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Background: Weakly bound and unbound nuclear states appearing around particle thresholds are prototypical
open quantum systems. Theories of such states must take into account configuration mixing effects in the presence
of strong coupling to the particle continuum space.
Purpose: To describe structure and decays of three-body systems, we developed a Gamow coupled-channel
(GCC) approach in Jacobi coordinates by employing the complex-momentum formalism. We benchmarked the
complex-energy Gamow shell model (GSM) against the new framework.
Methods: The GCC formalism is expressed in Jacobi coordinates, so that the center-of-mass motion is
automatically eliminated. To solve the coupled-channel equations, we use hyperspherical harmonics to describe
the angular wave functions while the radial wave functions are expanded in the Berggren ensemble, which
includes bound, scattering, and Gamow states.
Results: We show that the GCC method is both accurate and robust. Its results for energies, decay widths, and
nucleon-nucleon angular correlations are in good agreement with the GSM results.
Conclusions: We have demonstrated that a three-body GSM formalism explicitly constructed in the cluster-orbital
shell model coordinates provides results similar to those with a GCC framework expressed in Jacobi coordinates,
provided that a large configuration space is employed. Our calculations for A = 6 systems and 26O show that
nucleon-nucleon angular correlations are sensitive to the valence-neutron interaction. The new GCC technique
has many attractive features when applied to bound and unbound states of three-body systems: it is precise, is
efficient, and can be extended by introducing a microscopic model of the core.
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I. INTRODUCTION

Properties of rare isotopes that inhabit remote regions of
the nuclear landscape at and beyond the particle driplines
are in the forefront of nuclear structure and reaction research
[1–6]. The next generation of rare isotope beam facilities will
provide unique data on dripline systems that will test theory,
highlight shortcomings, and identify areas for improvement.
The challenge for nuclear theory is to develop methodologies
to reliably calculate and understand the properties and dynam-
ics of new physical systems with different properties due to
large neutron-to-proton asymmetries and low-lying reaction
thresholds. Here, dripline systems are of particular interest,
as they can exhibit exotic radioactive decay modes such as
two-nucleon emission [7–13]. Theories of such nuclei must
take into account their open quantum nature.

Theoretically, a powerful suite of A-body approaches based
on internucleon interactions provides a quantitative description
of light- and medium-mass nuclei and their reactions [14–16].
To unify nuclear bound states with resonances and scattering
continuum within one consistent framework, advanced contin-
uum shell-model approaches have been introduced [17–19].
Microscopic models of exotic nuclear states have been supple-
mented with a suite of powerful, albeit more phenomenological
models, based on effective degrees of freedom such as cluster
structures. While such models provide a “lower-resolution”
picture of the nucleus, they can be extremely useful when

interpreting experimental data, providing guidance for future
measurements, and offer guidance for more microscopic
approaches.

The objective of this work is to develop a new three-body
method to describe both reaction and structural aspects of
two-particle emission. A prototype system of interest is the
two-neutron-unbound ground state (g.s.) of 26O [13,20,21].
According to theory, 26O exhibits dineutron-type correlations
[21–25]. To describe such a system, the nuclear model
should be based on a fine-tuned interaction capable of
describing particle-emission thresholds, a sound many-body
method, and the capability to treat bound and unbound states
simultaneously.

If one considers bound three-body systems, few-body
models are very useful [26], especially models based on the
Lagrange-mesh technique [27] or cluster-orbital shell model
(COSM) [28]. However, for the description of resonances,
the outgoing wave function in the asymptotic region needs
to be treated very carefully. For example, one can divide the
coordinate space into internal and asymptotic regions, where
the R-matrix theory [29,30], microscopic cluster model [31],
and diagonalization of the Coulomb interaction [32] can be
used. Other useful techniques include the Green function
method [23] and complex scaling [33,34].

Our strategy is to construct a three-body framework
for weakly bound and unbound systems similar to that of
the Gamow shell model (GSM) [35], but with center-of-
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mass motion and asymptotic behavior treated precisely. The
attractive feature of the GSM is that—by employing the
Berggren ensemble [36]—it treats bound, scattering, and
outgoing Gamow states on the same footing. Consequently,
energies and decay widths are obtained simultaneously as
the real and imaginary parts of the complex eigenenergies of
the shell-model Hamiltonian [17]. In this study, we develop
a three-body Gamow coupled-channel (GCC) approach in
Jacobi coordinates with the Berggren basis. Since the Jacobi
coordinates allow for the exact treatment of nuclear wave
functions in both nuclear and asymptotic regions, and as the
Berggren basis explicitly takes into account continuum effects,
a comprehensive description of weakly bound three-body
systems can be achieved. As the GSM is based on the COSM
coordinates, a recoil term appears due to the center-of-mass
motion. Hence, it is of interest to compare Jacobi- and
COSM-based frameworks for the description of weakly bound
and resonant nuclear states.

