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Background: Exotic nuclei, particularly those near the drip lines, are at the core of one of the fundamental
questions driving nuclear structure and astrophysics today: What are the limits of nuclear binding? Exotic nuclei
play a critical role in both informing theoretical models as well as in our understanding of the origin of the heavy
elements.
Purpose: Our aim is to refine existing mass models through the training of an artificial neural network that will
mitigate the large model discrepancies far away from stability.
Methods: The basic paradigm of our two-pronged approach is an existing mass model that captures as much
as possible of the underlying physics followed by the implementation of a Bayesian neural network (BNN)
refinement to account for the missing physics. Bayesian inference is employed to determine the parameters of
the neural network so that model predictions may be accompanied by theoretical uncertainties.
Results: Despite the undeniable quality of the mass models adopted in this work, we observe a significant
improvement (of about 40%) after the BNN refinement is implemented. Indeed, in the specific case of the Duflo-
Zuker mass formula, we find that the rms deviation relative to experiment is reduced from σrms = 0.503 MeV
to σrms = 0.286 MeV. These newly refined mass tables are used to map the neutron drip lines (or rather “drip
bands”) and to study a few critical r-process nuclei.
Conclusions: The BNN approach is highly successful in refining the predictions of existing mass models. In
particular, the large discrepancy displayed by the original “bare” models in regions where experimental data are
unavailable is considerably quenched after the BNN refinement. This lends credence to our approach and has
motivated us to publish refined mass tables that we trust will be helpful for future astrophysical applications.
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I. INTRODUCTION

Where the chemical elements come from and how they
evolve are among the central questions animating nuclear
science today [1]. Stars heavier than about eight solar masses
(M� � 8M�) reach high enough core temperatures to support
the formation of ever-heavier chemical elements by thermonu-
clear fusion: from helium all the way to iron. Yet, once the
iron-peak elements are synthesized, thermonuclear burning
stops abruptly with the formation of an inert iron core that
will collapse once its mass exceeds the Chandrasekhar limit
[2–4]. This situation naturally inspires the question, how did
the elements heavier than iron form? Whereas the slow neutron
capture process (“s process”) in asymptotic giant branch
stars is believed to be responsible for the formation of about
half of the heavy elements beyond iron (such as strontium,
barium, and lead) identifying the precise site (or sites) of the
rapid neutron capture process (“r process”) responsible for
the remaining half of of the heavy elements (such as gold,
platinum, and uranium) remains elusive [2,5,6]. Indeed, “How
were the elements from iron to uranium made?” has been
identified as one of the eleven science questions for the new
century [7].

Understanding r-process nucleosynthesis is a fascinating
and challenging multidisciplinary problem. Progress in this
area demands detailed knowledge of a host of nuclear-structure
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observables—often at the limits of nuclear existence—such as
masses, neutron capture rates, and nuclear β decays [5,8,9].
Given that the r process develops under extreme astrophysical
conditions such as those found in the merger of two neutron
stars, neutron capture on seed nuclei occurs on a time scale that
is much faster than the competing β-decay rates. This drives
the r process far away from stability, where little is known
about the thousands of exotic nuclear species that participate
in these reactions; see Refs. [6,8,9] and references contained
therein. In an effort to mitigate this problem, Mumpower and
collaborators have performed sensitivity studies to identify
the nuclear inputs (e.g., nuclear masses) that have the greatest
impact on the r process [9–11]. Whereas these studies suggest
that some of the “most influential” nuclear masses are within
reach of future radioactive beam facilities, it is also recognized
that some others will likely remain beyond experimental
reach. Hence, theoretical guidance becomes absolutely critical.
Unfortunately, theoretical mass models that agree in the
vicinity of measured nuclear masses, disagree strongly—often
by several MeV—far away from stability. This is particularly
troublesome given that some sensitivity studies suggest that
resolving the abundance pattern will require reducing mass-
model uncertainties to �100 keV [11]. For a review that both
describes and compares various modern mass formulas that
have been used to extrapolate from the data towards the neutron
drip line, see Ref. [12].

The emergence of the r-process pattern is highly sensitive to
nuclear masses in the vicinity of neutron magic numbers N =
50, 82, and 126. Interestingly, nuclear masses around closed
shells N = 50 and 82 also have a profound impact on the
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composition of a different astrophysical system: the outer crust
of a neutron star. Given that at the low densities of relevance
to the outer crust (104 – 1011 g/cm3) the average inter-nucleon
separation is considerably larger than the range of the nuclear
interaction, it becomes energetically favorable for nucleons
to cluster into individual nuclei that arrange themselves in a
crystalline lattice that is immersed in a uniform free Fermi gas
of electrons [13]. And, whereas the underlying dynamics is
relatively simple, the exotic composition of the outer stellar
crust is also highly sensitive to nuclear masses in regions where
experimental information is not yet available [14]. Thus, as in
the case of the r process, understanding the composition of
the stellar crust relies heavily on theoretical extrapolations
into unknown regions of the nuclear chart.

