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Convergence of the hole-line expansion with modern nucleon-nucleon potentials
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We calculate the three-hole-line contributions to the binding energy of symmetric nuclear matter in the
Brueckner-Bethe-Goldstone expansion using various modern nucleon-nucleon potentials of high precision. The
relation with the correlation parameter κ = ρVcore is examined. In all cases the three-hole-line contributions turn
out to be sufficiently small, but no satisfactory saturation is obtained. This means that three-nucleon forces are
essential for all considered potentials.
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I. INTRODUCTION

The accurate computation of the binding energy and related
properties of bulk nuclear matter is a long-lasting theoretical
problem [1–3] that received new impetus from the recent
activity in the field of chiral perturbation theory [4]. The basic
difficulty stems from the fact that traditional nucleon-nucleon
forces [(NN ) potentials] feature a very strong repulsion at
short distances, i.e., a “hard core,” caused by the quark
substructure of the nucleons. This renders a straightforward
perturbative calculation impossible.

Various theoretical approaches have been devised to con-
front this problem. In this article we employ the Brueckner-
Bethe-Goldstone (BBG) theory of dense Fermi systems [5]
in which the expansion parameter κ = (c/d)3 is given by the
cubed ratio of the short-range (hard-core) interaction range c
to the average interparticle distance d [6,7]. This translates into
an expansion in terms of hole lines of the associated Goldstone
diagrams, for example, the binding energy per particle of
symmetric nuclear matter (SNM) can be written as

B/A = T + E2 + E3 + · · · , (1)

where T is the kinetic energy, E2 = EBHF is the two-hole-
line (2HL) contribution at the Brueckner-Hartree-Fock (BHF)
level, and E3 is the three-hole-line (3HL) contribution, which
will be the main focus of this article.

In Ref. [7] we have recently analyzed the density de-
pendence of the correlation parameter κ for various modern
NN potentials, including recent chiral potentials. We found
distinct qualitative differences between the potentials, related
to the condition whether a strong hard core is present (r-space
potentials) or not (chiral potentials). In the latter case the
hole-line expansion (HLE) parameter κ becomes very small
with increasing density. On the other hand, in the absence
of a hard core, i.e., a dominant short-range interaction, the
very justification of the HLE becomes doubtful. Therefore, in
this new paper we continue our previous study by explicitly
computing the 3HL contributions to the binding energy of
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symmetric nuclear matter in the BBG expansion presenting
and comparing results obtained with the Argonne V18 (AV18)
[8], the CDBONN [9], and the recent N3LO chiral potentials
[10] with two values of the chiral cutoff � = 450,500 MeV.

A further important check of the convergence of the HLE
is the comparison of results obtained with different choices of
the BHF auxiliary single-particle (s.p.) potential U (k), usually
the “continuous” and “gap” choices, and we will also perform
this comparison.

II. FORMALISM

A. Correlation parameter and hole-line expansion

In Ref. [7] we related the correlation parameter κ of
symmetric nuclear matter to the BHF defect function η in
the following way [5,11]:

κ = ρ

∫
d3r〈|η(r)|2〉S,T = N

Vcore

V
=

( c

d

)3
, (2)

which expresses the correlation parameter as the ratio of the
core (or “wound”) volume to the volume per particle, or
equivalently, the cubed ratio of core diameter c to average
nucleon distance d. Since the core volume or diameter defined
in this way from the density-dependent defect functions are
not constant, but in general shrink with increasing density,
the result is a nonlinear density dependence of the correlation
parameter κ as illustrated in Fig. 3(d).

It was shown explicitly in Ref. [7] that the competition
between the long-range 3SD1 deuteron partial wave and the
other more short-range channels determines the overall density
dependence of the correlation strength κ = ∑

α κα for the
different potentials. For soft potentials (N3LO) all correlation
volumes and even the parameters κα disappear fast with
increasing density, whereas for hard potentials (AV18) the
correlation strength might increase again with density due to
the dominance of the persistent p-wave contributions at high
densities. This is seen in Fig. 3(d).

Equation (2) has the following interpretation as the founda-
tion of the HLE: For a system with interaction range c and aver-
age particle distance d > c, the probability of finding a cluster
of n interacting (correlated) particles is (c/d)3n = κn � 1.
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This suggests grouping the energy diagrams according to the
number of interacting particles—first two-body correlations
or clusters, then three-body correlations, etc. The number of
interacting particles is equivalent to the number of hole lines, so
this leads to the HLE Eq. (1), which amounts to an expansion in
density governed by the dimensionless parameter κ = ρVcore.
However, this assertion obviously hinges on the condition that
the dominant component of the interaction is the short-range
core part and therefore in practice the convergence of the HLE
should be verified for any potential by explicit computation,
which is the purpose of the present article.