This article is organized as follows. Section II describes the
models and approximations. In particular, it lays out the new
GCC approach and GSM used for benchmarking and defines
the configuration spaces used. The results for A = 6 systems
and 26O are reported in Sec. III. Finally, the summary and
outlook are provided in Sec. IV.

II. THE MODEL

A. Gamow coupled-channel approach

In the three-body GCC model, the nucleus is described in
terms of a core and two valence nucleons (or clusters). The
GCC Hamiltonian can be written as

Ĥ =
3∑

i=1

p̂2
i

2mi

+
3∑

i>j=1

Vij (r ij ) − T̂c.m., (1)

where Vij is the interaction between cluster i and cluster j ,
including central, spin-orbit and Coulomb terms, and T̂c.m.

represents the kinetic energy of the center of mass.
The unwanted feature of three-body models is the ap-

pearance of Pauli-forbidden states arising from the lack of
antisymmetrization between core and valence particles. In
order to eliminate the Pauli-forbidden states, we implemented
the orthogonal projection method [37–39] by adding to the
GCC Hamiltonian the Pauli operator

Q̂ = �
∑

c

|ϕjcmc〉〈ϕjcmc |, (2)

where � is a constant and |ϕjcmc〉 is a two-body state involving
forbidden single-particle (s.p.) states of core nucleons. At large
values of �, Pauli-forbidden states appear at high energies, so
that they are effectively suppressed.

In order to describe three-body asymptotics and to eliminate
the spurious center-of-mass motion exactly, we express the
GCC model in the relative (Jacobi) coordinates [15,30,39,40],

x = √
μij (r i − rj ),

y = √
μ(ij )k

(
rk − Ai r i + Aj rj

Ai + Aj

)
, (3)

x

y

θ

ϕ
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y
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FIG. 1. Jacobi coordinates in a three-body system.

where r i is the position vector of the ith cluster, Ai is the ith
cluster mass number, and μij and μ(ij )k are the reduced masses
associated with x and y, respectively:

μij = AiAj

Ai + Aj

,

μ(ij )k = (Ai + Aj )Ak

Ai + Aj + Ak

. (4)

As one can see in Fig. 1, Jacobi coordinates can be expressed
as T and Y types, each associated with a complete basis
set. In practice, it is convenient to calculate the matrix
elements of the two-body interaction individually in T- and
Y-type coordinates and then transform them into one single
Jacobi set. To describe the transformation between different
types of Jacobi coordinates, it is convenient to introduce
the basis of hyperspherical harmonics [41,42]. The hyper-
spherical coordinates are constructed from a five-dimensional
hyperangular coordinates �5 and a hyperradial coordinate
ρ =

√
x2 + y2. The transformation between different sets of

Jacobi coordinates is given by the Raynal-Revai coefficients
[43].

Expressed in hyperspherical harmonics, the total wave
function can be written as [39]

�JMπ (ρ,�5) = ρ−5/2
∑
γK

ψJπ
γK (ρ)YJM

γK (�5), (5)

where K is the hyperspherical quantum number and γ =
{s1,s2,s3,S12,S,
x,
y,L} is a set of quantum numbers other
than K . The quantum numbers s and 
 stand for spin and orbital
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angular momentum, respectively, ψJπ
γK (ρ) is the hyperradial

wave function, and YJM
γK (�5) is the hyperspherical harmonic.

The resulting Schrödinger equation for the hyperradial
wave functions can be written as a set of coupled-channel
equations,[

− h̄2

2m

(
d2

dρ2
− (K + 3/2)(K + 5/2)

ρ2

)
− Ẽ

]
ψJπ

γK (ρ)

+
∑
K ′γ ′

V Jπ
K ′γ ′,Kγ (ρ)ψJπ

γ ′K ′ (ρ)

+
∑
K ′γ ′

∫ ∞

0
WK ′γ ′,Kγ (ρ,ρ ′)ψJπ

γ ′K ′(ρ ′)dρ ′ = 0, (6)

where

V Jπ
K ′γ ′,Kγ (ρ) = 〈YJM

γ ′K ′
∣∣ 3∑

i>j=1

Vij (r ij )
∣∣YJM

γK

〉
(7)

and

WK ′γ ′,Kγ (ρ,ρ ′) = 〈YJM
γ ′K ′

∣∣Q̂∣∣YJM
γK

〉
(8)

is the nonlocal potential generated by the Pauli projection
operator, (2).