In an effort to lessen the impact of such inevitable
extrapolations we have recently introduced a Bayesian neural
network (BNN) approach for the calculation of nuclear masses
[15,16] and charge radii [17]. The novel framework proposed
in Ref. [15] consists of a combined scheme that relies on
accurate theoretical predictions that are subsequently refined
by training a suitable artificial neural network on the residuals
between the experimental data and the theoretical predictions.
In essence, the central tenet of our approach is to include as
much physics as possible in the underlying nuclear model and
then rely on a BNN refinement to recover most of the physics
that is missing from the model. In our earlier work we were
able to identify several virtues of such combined approach.
First, by using a randomly selected set of experimentally
known masses to train the neural network, we observed a
significant improvement in the predictions of the remaining
known masses that were not included in the training set—even
for some of the most sophisticated mass models available in
the literature. Second, it is well known that theoretical mass
models of similar quality agree in regions where masses are
known, but differ widely (by as much as tens of MeVs)
in regions where experimental data are not yet available
[18]. However, after implementing the BNN refinement we
found that the large differences in the model predictions were
significantly reduced. Finally, given the “Bayesian” character
of the approach, the refined predictions were accompanied by
properly estimated theoretical errors [15].

In our earlier work we successfully tested the BNN
paradigm in the context of nuclear masses of relevance to
the outer crust of neutron stars [15,16]. It is the main goal
of the present paper to provide updated mass tables that
encompass the entire nuclear chart. As several sophisticated
and successful mass tables already exist [19–25], the initial
phase of our program—namely, the selection of an underlying
model that incorporates as much physics as possible—is
essentially complete. Thus, the remaining task is to implement
the BNN refinement on these highly successful models. Our
hope is that the BNN refinement will improve the original
mass models by reducing the large systematic uncertainties
and by providing realistic statistical errors. Together with the
publication of these updated mass tables, we will also make
available (with associated theoretical uncertainties) related
observables that may be more suitable for certain astrophysical
applications, such as one- and two-nucleon separation ener-
gies. It is our hope that these tables will contribute to further

our understanding of astrophysical phenomena as well as to
constrain theoretical models of nuclear structure. Ultimately,
of course, any progress in theory is strongly coupled to
experimental advances. Indeed, we are at the dawn of a
new era where rare-isotope facilities will probe the limits
of nuclear existence and in so doing will provide critical
guidance to theoretical models. And, although some of the
required theoretical extrapolations will take us far into regions
of the nuclear chart that are unlikely to be explored even at
the most sophisticated facilities, measurements of even a few
exotic short-lived isotopes are of critical importance for the
improvement of theoretical models.

The paper is organized as follows. In the next section we
provide some additional details on the strong synergy between
nuclear structure and astrophysics. As the BNN approach
has been presented elsewhere [15], we limit the discussion
on the formalism to a brief outline of the method and its
implementation in Sec. III. Next, in Sec. IV we focus on
the improvement to several existing mass models after the
BNN refinement. Only in the case of the 10-parameter version
of the Duflo-Zuker mass model [22] do we recalibrate the
parameters in order to extract the associated covariance matrix
that encodes statistical uncertainties and correlations among
the model parameters. In this way the overall theoretical error
will have its origin in two sources: (a) the uncertainty in
calibration of the “bare” model parameters and (b) the errors
emerging from the BNN refinement. Also presented in this
section are results for proton and neutron drip lines as well as a
few masses of particular relevance to the r process. Finally, we
conclude in Sec. V with a summary of our important findings.

II. ASTROPHYSICAL MOTIVATION

Although of fundamental and high intrinsic nuclear-physics
value, modern nuclear mass tables find today their best expres-
sion in astrophysical applications. In particular, nuclear masses
are of paramount importance in understanding nucleosynthesis
in hot stellar environments and the crustal composition of cold
neutron stars. In what follows we provide a brief description of
these two scenarios, underscoring the critical role of nuclear
masses far away from equilibrium.

A. Neutron capture and photodissociation: (γ,n) equilibrium

Although modern r-process simulations make no assump-
tions on whether stellar conditions—such as temperature,
density, and neutron fraction—are favorable to maintain the
reaction (n,γ ) � (γ,n) in thermodynamic equilibrium, the
outcome of such network calculations suggests that under
many astrophysical scenarios equilibrium is indeed attained,
at least during the early stages. Under such an astrophysical
scenario, the final abundance pattern follows solely from
statistical equilibrium and nuclear physics. In particular, the
pattern along a given isotopic chain is set by the temperature
(T ), the neutron density (Nn), and the one-neutron separation
energy (Sn). In essence, once thermodynamic equilibrium has
been established in a given astrophysical environment, the
final abundance pattern along an isotopic chain is entirely
determined by nuclear masses, both near and far from the
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valley of stability. The ratio of yields of neighboring isotopes
at equilibrium is set by the equality of the chemical potential
of the competing species. Given that μγ ≡ 0, one obtains

μ(Z,A) + μn = μ(Z,A + 1). (1)

In the limit of low neutron density and high temperature, so
that each component may be treated as a classical ideal gas,
the condition of chemical equilibrium is encoded in the Saha
equation [2–4]:

Y (Z,A + 1)

Y (Z,A)
= G(Z,A + 1)

2G(Z,A)
Nnλ

3
n(T ) exp

(
Sn(Z,A + 1)

kBT

)
.

(2)

Here Y (Z,A) and G(Z,A) denote the isotopic abundance
and partition function of the seed nucleus, and λn(T ) =√

2π/mnkBT is the de Broglie thermal wavelength of the
neutron. Often NQ = λ−3

n (T ) is referred to as the quantum con-
centration; if Nn � NQ then the system behaves classically.
The nuclear dynamics is imprinted in the neutron separation
energy

Sn(Z,A + 1) ≡ M(Z,A) + mn − M(Z,A + 1)

= B(Z,A + 1) − B(Z,A), (3)

with B(Z,A) being the total nuclear binding energy. Note that
the relative abundance is exponentially sensitive to errors in
the neutron separation energy. For example, at a canonical
stellar temperature of T9 = 109 K, a relatively “modest” error
in the separation energy of 0.1 MeV translates into an error
in the relative abundance of about a factor of 3. Eventually,
chemical equilibrium is lost and the final abundance pattern
is dictated by a series of β decays back to stability. Here too
nuclear masses are of critical importance since the phase-space
factor for β decay is determined by the reaction Q value:
Qβ = M(Z,A) − M(Z + 1,A).

B. Crustal composition of a neutron star

Another powerful connection between astrophysics and
nuclear physics that is highly sensitive to nuclear masses
involves the crustal composition of a neutron star, particularly
its outer crust [13,14,26–29]. The crust is interesting because
the dynamics is simple yet subtle: simple, because nuclear
masses is the only ingredient driving the composition of the
outer crust; subtle, since the crustal composition emerges from
a delicate dynamics between the electronic energy and the
nuclear symmetry energy. Indeed, at the densities of relevance
to the outer crust, it is energetically favorable for nucleons to
cluster into nuclei that arrange themselves in a body-centered
cubic lattice that itself is immersed in a neutralizing electron
background [13]. At zero temperature and fixed pressure,
the dynamics of the outer crust is encoded in the following
expression for the chemical potential (or Gibbs free energy
per nucleon) of the system:

μ(Z,A; P ) = M(Z,A)

A
+ Z

A
μe − 4

3
Cl

Z2

A4/3
pF . (4)

The first term—which is independent of the pressure—
depends exclusively on the mass per nucleon of the “optimal”

nucleus populating the crystal lattice. The second term μe is
the chemical potential of a relativistic Fermi gas of electrons.
Finally, the last term provides the relatively modest, although
by no means negligible, lattice contribution (Cl = 3.40665 ×
10−3) to the chemical potential. Note that both the electronic,

μe =
√(

Z

A

)2/3

p2
F + m2

e, (5)

and lattice contributions have been written in terms of the
Fermi momentum pF = (3π2n)1/3 (or equivalently the baryon
density n) rather than the pressure. The connection between
the baryon density and the pressure is obtained through the
equation of state. That is [14],

P (Z,A; n)

= m4
e

3π2

(
x3

F
yF − 3

8

[
xFyF

(
x2

F
+ y2

F

) − ln(xF + yF )
])

−n

3
Cl

Z2

A4/3
pF , (6)

where

xF = p(e)
F

me

=
(

Z

A

)1/3
pF

me

and yF =
√

1 + x2
F

(7)

are the scaled electronic Fermi momentum and Fermi energy,
respectively. Given that the outer crust spans nearly seven
orders of magnitude in density, from about 104 to 1011 g/cm3,
changes in the nuclear composition with density (or pressure)
are interesting despite the simplicity of the underlying dy-
namics. For example, at the top of the outer crust where the
pressure is low and so is the density, the electronic contribution
to the chemical potential is negligible, so it is favorable to
populate the crystal lattice with the nucleus having the the
lowest mass per nucleon in the entire nuclear chart: 56Fe.
However, as the pressure and the density increase, it becomes
energetically advantageous for the system to lower its electron
fraction Ye = Z/A via electron capture on the protons. As a
consequence, 56Fe ceases to be the optimal nucleus due to
the presence of a uniform sea of neutralizing electrons whose
chemical potential increases rapidly with density. Thus, the
essential physics of the outer crust involves a competition
between an electronic contribution that favors Ye = 0 and the
nuclear symmetry energy that instead favors Ye � 1/2.

Ultimately, computing the nuclear composition of the
stellar crust requires precise knowledge of nuclear masses over
three well-defined regions of the nuclear chart. At the top of
the crust the electronic contribution to the chemical potential
is small to moderate, so the isotopes of relevance are located
around the stable iron-nickel region where nuclear masses are
very well known. As the proton fraction becomes too low and
the symmetry energy large, it becomes energetically favorable
for the system to jump into the N = 50 region. The nuclei
of relevance in this region lie at the boundary between those
whose masses are accurately known (e.g., 90Zr, 88Sr, and 86Kr)
and those that are poorly known (such as 78Ni). We should
mention that until very recently the mass of 82Zn was not
known. Yet, the mass of 82Zn was determined fairly recently
at the ISOLDE-CERN facility, leading to an interesting
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modification of the crustal composition [30]. Finally, the
third region comprising the bottom layers of the outer crust
requires knowledge of nuclear masses at the N = 82 shell
closure. Depending on the particular mass model, the nuclei
of relevance span the region from 132Sn (Z = 50) all the
way down to 118Kr (Z = 36) [29]. For this region theoretical
extrapolations are unavoidable as little or no experimental
information is available [15]. Indeed, 118Kr is 21 neutrons
away from the last measured isotope with a well measured
mass [31].

III. FORMALISM: BAYESIAN NEURAL NETWORKS

The novel theoretical approach that we advocate here aims
to refine some existing mass models through a BNN approach
[32]. Given the proven success of modern mass models, the
BNN refinement is implemented by training a suitable neural
network on the residuals between the experimental data and
the “bare” (i.e., before refinement) theoretical predictions. Our
ultimate goal is to generate a universal approximator [33,34];
that is, a neural network that can provide an “educated”
extrapolation into unexplored regions of the nuclear chart
with properly quantified theoretical uncertainties. A detailed
description of the origins and development of Bayesian neural
networks goes beyond the scope of this paper; for a detailed
exposition see Refs. [32,35–37]. Thus, as we have done
elsewhere [15–17], we limit ourselves to highlight the main
features of the approach. Before we do so, however, we note
that the idea of using artificial neural networks in nuclear
physics—mainly to estimate unknown properties of exotic
nuclei of relevance to astrophysics—started in the early 1990s
with the work of Clark and collaborators [38–41] and continues
up to this day [42–46] with more sophisticated applications.

Statistical inference based on Bayes’s theorem—as applied
in this work—connects two critical pieces of information: (a)
a prior hypothesis reflecting beliefs that one has acquired
through experience or previous empirical information and (b)
an improvement to the prior hypothesis by both adopting and
adapting new evidence (e.g., experimental data). In this context
Bayes’s theorem may be written as [47]

p(ω|x,t) = p(x,t |ω)p(ω)

p(x,t)
, (8)

where p(ω) is the prior distribution of the model parameters
ω and p(x,t |ω) is the “likelihood” that a given model ω
describes the new evidence t(x). The product of the prior
and the likelihood form the posterior distribution p(ω|x,t)
that encodes the probability that a given model describes the
data t(x). In essence, the posterior represents the improvement
to p(ω) as a result of the new evidence p(x,t |ω). Note that
the “marginal likelihood” p(x,t) is independent of the model
parameters ω, so for our purposes it may be regarded as an
overall normalization factor. To define the likelihood we start
by introducing an objective (or cost) function in terms of a
least-squares fit to the empirical data. That is,

χ2(ω) =
N∑

i=1

(
ti − f (xi,ω)


ti

)2

, (9)

FIG. 1. An example of a feed-forward neural network with a
single hidden layer consisting of three nodes. In our case, the two
inputs that define the nucleus of interest are Z and A, and a single
output provides an estimate of δM(Z,A); namely, the discrepancy
between the bare theoretical prediction and the experimental value.

where N is the total number of data points, ti ≡ t(xi) is the
empirical value of the target evaluated at the ith input xi , 
ti
is the associated error, and the universal approximator f (x,ω)
depends on both the input data and the model parameters ω; see
Eq. (11) below. From such an objective function the likelihood
is customarily defined as

p(x,t |ω) = exp(−χ2(ω)/2). (10)

In the particular case of interest here, i.e., nuclear masses, the
input x ≡ (Z,A) represents the charge and mass number of the
nucleus and t(x) ≡ δM(Z,A) the mass residual between the
experimental data and the theoretical predictions. Note that
maximizing the likelihood p(x,t |ω) provides the maximum
likelihood estimation of the model parameters.

The neural network function f (x,ω) adopted here has the
following “sigmoid” form:

f (x,ω) = a +
H∑

j=1

bj tanh

(
cj +

I∑
i=1

djixi

)
, (11)

where the model parameters (or “connection weights”) are
collectively given by ω = {a,bj ,cj ,dji}, H is the number of
hidden nodes, and I is the number of inputs. The “universal
approximation theorem” states that such a neural network can
accurately represent a wide variety of functions; tanh is a
common form of the sigmoid activation function that controls
the firing of the artificial neurons [33,34]. See Fig. 1 for a
simple depiction of a feed-forward neural network consisting
of a single hidden layer with three nodes.

Given the complexity of the posterior distribution p(ω|x,t),
we adopt Markov chain Monte Carlo (MCMC) sampling to
generate a faithful equilibrium distribution. Once a significant
number of samples has been generated, reliable estimates for
both the average and variance of δM(Z,A) are obtained. That
is,

〈fn〉 = 1

K

K∑
k=1

f (xn,ωk), (12a)
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〈
f 2

n

〉 = 1

K

K∑
k=1

f 2(xn,ωk), (12b)


fn =
√〈

f 2
n

〉 − 〈fn〉2, (12c)

where xn = (Zn,An) represents a particular nucleus with
charge Zn and mass number An, K is the total number of Monte
Carlo configurations, and f (xn,ωk) is the neural network
estimate of δM(Zn,An) as predicted by the kth Monte Carlo
configuration.

Finally, we conclude this section by briefly addressing the
choice of prior p(ω) assumed in this work. Prior probabilities
encode our beliefs concerning the model parameters and are
an essential ingredient of the Bayesian paradigm. Normally,
the prior is highly informative as it is based on our own physics
biases and intuition, which are often well informed by prior
experimental data. Unfortunately, whereas physics principles
guide the construction of modern nuclear mass models, physics
intuition is of no help in designing the connection weights
ω. Thus, we are forced to rely on assumptions that have
been proven effective and reliable through mostly trial and
error [32]. Following our earlier work [15], we assume all
connection weights to be independent and adopt a Gaussian
prior centered around zero and with a width determined as in
Ref. [32]. For an extensive discussion on the determination of
the “hyperparameters” controlling the width of the Gaussian
prior, see Refs. [48,49].

IV. RESULTS

The aim of this section is to discuss the improvement
to three successful mass models as a result of the BNN
refinement. The three models under consideration are (i) the
10-parameter Duflo-Zuker model (DZ10) [50], (ii) the 28-
parameter Duflo-Zuker model (DZ) [22], and (iii) the micro-
scopic Hartree-Fock-Bogoliubov model (HF19) of Ref. [23].
In all three cases the predictions after refinement have the
distinct advantage of being accompanied by theoretical uncer-
tainties. However, for the simpler DZ10 model we found it
instructive to recalibrate the model parameters, as this process
generates a suitable covariance matrix from where statistical
uncertainties and correlation coefficients may be computed.
To reiterate, the basic paradigm of our two-pronged approach
is to start with a robust underlying mass model that captures as
much physics as possible followed by a BNN refinement that
will hopefully account for the missing physics [15].

A. The 10-parameter Duflo-Zuker model

The original Duflo-Zuker (DZ) model, containing a total of
28 parameters, has stood the test of time [22]. The DZ model,
fitted to the set of existing nuclear masses appearing in the 1995
compilation by Audi and collaborators [51], was enormously
successful in predicting the more than 300 additional masses
that appeared in the later AME03 compilation [52]. Indeed,
the success of the DZ model in accurately reproducing the
masses of the more than 3000 nuclei presently known is truly
remarkable [31]. However, despite its undeniable success,
the underlying physics of the model remains puzzling and

FIG. 2. Correlations coefficients and marginalized probability
densities (shown along the diagonal) for the 10-parameter Duflo-
Zuker model [22,50,53].

difficult to unravel. The simpler 10-parameter Duflo-Zuker
model was conceived with the sole purpose of illuminating the
physics. A detailed study of DZ10 that aims to understand
and possibly to also improve the model was carried out
recently by Mendoza-Temis, Hirsch, and Zuker [50]. Even
more recently, Doboszewski and Szpak refitted DZ10 with the
goal of quantifying the model uncertainties and the correlations
among the model parameters [53].

We also proceed here by recalibrating the model param-
eters, following closely Ref. [53]. To do so we start by
constructing a likelihood function defined in terms of the
square differences between the DZ10 predictions and the
experimental binding energies provided by the AME2012
compilation [31]; we limit ourselves to the 40Ca to 240U
region. For the initial distribution of model parameters we
use an uninformative prior. In this way we generate a posterior
probability distribution that is generated through Markov chain
Monte Carlo (MCMC) sampling. Simulating such a posterior
distribution is computationally inexpensive, so we could
afford generating one million Monte Carlo configurations,
with the first 10 000 steps used for thermalization. To avoid
correlations among subsequent configurations, we found that
an autocorrelation “time” of about 20 configurations was
sufficient. Overall, we used nearly 50 000 configurations to
generate the correlation plot depicted in Fig. 2 together with
the average values and uncertainties listed in Table I. For
comparison, also included in Table I are the results reported in
Refs. [50,53].

Once the theoretical predictions from the DZ10 model—or
indeed any other mass model—have been generated, the BNN
refinement proceeds by separating the available experimental
data into two disjoint sets: a learning and a validation set.
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TABLE I. Average values and uncertainties for the 10-parameter
Duflo-Zuker model [22]. Comparisons are made against similar
results presented in Ref. [50] (without uncertainties) and Ref. [53].
Here σ represents the root-mean-square deviation of the predictions
relative to the AME2012 compilation [31].

Parameter Ref. [50] Ref. [53] This work

θ1 = a3 0.707 0.70506(37) 0.70452(27)
θ2 = a1 17.766 17.749 (70) 17.7466(49)
θ3 = a2 16.314 16.267(2) 16.277(17)
θ4 = a4 37.515 37.465(4) 37.608(27)
θ5 = a5 53.351 53.23(19) 54.08(11)
θ6 = a7 0.478 0.4631(58) 0.4601(63)
θ7 = a8 2.183 2.101(30) 2.088(33)
θ8 = a9 0.022 0.02144(17) 0.02106(19)
θ9 = a10 41.338 41.5310(2) 41.50(22)
θ10 = a6 6.199 6.238(89) 6.455(81)

σ (MeV) 0.554 0.571 0.552

Again, to avoid regions of the nuclear landscape where the
masses fluctuate too rapidly (as in the case of the lightest
nuclei) we limit the experimental data set to the more than 2000
well measured nuclei between 40Ca and 240U. The learning set
consists of a randomly selected subset of nuclei contained
within the experimental database that will be used to train the
neural network; namely, to calibrate the connection weights
as defined in Eq. (11). On the other hand, the validation set
comprises the remaining nuclei that, while still in the existent
experimental database, were not used in the training of the
network. Thus, the validation set provides the test bed for
assessing the quality of the artificial neural network. If the test
is successful, then one recalibrates the network parameters
using the entire experimental database in order to predict
the masses of nuclei that have not yet been measured, yet
are essential for astrophysical applications. We note that the
randomly generated learning set is identical for all bare models
employed in this work. We find that about 200 thermalization
steps are sufficient to reach equilibrium in the values of
neural-network parameters, which can be attained relatively
quickly on a moderately fast computer. Ultimately, 500 Monte
Carlo steps are used to estimate the probability distribution of
the neural-network parameters.

Given that the limits of nuclear binding is one of the key
science driver animating nuclear science today [54], besides
generating refined mass tables we also provide tables for one-
and two-nucleon separation energies:

Sn(Z,N ) ≡ M(Z,N − 1) + mn − M(Z,N )

= B(Z,N ) − B(Z,N − 1), (13a)

Sp(Z,N ) ≡ M(Z − 1,N ) + mp − M(Z,N )

= B(Z,N ) − B(Z − 1,N ), (13b)

S2n(Z,N ) ≡ M(Z,N − 2) + 2mn − M(Z,N )

= B(Z,N ) − B(Z,N − 2), (13c)

S2p(Z,N ) ≡ M(Z − 2,N ) + 2mp − M(Z,N )

= B(Z,N ) − B(Z − 2,N ). (13d)

All these BNN-improved tables are generated from the
same ensemble of Monte Carlo configurations, so that theoret-
ical uncertainties may be reliably attached to each individual
prediction.

The calibration of the neural network is computationally
expensive. With two input variables (Z and N ) and a
“canonical” number of H = 40 hidden nodes, a total of
1 + 4H = 161 parameters must be calibrated. To do so, we
rely on the flexible Bayesian modeling package by Neal
described in detail in Ref. [32]. After an initial thermalization
phase consisting of 500 Monte Carlo steps, a sampling set
of 100 configurations is accumulated to determine statistical
averages and their associated uncertainties. As a measure of
the accuracy of our predictions, we report root-mean-square
(rms) deviations relative to experiment; for simplicity, the
comparison is done using exclusively average values. Due
to the relative simplicity of the DZ10 model, we were
able to implement the BNN refinement using two different
schemes. The first scheme consists of a unique set of masses
obtained from the average values generated by the new DZ10
calibration—without accounting for the uncertainties in the
bare model parameters. The second scheme remedies such
deficiency by effectively incorporating the distribution of
DZ10 model parameters depicted in Fig. 2. Such an improved
version is useful in assessing whether a recalibration of the
bare model parameters may be necessary in other cases.
Fortunately, our results suggest that, at least in the case of
DZ10, this is not required. Our results indicate that whereas
there is indeed a dramatic improvement in the predictions of
the bare DZ10 model after the BNN refinement—from σrms =
0.552 MeV to σrms = 0.292 MeV—no significant changes are
observed when one uses the proper statistical distribution of
bare DZ10 parameters; for for this latter case one obtains
σrms = 0.296 MeV.

As alluded earlier, for each of the 100 Monte Carlo
configurations obtained from the BNN refinement one com-
putes at every MC step the mass of each individual nucleus.
Having generated all nuclear masses in such a way, one may
then compute the mass differences required to generate one-
and two-nucleon separation energies. At each MC step one
proceeds in this same exact fashion, until by the end of the
100 Monte Carlo configurations one can finally extract average
values and associated theoretical uncertainties for each nuclear
observable. The outcome of such a procedure is displayed
in Fig. 3 for neutron and proton drip lines, identified at the
point in which the two-neutron and two-proton separation
energies become negative. For the case of the bare DZ10
model, the drip lines are displayed by a solid (red) line.
In contrast, BNN-improved DZ10 predictions produce drip
bands, as all the predictions are now accompanied by statistical
uncertainties. Note that because of the Coulomb repulsion,
the proton drip line is much closer to the valley of stability
than the corresponding neutron drip line. Indeed, whereas
the proton drip line has been experimentally established for
a large number of nuclei (up to atomic number Z = 91), the
neutron drip line is only known up to Z = 8, with 24O being
the heaviest known oxygen isotope that remains stable against
particle decay [55]. Moreover, Fig. 3 displays the characteristic
signature of shell closures at neutron magic numbers 50, 82,
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FIG. 3. Proton and neutron drip lines as predicted by both the
bare and BNN-refined 10-parameter Duflo-Zuker (DZ10) model. In
the case of the BNN predictions, the neutron drip line evolves into a
“drip band” due to statistical uncertainties. Also shown (with green
points) is the AME2012 data set [31], with the stable nuclei displayed
with black points.

126, and (predicted) 184. Finally, the figure encapsulates the
enormous experimental challenges faced in mapping the neu-
tron drip line. However, even if reaching the neutron drip line
for heavy nuclei may not be feasible in the foreseeable future,
it is essential to continue the experimental quest to properly
inform theoretical models. In turn, BNN approaches such as
the one advocated here may guide experimental searches for
those “few” critical nuclei that may reduce the large systematic
uncertainty that currently plagues theoretical models.

So far DZ10 has provided a benchmark to quantify the
impact of the BNN refinement and the role of uncertainty
quantification. We found that while the BNN refinement is
critical in improving the predictions of the model, there seems
to be little value in propagating the uncertainties inherent to
the bare model. Thus, we now proceed to document and test
the predictions of the two state-of-the-art mass models that
will be refined in order to generate BNN-improved tables;
the 28-parameter “mic-mac” model of Duflo and Zuker [22]
and the microscopic HFB19 model of Goriely, Chamel, and
Pearson [23]. Drip lines and drip bands as predicted by these
two models are displayed in Fig. 4. The two left-hand panels,
(a) for Duflo-Zuker and (b) for HFB19, aim to illustrate the
improvement to the bare models as a result of the BNN
refinement. Note that although the overall improvement to both
mass models is considerable—about 40% [15]—the changes
are difficult to discern because both the expanded scale as well
as the intrinsic high quality of the bare models. In contrast,
the two right-hand panels compare the models to each other:
(c) for the bare predictions and (d) for the BNN-improved
versions. In this case the improvement is clearly discernible,
as the model discrepancies displayed by the bare models get
significantly quenched after the BNN refinement. Indeed, at
first there is an appreciable discrepancy in the predictions of the
bare models—with HFB19 consistently predicting the location
of the neutron drip line at larger values of N . Remarkably,
much of the discrepancy disappears after the BNN refinement,
especially in the region between shell closures N = 82 and
N = 126. Such reduction in the systematic model error
is highly desirable and entirely consistent with the results
obtained in an earlier publication [15]. Moreover, we observe
a significant quantitative improvement in the predictions of

20 
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80 
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FIG. 4. Proton and neutron drip lines and drip bands as predicted
by (a) the Duflo-Zuker model [22] and (b) the HFB19 model [23];
in both cases bare and BNN-refined predictions are displayed. The
remaining two panels display the same information but now the
comparison is between the predictions of both mass models: (c)
displays bare-model results whereas (d) shows the corresponding
ones after BNN refinement. Also shown (with green points) is the
AME2012 data set [31], with the stable nuclei displayed with black
points.

both models. In the case of the Duflo-Zuker mass formula
the root-mean-square mass deviation improves from σrms =
0.503 MeV to σrms = 0.286 MeV, whereas in the case of
HFB19 it goes from σrms = 0.559 MeV to σrms = 0.358 MeV.

We close this section with a brief discussion of the
impact of the BNN refinement on a few critical r-process
nuclei that emerge from the sensitivity study of Mumpower
and collaborators [9–11]; specifically, palladium (Z = 46),
cadmium (Z = 48), indium (Z = 49), and tin (Z = 50).
Note that these results may be readily extended to other
isotopes by employing the refined mass tables provided here
as Supplemental Material [56]. The main goal of our analysis
is to assess whether the ubiquitous bare-model discrepancies
can be systematically reduced after the implementation of the
BNN refinement.

In Fig. 5 we display model predictions relative to a reference
mass value for palladium, cadmium, indium, and tin in the
region N � 82. The masses of all 18 nuclei displayed in
the figure, 130–132Pd,132–138Cd,133–138In, and 136,138Sn, have
been identified as important nuclei in the determination of
the r-process abundance pattern; see Table I in Ref. [11]. Note
that the reference mass has been adopted from either “experi-
mental” values (although derived not from purely experimental
data [31]) or, when data is unavailable, from the predictions
of the bare Duflo-Zuker model. Theoretical predictions with
error bars are from the BNN-refined models. We can state
categorically that the BNN refinement has an appreciable im-
pact in reducing the systematic model discrepancies. Easiest to
visualize are the cases of palladium and tin, where the number
of isotopes displayed is small; three and two, respectively.
For palladium there is no available experimental data so we
display theoretical estimates relative to the predictions from
the bare Duflo-Zuker model (depicted by the light-blue line).
Whereas the bare HFB19 predictions hover around 0.5–1 MeV
relative to such a baseline, the model discrepancy narrows
considerably after the BNN refinement. Indeed, for 130Pd the
predictions are now consistent with each other, and for the most
unfavorable case of 130Pd they agree at the 2σ level. For tin the
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FIG. 5. Mass predictions for (a) palladium (Z = 46), (b) cadmium (Z = 48), (c) indium (Z = 49), and (d) tin (Z = 50) for both the
Duflo-Zuker [22] and HFB19 [23] mass models. The predictions are relative to a reference mass value taken from either the AME2012
compilation when available [31] or from the bare Duflo-Zuker model when unavailable. Predictions are displayed with statistical error bars for
the BNN-improved models.

situation is similar, although in this case we display with a red
line the recommended experimental values [31]. Once again,
we note that the bare-model predictions differ significantly
from each other and, especially in the case of HFB19,
from the recommended AME2012 values. However, once the
BNN refinement is completed, both the model discrepancy
is significantly reduced and the comparison with experiment
is much more favorable. Indeed, both BNN-DZ predictions
are now fully consistent with experiment. Finally, the two
remaining isotopes of cadmium and indium display the same
trends observed so far. In particular, note that for all of these
18 important nuclei the BNN refinement suggest an increase
in the value of the mass, or equivalently, a reduction in the
binding energy. For these two larger isotopic chains—having
seven and six important nuclei, respectively—experimental
mass values do exist but only for the smaller values of N . Yet,
regardless of whether experimental masses are available, we
see the model spread diminishes considerably after the BNN
refinement. And when recommended mass values exist, the
BNN predictions are practically consistent with experiment.
The isotopic chain in cadmium contains the largest number
of important r-process nuclei. As we have learned from
earlier studies (see for example Refs. [10,18,54]) bare-model
discrepancies diverge dramatically as one moves away from
measured mass values. This is evident in Fig. 5(b) where the
bare-model discrepancy becomes as large as ∼2 MeV for 138Cd
(i.e., N = 90). Remarkably, all model discrepancies are largely
eliminated after the BNN refinement. In particular, even for
the least favorable case of 138Cd the 1σ mismatch gets reduced
to merely 130 keV.

We conclude this section by displaying in Fig. 6 two-
neutron separation energies for all even-even isotopes in
cadmium, from 94Cd to 164Cd. Clearly discernible in the figure
is the characteristic “jumps” at magic numbers 50 and 82.
The figure also encapsulates the inherent risk in extrapolating
theoretical models far away from regions where experimental
information is available. Whereas the models agree where
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FIG. 6. Two-neutron separation energies for all even-even cad-
mium isotopes from 94Cd to 164Cd, as predicted by the mic-mac
model of Duflo and Zuker [22] and the microscopic HFB19 model
[23]. Predictions are displayed without error bars for the bare models
and with error bars after the BNN refinement. Experimental data are
from Ref. [31].
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data is available (from 50 � N � 82), the model-discrepancy
grows gradually with increasing neutron numbers. And while
the BNN refinement is successful in mitigating the problem
up to N � 90 [see Fig. 5(c)], the BNN predictions for S2n can
differ by ∼1 MeV far away from stability. This situation is
reminiscent of the one addressed in Ref. [54] for S2n in the
case of the even-even erbium (Z = 68) isotopes. It was found
there that the discrepancy between various model predictions
steadily grows with neutron excess as a result of the poorly
known isovector effective interaction. Indeed, models that
are successful in reproducing the experimentally determined
two-neutron separation energy differ in their predictions of
the location of the neutron drip line by as many as eight
neutrons. Fortunately, next-generation rare-isotope facilities
will produce hundreds of new exotic nuclei very far away
from stability that will help constrain the isovector sector. Yet
a most pressing challenge is to identify the “few” critical nuclei
that will best inform nuclear theory. We are confident that the
BNN formalism will successfully meet this challenge.

V. CONCLUSIONS

The quest for the nuclear drip lines is at the heart of one of
the central themes animating nuclear physics today: What are
the limits of nuclear existence? As a fundamental nuclear-
structure problem, the drip lines define the most extreme
combinations of protons and neutrons that can remain bound
by the strong nuclear force. Drip-line nuclei are weakly bound,
finite, strongly correlated quantum systems where the virtual
coupling to the continuum is critical. Besides being of intrinsic
interest in nuclear structure, nuclei far away from stability
also play a predominant role in astrophysics; for example,
in stellar nucleosynthesis and in neutron stars. However, the
enormous theoretical challenges faced in describing exotic
nuclei are compounded by the lack of experimental guidance.
For example, theoretical predictions seem to suggest that 118Kr
is the drip-line nucleus separating the inner and outer crust
of neutron stars. Yet 118Kr is 21 neutrons away from the last
well-measured isotope. Thus, having to resort to extrapolations
seems unavoidable.

Undoubtedly, large extrapolations pose a considerable risk.
In an effort to mitigate such risk we proposed a novel approach
based on the construction of an artificial neural network. More-
over, given that the neural-network parameters are determined

through Bayesian inference, our results are accompanied
by statistical uncertainties. The proposed approach adopts a
highly successful mass model that is then refined through
the construction of an artificial neural network. Briefly, the
implementation of the BNN refinement proceeds by dividing
the existing experimental database of nuclear masses into a
learning and a validation set, with the members of each set
selected at random. One then uses the learning set to train the
artificial neural network by focusing on the mass residuals,
i.e., on the difference between the experimentally measured
mass and predicted mass. The validation set is then used
to test the robustness and reliability of the refined model.
If a significant improvement relative to the bare model is
observed, then the training is repeated but now using the
entire experimental database. Although we developed most
of these ideas using the relatively simple, yet highly accurate,
10-parameter Duflo-Zuker model, our ultimate goal was to
publish refined mass tables for two existing mass models,
one microscopic and the other one of the mic-mac type. For
the latter we used the 28-parameter Duflo-Zuker model while
for the former we used HFB19. If sufficient interest exits in
the community, we could continue this program and refine a
variety of both existing and new mass models.

These are some of the most salient conclusions of our work.
First, despite the intrinsic high-quality of both mass models,
the BNN refinement lead to a significant improvement: σrms =
(0.503 → 0.286) MeV and σrms = (0.559 → 0.358) MeV for
DZ and HFB19, respectively. Second, although theoretical
mass models agree in regions where masses are known but
differ widely in regions where they are not, we found a
systematic and significant reduction in the model spread after
implementing the BNN refinement. Third, given the Bayesian
character of the approach, all BNN refined predictions are now
accompanied by theoretical uncertainties. Finally, we provided
as Supplemental Material [56] mass tables, as well as tables
for other derived quantities such as separation energies, for
the two BNN refined models considered in this work. We
trust that these refined mass tables will be helpful for future
astrophysical applications.
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