B. The 3HL contributions to the binding energy

In the BBG expansion the bare NN two-body interaction
V systematically is replaced by the G matrix, which satisfies
the Bethe-Goldstone equation,

〈12|G(W )|1′2′〉 = 〈12|V |1′2′〉 −
∑
1′′2′′

〈12|V |1′′2′′〉

× Q

E − W
〈1′′2′′|G(W )|1′2′〉, (3)

where each variable 1, . . . stands for (k,σ,τ )1, i.e., the
three-dimensional momentum k and the spin-isospin variables
σ,τ . Antisymmetrization of the matrix elements always is
understood. The energy W is the so-called entry energy, which
appears as a parameter in the equation. The Pauli operator Q
projects the intermediate states 1′′,2′′ with energy E above
the Fermi momenta. As is well known, the G matrix sums up
the ladder diagrams in the particle-particle scattering and takes
into account most of the short-range correlations introduced by
the hard core of the interaction if present. It is therefore much
softer than the original bare interaction, and an expansion in the
G matrix is expected to have an improved rate of convergence.

In the BBG expansion the diagrams then are grouped
according to the order of the correlations that they are expected
to describe. It turns out that this is equivalent to group the
diagrams according to the number of hole lines that they
contain. For an introduction to the subject, see Ref. [2] and
the references therein. To sum up the diagrams at a given order
of correlations it is quite useful to introduce a hierarchy of
in-medium scattering matrices. With the G matrix one can sum
up the two-body correlation diagrams, depicted in Figs. 1(a)
and 1(b).

For the three-body correlations one introduces the three-
body in-medium scattering matrix T (3), Fig. 1(g), which
satisfies the Bethe-Fadeev equations, which are the analogs
of the Fadeev equations for the three-body scattering matrix
in free space. Because of antisymmetry, the original three
coupled equations for distinguishable particles reduce to a
single equation [2],

〈123|T (3)|1′2′3′〉 = 〈12|G|1′2′〉δ33′ −
∑

1′′2′′3′′
〈123|GX|1′′2′′3′′〉

× Q3

E3 − W3
〈1′′2′′3′′|T (3)|1′2′3′〉. (4)

The factor Q3/(E3 − W3) is the analog of the factor Q/(E −
W ) appearing in the integral equation for the two-body

G

(a) (b)

(c) (d)

(e)

T(3)

(f)

(g)

T(3) = + + +

+ + + · · ·

FIG. 1. Different Goldstone diagrams contributing to the binding
energy of nuclear matter. Diagrams (a) and (b) correspond to the BHF
calculation. The sum of the other diagrams (c)–(f) gives the three-
hole-line contribution. The expansion of the Bethe-Fadeev integral
equation is sketched in (g). For more details, please see the text.

scattering matrix G, namely, the projection operator Q3

imposes that all the three-particle states lie above the Fermi
energy and E3 in the denominator is the energy of the
three-particle intermediate state, in close analogy with the
equation for the two-body scattering matrix.

The real novelty with respect to the two-body case is the
operator X = P123 + P132, where P indicates the operation of
cyclic permutation of its indices. This operator interchanges
particle 3 with particles 1 or 2. It gives rise to the so-called
“endemic factor” in the Fadeev equations since it is an
unavoidable complication intrinsic to the three-body problem
in general. The reason for the appearance of the operator X
in this context is that no two successive G matrices can be
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present in the same pair of particle lines since the G matrix
already sums up all the two-body ladder processes. In other
words, the G matrices must alternate from one pair of particle
lines to another in all possible ways, as is indeed apparent from
the expansion by iteration of Eq. (4), sketched in Fig. 1(g).

The three-body scattering matrix T (3) appears in the
schematic diagram of Fig. 1(f), which indeed sums up all
the irreducible scattering processes among three particles in
the medium. However, for numerical reasons it is useful to
separate the lowest-order diagram of the series, depicted in
Fig. 1(c), which is usually indicated as a “bubble diagram.”
It features a slow rate of convergence with respect to the sum
over the angular momentum that characterizes the G matrix
on the right-hand side of the diagram due to the long range of
the one-pion-exchange interaction. The summation must then
be extended to high angular momentum. The higher-order
diagrams do not present such a problem, and the involved
angular momenta can be restricted to relatively low values.

The exchange diagram of the bubble diagram is the “ring
diagram” of Fig. 1(e). It describes the effect of the long-range
correlations. The contribution of the higher-order diagrams of
the particle-hole ladder series, i.e., diagrams with more than
one particle-hole bubble, seems to be negligible [12] in nuclear
matter. Long-range correlations also are embodied in the
hole-hole propagation, which can be considered together with
the particle-particle propagation of the Brueckner G matrix.
The hole-hole contributions can be relevant for the nuclear
matter binding energy, in particular in the self-consistent
Green’s function approach [13–16]. However, both series of
higher-order diagrams include an arbitrary number of hole
lines, and they would be in contrast with the hole-line BBG
expansion, which suggests that all the diagrams with a given
number of hole lines must be grouped together to minimize
their contribution.

Finally the diagram of Fig. 1(d) is the first “potential
insertion” diagram. This is the first of a series of additional
diagrams that are a relevant and distinct feature of the BBG
expansion: In the BBG scheme one introduces an auxiliary
s.p. potential U , which modifies the s.p. spectrum. The
Hamiltonian H is thus split as follows:

H = (T + U ) + (V − U ), (5)

where T is the kinetic energy. In the BBG expansion one then
uses as the s.p. Hamiltonian T + U and as the interaction
V − U . Besides the original two-body interaction V one then
obtains a set of contributions from the interaction term −U .
Because the splitting of Eq. (5) is just an identity, the final
result, after summing the diagrams to all orders, is formally
independent of U . However, the introduction of U is expected
to speed up the convergence of the expansion since with a
proper choice of the mean-field U the interaction V − U can
be made much weaker than the original interaction V . In other
words, the s.p. potential U effectively can incorporate a major
fraction of the correlations.

A possible and physically motivated choice of the potential,
which turned out to be quite convenient, is the so-called
“Brueckner potential,” which is defined in terms of the G

matrix,

U (1) =
∑

2

〈12|G(e1 + e2)|12〉, (6)

where

e1 = k2
1

2m1
+ U (1) (7)

is the s.p. spectrum. Equations (6) and (7) imply a self-
consistent procedure for the calculation of the s.p. potential
U (k). Once the potential is obtained, the 3HL diagrams and
higher are calculated using the s.p. spectrum of Eq. (7).

At the 2HL level of approximation the energy per particle
is given by

E2 = 1

2A

∑
12

n(1)n(2)〈12|G(e1 + e2)|12〉, (8)

where n(k) = θ (kF − k) is the occupation number for the free
Fermi gas. This restricts the summations inside the Fermi
sphere. The 3HL contribution is obtained in an analogous way.
In particular, the diagonal matrix element of the three-particle
scattering matrix has to be integrated over the three external
momenta. In addition the diagram of Fig. 1(d), not directly
connected with T (3), must be added. The calculations are very
complex, and the explicit expressions for the 3HL diagrams
can be found in Refs. [2,12,17].

A remark on the choice of Eq. (6) for the s.p. potential is
in order. This definition is actually not unique. In the so-called
standard choice, or “gap choice,” the potential is assumed to
be zero above the Fermi momenta so that the self-consistent
procedure is carried out only below the Fermi momentum. In
the “continuous choice” the definition of Eq. (6) is extended
to all momenta, and the self-consistency then is demanded
for arbitrary values of the momenta. The two choices give
of course quite different s.p. potentials. However, as already
noticed, the final result obtained summing up the diagrams
to all orders must be independent of the choice of U . The
possible independence of the results from U at a given order of
approximation can be taken as a criterion for the convergence
of the expansion and an estimate of the theoretical error.

Extensive results up to the 3HL order with the gap choice for
the Reid and V14 potentials can be found in Refs. [12,18–20].
The first complete calculations with the continuous choice
were given in Refs. [21–23] where indeed the approximate
independence from the choice of U once the 3HL contributions
are included was explicitly demonstrated. For the employed
Argonne V14 and V18 NN interactions, the 3HL contribution
in the continuous choice was found quite small. Later also
results with the CDBONN [24], the Argonne V8,6,4 [15], and
the fss2 [25] potentials were presented.

In the following we will focus on the confrontation of the
representative AV18 and CDBONN results with new ones for
the chiral N3LO potentials and study the consistency with the
hole-line parameter κ .

III. RESULTS

As a first illustration, we plot in Fig. 2 the saturation
curves for SNM obtained with the different potentials at the
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FIG. 2. Saturation curves of symmetric nuclear matter for differ-
ent NN potentials in the 2HL (left panel) and 2HL + 3HL (right
panel) approximations with continuous (bold curves) or gap-choice
(thin curves) s.p. potentials. The markers indicate the empirical
saturation point.

2HL (left panel) and 2HL + 3HL (right panel) levels with
either continuous- (bold curves) or gap-choice (thin curves)
s.p. potentials. As pointed out in Ref. [7], the saturation
properties at the 2HL level are correlated with the strength
of the hard core of the different potentials: hard potentials
(AV18) saturate at lower densities and less binding energy
than soft potentials (N3LO); however, in no case is satisfactory
saturation obtained. Gap-choice results are substantially less
attractive than continuous-choice results for all potentials.

Adding the 3HL results, the difference between gap and
continuous choice decreases strongly, which indicates good
convergence of the HLE, which should become independent
of the choice of the s.p. potential at high enough order, as dis-
cussed before. It is also evident that the 3HL contributions with
the more physical continuous choice are much smaller than
the values with the gap choice such that the 2HL continuous-
choice BHF results appear already close to convergence for all
densities and potentials, in particular, the hard-core AV18 [22].
In fact the hatched areas between continuous- and gap-choice
results can be taken as some convergence estimate of the
HLE. In this spirit the worst convergence is exhibited by the
N3LO450 model, which indeed has no hard core and is thus
not expected to respect the HLE.

Nevertheless, nuclear matter saturation properties do not
improve at third order for any potential. The reason is inves-
tigated in more detail in Fig. 3, which shows the individual
continuous-choice total 3HL contributions E3 [panel (a)] and
the ratios E3/|E2| [panel (b)]. One notes in the latter case
that for all potentials the ratio remains well below 10% at any
density, which again indicates good convergence of the HLE.
From the density dependence of E3 it becomes clear why the
saturation properties do not improve: With the exception of
the N3LO500 potential, all E3’s are decreasing functions of
density at ρ0 and therefore shift the saturation point to even
higher densities.

Of further interest is also the comparison of E3/|E2| with
the HLE parameter κ [Fig. 3(d)], which governs the relative

FIG. 3. (a) Continuous-choice 3HL contributions E3 to the bind-
ing energy of SNM. (b) Ratio E3/|E2| of 3HL-to-2HL contributions to
the binding energy. (c) Ratio EBubble/|E2|. (d) Correlation parameter
κ [7] of SNM as a function of density for different potentials.

size of the n and n + 1 cluster energies. We note that there
is no clear correspondence between the magnitudes of κ and
E3/|E2| for the different potentials, e.g., the highest values of κ
are obtained with the hard-core AV18 potential, but in this case
E3/|E2| becomes fairly small in a wide range of densities. Only
for the extremely soft N3LO450 potential are both quantities
consistently small due to the absence of a hard core.

The reason for this behavior is the fact that the total E3

is the sum of the bubble, ring, and higher contributions,
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FIG. 4. Contributions of individual 3HL diagrams to the binding energy per nucleon, see Fig. 1: bubble [dashed lines, Fig. 1(c) + Fig. 1(d)],
ring [dashed-dotted lines, Fig. 1(e)], higher-order [dotted lines, Fig. 1(f)], and total E3 (solid lines) contributions with the continuous (bold
curves) and gap (thin curves) choices for different potentials. Note the different energy scales.

which can be individually large and tend to cancel each
other. This becomes clear in Fig. 3(c) where we plot only
the contribution of the bubble diagrams, Fig. 1(c) + Fig. 1(d),
to the convergence parameter EBubble/|E2|. In this case the
confrontation with κ is completely consistent according to
the hard-core interaction strength, namely, in order AV18,
CDBONN, N3LO500, and N3LO450.

In order to analyze this aspect in more detail, Fig. 4 shows
the individual 3HL contributions for the different potentials
and both gap and continuous choices. One should first note
the rather different energy scales, reflecting again the strength
of the short-range interaction. In most cases the total result
E3 is the sum of a positive bubble contribution and negative
ring + higher contributions, which explains the small total
value in the case of AV18, for example. In general the order of
contributions is |EBubble| > |ERing| > |EHigher|.

IV. CONCLUSIONS

We computed three-hole-line contributions to the binding
energy of symmetric nuclear matter with frequently used
modern NN potentials. In all cases the 3HL results obtained
with the continuous choice of s.p. potentials are a small fraction
of the 2HL values up to large densities such that the HLE
seems to be well converged. This also is corroborated by the
better agreement of gap- and continuous-choice results when
including the relative 3HL contributions.

Nevertheless, the empirical saturation properties of nuclear
matter are not reproduced for any potential, in particular, chiral
forces with a small cutoff do not provide saturation at all.
This means that very strong nuclear three-body forces are

required in order to achieve satisfactory saturation properties of
nuclear matter. On the other hand, for these very soft potentials,
the condition of a dominant short-range component of the
interaction that is the very foundation of the HLE might be
violated. In fact chiral potentials are devised to be employed
in a perturbative framework, but it is nevertheless reassuring
that 3HL results are small.

Indeed, once chiral three-body forces [26] are included
consistently in the study of symmetric nuclear matter, their
contribution does turn out to be large, and reasonable saturation
properties can be obtained, subject to adjusting the relevant
chiral parameters and cutoffs [4].

This paper dealt with the properties of infinite homogeneous
nuclear matter. The question how this relates to the properties
of finite nuclei [27] has also been investigated for a long time
[28], in particular, in many recent works employing chiral
forces [29], which is a field of current active research. We only
note here that, due to the different ranges of the individual
contributions to the correlation energy (e.g., BHF, bubble,
ring, and higher diagrams), their importance and relative
magnitudes in nuclear-matter or finite-nuclei calculations
might be quite different [16].
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