In order to treat the positive-energy continuum space
precisely, we use the Berggren expansion technique for the
hyperradial wave function,

ψJπ
γK (ρ) =

∑
n

CJπM
γ nK BJπ

γ n (ρ), (9)

where BJπ
γ n (ρ) represents an s.p. state belonging to the

Berggren ensemble [36]. The Berggren ensemble defines a
basis in the complex-momentum plane, which includes bound,
decaying, and scattering states. The completeness relation for
the Berggren ensemble can be written as∑

n∈b,d

Bn(kn,ρ)Bn(kn,ρ
′) +

∫
L+

B(k,ρ)B(k,ρ ′)dk

= δ(ρ − ρ ′), (10)

where b are bound states and d are decaying resonant (or
Gamow) states lying between the real-k momentum axis
in the fourth quadrant of the complex-k plane and the L+
contour representing the complex-k scattering continuum. For
numerical purposes, L+ has to be discretized, e.g., by adopting
the Gauss-Legendre quadrature [44]. In principle, the contour
L+ can be chosen arbitrarily as long as it encompasses the
resonances of interest. If the contour L+ is chosen to lie along
the real-k axis, the Berggren completeness relation reduces to
the Newton completeness relation [45] involving bound and
real-momentum scattering states.

To calculate radial matrix elements with the Berggren basis,
we employ exterior complex scaling [46], where integrals are
calculated along a complex radial path:

〈Bn|V (ρ)|Bm〉 =
∫ R

0
Bn(ρ)V (ρ)Bm(ρ)dρ

+
∫ +∞

0
Bn(R + ρeiθ )V (R + ρeiθ )

×Bm(R + ρeiθ )dρ. (11)

For potentials that decrease as O(1/ρ2) (centrifugal potential)
or more rapidly (nuclear potential), R should be sufficiently
large to bypass all singularities and the scaling angle θ
is chosen so that the integral converges (see Ref. [47] for
details). As the Coulomb potential is not square integrable, its
matrix elements diverge when kn = km. A practical solution
is provided by the so-called “off-diagonal method” proposed
in Ref. [48]. Basically, a small offset ±δk is added to
the linear momenta kn and km of involved scattering wave
functions, so that the resulting diagonal Coulomb matrix
element converges. By diagonalizing the complex symmetric
Hamiltonian, energies and decay widths are obtained as the
real and imaginary parts of the complex eigenenergies.

B. Gamow shell model

In the GSM, expressed in COSM coordinates, one deals
with the center-of-mass motion by adding a recoil term ( p̂1 ·
p̂2/mnAcore) [28,35]. The GSM Hamiltonian is diagonalized
in the basis of Slater determinants built from the one-body
Berggren ensemble. In this case, it is convenient to deal with
the Pauli principle by eliminating spurious excitations at a
level of the s.p. basis. In practice, one just needs to construct
a valence s.p. space that does not contain the orbits occupied
in the core. It is equivalent to the projection technique used
in GCC wherein the Pauli operator, (2), expressed in Jacobi
coordinates has a two-body character. The treatment of the
interactions is the same in the GSM and GCC method. In both
cases, we use the complex scaling method to calculate matrix
elements [47] and the off-diagonal method to deal with the
Coulomb potential [48].

The two-body recoil term is treated in the GSM by
expanding it in a truncated basis of the harmonic oscillator
(HO). The HO basis depends on the oscillator length b and
the number of states used in the expansion. As demonstrated
in Refs. [44] and [49], GSM eigenvalues and eigenfunctions
converge for a sufficient number of HO states, and the
dependence of the results on b is very weak.

Let us note in passing that one has to be careful when using
arguments based on the variational principle when comparing
the performance of the GSM vs the GCC technique. Indeed,
the treatment of the Pauli-forbidden states is slightly different
in the two approaches. Moreover, the recoil effect in the GSM
is not removed exactly. (There is no recoil term in the GCC
approach, as the center-of-mass motion is eliminated through
the use of Jacobi coordinates.)

C. Two-nucleon correlations

In order to study the correlations between the two
valence nucleons, we utilize the two-nucleon density
[50–52] ρnn′ (r,r ′,θ ) = 〈�|δ(r1 − r)δ(r2 − r ′)δ(θ12 − θ )|�〉,
where r1, r2, and θ12 are defined in Fig. 1(a). In the following,
we apply the normalization convention of Ref. [52] in which
the Jacobian 8π2r2r ′2 sin θ is incorporated into the definition
of ρnn′ , i.e., it does not appear explicitly. The angular density of
the two valence nucleons is obtained by integrating ρnn′ (r,r ′,θ )
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over radial coordinates:

ρ(θ ) =
∫

ρnn′ (r,r ′,θ )drdr ′. (12)

The angular density is normalized to 1:
∫

ρ(θ )dθ = 1.
While it is straightforward to calculate ρnn′ with COSM

coordinates, the angular density cannot be calculated directly
with the Jacobi T-type coordinates used to diagonalize the
GCC Hamiltonian. Consequently, either one can calculate
the density distribution ρT(x,y,ϕ) in T-type coordinates and
then transform it to ρ(r1,r2,θ12) in COSM coordinates by
using the geometric relations of Fig. 1(a) or—as we do in
this study—one can apply the T–type–to–COSM coordinate
transformation. This transformation [43] provides an ana-
lytical relation between hyperspherical harmonics in COSM
coordinates YJM

γ ′K ′(r ′
1,r

′
2) and the T-type Jacobi coordinates

YJM
γK (x′, y′), where r ′

1, r ′
2, x′, and y′ are

r ′
1 =

√
Ai r1,

r ′
2 = √

Aj r2,

x′ = x = √
μij (r1 − r2),

y′ =
√

Ai + Aj

μ(ij )k
y = Ai r1 + Aj r2√

Ai + Aj

. (13)

D. Model space and parameters

In order to compare approaches formulated in Jacobi and
COSM coordinates, we consider model spaces defined by
the cutoff value 
max, which is the maximum orbital angular
momentum associated with (r1, r2) in the GSM and (x, y) in
the GCC method. The remaining truncations come from the
Berggren basis itself.

The nuclear two-body interaction between valence nucle-
ons has been approximated by the finite-range Minnesota force
with the original parameters in Ref. [53]. For the core-valence
Hamiltonian, we took a Woods-Saxon (WS) potential with
parameters fitted to the resonances of the core + n system.
The Coulomb interaction has been considered when valence
protons are present. For both the GSM and the GCC approach,
the forbidden states of core nucleons, (2), are generated by the
s.p. levels of the core-valence WS (+ Coulomb) potential.

In the case of the GSM, we use the Berggren basis for
the spd partial waves and an HO basis for channels with
higher orbital angular momenta. For 6He, 6Li, and 6Be we
assume a 4He core. For 6He and 6Be, in the GSM we
took a complex-momentum contour defined by the segments
k = 0 → 0.17 − 0.17i → 0.34 → 3 (all in fm−1) for the p3/2

partial wave and 0 → 0.5 → 1 → 3 fm−1 for the remaining
spd partial waves. For 6Li, we took the contours 0 → 0.18 −
0.17i → 0.5 → 3 fm−1 for the p1/2, 0 → 0.15 − 0.14i →
0.5 → 3 fm−1 for the p3/2, and 0 → 0.25 → 0.5 → 3 fm−1

for the sd partial waves. Each segment was discretized with
10 points. This is sufficient for the energies and most the
other physical quantities, but one may need more points to
describe wave functions precisely, especially for the unbound
resonant states that are affected by Coulomb interaction.
Hence, we choose 15 points for each segment to calculate

the two-proton angular correlation of the unbound 6Be. The
HO basis was defined through the oscillator length b = 2 fm
and the maximum radial quantum number nmax = 10. The WS
parameters for the A = 6 nuclei are the depth of the central
term, V0 = 47 MeV; the spin-orbit strength, Vs.o. = 30 MeV;
the diffuseness, a = 0.65 fm; and the WS (and charge) radius,
R = 2 fm. With these parameters we predict the 3/2− g.s. of
5He at E = 0.732 MeV ( = 0.622 MeV) and its first excited
1/2− state at E = 2.126 MeV ( = 5.838 MeV).

For 26O, we consider the 24O core [23,54,55]. In the
GSM variant, we used the contour 0 → 0.2 − 0.15i → 0.4 →
3 fm−1 for d3/2 and 0 → 0.5 → 1 → 3 fm−1 for the remaining
spd partial waves. For the HO basis we took b = 1.75 fm and
nmax = 10. The WS potential for 26O was fitted in Ref. [23]
to the resonances of 25O. Its parameters are V0 = 44.1 MeV,
Vs.o. = 45.87 MeV, a = 0.73 fm, and R = 3.6 fm.

GCC calculations have been carried out with the maximal
hyperspherical quantum number Kmax = 40, which is suffi-
cient for all the physical quantities we study. We checked
that the calculated energies differ by as little as 2 keV when
varying Kmax from 30 to 40. