$ was assumed, which is the 2σ upper limit of zero observations in Poisson statistics [69]. Finally, the apparent half-life of the E2 isomer during ¹⁰⁰Sn's flight through the separator is increased by the factor H, where the T_F was 610(20) ns in the rest frame of 100 Sn. The additional H coupled to N_{ν} in Eq. (6) corresponds to the loss in expected γ -ray counts owing to the IC branch, which was activated the moment the bare ¹⁰⁰Sn nuclei were deionized in WAS3ABi during implantation. Figure 10 shows the $T_{1/2}$ upper limits of the hypothetical isomer in 100 Sn as a function of the γ -ray energy and R, where the former affects ϵ and H. The theoretical B(E2) range was relaxed from 0.7–1.1 W.u. to 0.3–2.0 W.u. to generate more conservative limits. For an E2 transition in 100 Sn, 1 W.u. is 27.57 e^2 fm 4 . For R=12.5%, the $T_{1/2}$ upper limit line intersects the B(E2) band at approximately 125 keV (minimum energy) and 210 ns (maximum time). Thus, the limits on the hypothetical E2 isomer's properties are $E_{\gamma} > 125$ keV, $\alpha < 0.723$, and $T_{1/2} < 210$ ns. Additional $T_{1/2}$ limits could be generated from the nonobservation of other γ rays in the decay cascade, where the theoretical γ -ray energies for the $4^+ \rightarrow 2^+$ and the $2^+ \rightarrow 0^+$ transitions are 0.4(1) and 4(1) MeV, respectively [32–34]. Conservative estimates were obtained by minimizing H, ϵ , and R in Eq. (6) within reasonable limits. In this case the first H in Eq. (6), dependent on the isomeric $6^+ \to 4^+ \gamma$ -ray energy, differs from the second H, which depends on the cascading γ -ray energy. $T_{1/2}$ upper limits of 210(20) ns and 0.9(4) μ s were obtained based on the two aforementioned hypothetical γ -ray energies, which are consistent with the value estimated from the properties of the delayed low-energy transition. If the isomer has $b_p > 0$, then the partial half-life limit of the electromagnetic decay would increase. Consequently, in view of Fig. 10 the lower limit on the E2 γ -ray energy will decrease with increasing b_p . ## IV. SUMMARY AND CONCLUSIONS Half-life and energy measurements of γ -decaying isomers in the ¹⁰⁰Sn region were carried out. The results agree well with literature values, and several half-lives were measured with better precision. New results include a 55-keV $E2 \gamma$ ray in 92 Rh and a new (4⁺) isomeric state; a 44-keV γ ray in 96 Ag, confirmed as the $(15^+) \rightarrow (13^+)$ E2 transition; and $T_{1/2} = 13(2)$ ns for the (6⁺) state in ⁹⁸Cd. These new findings are consistent with shell-model calculations with the SLGM interactions in the pg model space. In addition, a large set of experimental isomeric ratios for nuclei in the vicinity of ¹⁰⁰Sn was compared with theoretical values based on the statistical abrasion-ablation model and the SCM. R_{exp} could be reproduced within a factor of 2 for almost all isomers, and discrepancies could be attributed to nuclear structure effects. From realistic isomeric ratio predictions and shellmodel calculations, limits are placed on the electromagnetic transition properties of a hypothetical E2 isomer in $^{100}{\rm Sn}$: $E_{\gamma} > 125$ keV, $\alpha < 0.723$, and $T_{1/2} < 210$ ns. The isomeric ratio of the (6⁺) isomer in ¹⁰⁰Sn was predicted to be 25% for a 345 MeV/u ¹²⁴Xe primary beam. These constraints will be useful in designing future experiments to probe the excited states of ¹⁰⁰Sn. # ACKNOWLEDGMENTS The authors would like to thank the personnel at the RIKEN Nishina Center for providing the exotic radioactive isotope beam with record intensities. This experiment was performed at RI Beam Factory operated by RIKEN Nishina Center and CNS, University of Tokyo. We acknowledge the EUROBALL Owners Committee for loaning the germanium detectors and the PreSpec Collaboration for the readout electronics of the cluster detectors of EURICA. Support for the WAS3ABi setup was provided by the Rare Isotope Science Project, funded by the Ministry of Education, Science and Technology (MEST) and National Research Foundation (NRF) of Korea, as well as KAKENHI (Grant No. 25247045) of Japan Society for the Promotion of Science (JSPS). The authors acknowledge the support of the DFG cluster of excellence "Origin and Structure of the Universe," German BMBF under Contract No. 05P15PKFNA and the Spanish Ministerio de Economía v Competitividad via Project No. FPA2014-57196-C5-4-P. Part of the research was funded by the Natural Sciences and Engineering Research Council (NSERC) of Canada and also supported by FJNSP LIA (French-Japanese International Associated Laboratory for Nuclear Structure Problems). - [1] C. B. Hinke et al., Nature (London) 486, 341 (2012). - [2] B. Cederwall *et al.*, Nature (London) **469**, 68 (2011). - [3] B. S. Nara Singh et al., Phys. Rev. Lett. 107, 172502 (2011). - [4] R. K. Wallace and S. E. Woosley, Astrophys. J. Suppl. 45, 389 (1981). - [5] H. Schatz, A. Aprahamian, V. Barnard, L. Bildsten, A. Cumming, M. Ouellette, T. Rauscher, F. K. Thielemann, and M. Wiescher, Phys. Rev. Lett. 86, 3471 (2001). - [6] T. Faestermann, M. Górska, and H. Grawe, Prog. Part. Nucl. Phys. 69, 85 (2013). - [7] H. Grawe et al., Eur. Phys. J. A 27, 257 (2006). - [8] O. Häusser et al., Nucl. Phys. A 293, 248 (1977). - [9] E. Nolte and H. Hick, Z. Phys. A 305, 289 (1982). - [10] H. Grawe and H. Haas, Phys. Lett. B 120, 63 (1983). - [11] M. Gorska et al., Phys. Rev. Lett. 79, 2415 (1997). - [12] J. Doring, H. Grawe, K. Schmidt, R. Borcea, S. Galanopoulos, M. Gorska, S. Harissopulos, M. Hellstrom, Z. Janas, R. Kirchner, M. LaCommara, C. Mazzocchi, E. Roeckl, and R. Schwengner, Phys. Rev. C 68, 034306 (2003). - [13] M. La Commara et al., Nucl. Phys. A 708, 167 (2002). - [14] C. Plettner et al., Nucl. Phys. A 733, 20 (2004). - [15] I. Mukha, L. Batist, E. Roeckl, H. Grawe, J. Doring, A. Blazhev, C. R. Hoffman, Z. Janas, R. Kirchner, M. LaCommara, S. Dean, C. Mazzocchi, C. Plettner, S. L. Tabor, and M. Wiedeking, Phys. Rev. C 70, 044311 (2004). - [16] I. Mukha et al., Nature (London) 439, 298 (2006). - [17] P. J. Davies et al., Phys. Lett. B 767, 474 (2017). - [18] D. Bazin et al., Phys. Rev. Lett. 101, 252501 (2008). - [19] G. Lorusso et al., Phys. Rev. C 86, 014313 (2012). - [20] P. Boutachkov et al., Phys. Rev. C 84, 044311 (2011). - [21] A. Blazhev et al., Phys. Rev. C 69, 064304 (2004). - [22] A. Blazhev et al., J. Phys. Conf. Series 205, 012035 (2010). - [23] F. J. D. Serduke, R. D. Lawson, and D. H. Gloeckner, Nucl. Phys. A 256, 45 (1976). - [24] R. Gross and A. Frenkel, Nucl. Phys. A 267, 85 (1976). - [25] A. Amusa and R. D. Lawson, Z. Phys. A 307, 333 (1982). - [26] J. Blomqvist and L. Rydström, Phys. Scr. 31, 31 (1985). - [27] I. P. Johnston and L. D. Skouras, Eur. Phys. J. A 11, 125 (2011). - [28] A. F. Lisetskiy, B. A. Brown, M. Horoi, and H. Grawe, Phys. Rev. C 70, 044314 (2004). - [29] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, Phys. Rev. C **80**, 064323 (2009). - [30] A. P. Zuker, A. Poves, F. Nowacki, and S. M. Lenzi, Phys. Rev. C 92, 024320 (2015). - [31] F. Nowacki, Nucl. Phys. A 704, 223 (2002). - [32] O. Kavatsyuk et al., Eur. Phys. J. A 31, 319 (2007). - [33] F. Nowacki (private communication). - [34] V. I. Isakov and K. I. Erokhina, Phys. At. Nucl. 65, 1431 (2002). - [35] H. Suzuki et al., Nucl. Instrum. Methods B 317, 756 (2013). - [36] N. Fukuda et al., Nucl. Instrum. Methods B 317, 323 (2013). - [37] T. Kubo et al., Prog. Theor. Exp. Phys. 2012, 03C003 (2012). - [38] H. Kumagai et al., Nucl. Instrum. Methods A 470, 562 (2001). - [39] K. Kimura et al., Nucl. Instrum. Methods A 538, 608 (2005). - [40] O. B. Tarasov and D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008). - [41] I. Čeliković et al., Phys. Rev. Lett. 116, 162501 (2016). - [42] J. Park et al., Phys. Rev. Lett. (unpublished). - [43] S. Nishimura, Prog. Theor. Exp. Phys. 2012, 03C006 (2012). - [44] P.-A. Söderström et al., Nucl. Instrum. Methods B 317, 649 (2013). - [45] T. Kibédi et al., Nucl. Instrum. Methods A 589, 202 (2008). - [46] M. Pfutzner et al., Phys. Rev. C 65, 064604 (2002). - [47] G. Audi et al., Chin. Phys. C 41, 030001 (2017). - [48] T. S. Brock et al., Phys. Rev. C 82, 061309(R) (2010). - [49] A. B. Garnsworthy et al., Phys. Rev. C 80, 064303 (2009). - [50] S. Myalski et al., Acta Phys. Pol. B 38, 1277 (2007). - [51] M. Vencelj et al., Balk. Phys. Lett. Special Issue, p. 298 (2000). - [52] N. Braun, Ph.D. thesis, University of Cologne, Cologne, Germany, 2012. - [53] R. Grzywacz, AIP Conf. Proc.
455, 430 (1998). - [54] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115 (2014). - [55] D. Rudolph, Nucl. Phys. A 587, 181 (1995). - [56] D. Abriola and A. A. Sonzogni, Nucl. Data Sheets 107, 2423 (2006). - [57] C. M. Baglin, Nucl. Data Sheets 113, 2187 (2012). - [58] D. Kast et al., Z. Phys. A 356, 363 (1997). - [59] O. L. Pechenaya, C. J. Chiara, D. G. Sarantites, W. Reviol, R. J. Charity, M. P. Carpenter, R. V. F. Janssens, T. Lauritsen, C. J. Lister, D. Seweryniak, S. Zhu, L. L. Andersson, E. K. Johansson, and D. Rudolph, Phys. Rev. C 76, 011304(R) (2007). - [60] R. Machleidt, Phys. Rev. C 63, 024001 (2001). - [61] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261, 125 (1995). - [62] B. Singh and Z. Hu, Nucl. Data Sheets 98, 335 (2003). - [63] A. Płochocki et al., Z. Phys. A 342, 43 (1992). - [64] M. Hjorth-Jensen (private communication). - [65] J. M. Daugas, R. Grzywacz, M. Lewitowicz, M. J. Lopez-Jimenez, F. deOliveira-Santos, J. C. Angelique, L. Axelsson, C. Borcea, C. Longour, and G. Neyens, Phys. Rev. C 63, 064609 (2001). - [66] K. A. Gladnishki et al., Phys. Rev. C 69, 024617 (2004). - [67] J.-J. Gaimard and K.-H. Schmidt, Nucl. Phys. A 531, 709 (1991). - [68] M. de Jong, A. V. Ignatuyk, and K.-H. Schmidt, Nucl. Phys. A 613, 435 (1997). - [69] K.-H. Schmidt et al., Z. Phys. A 316, 19 (1984).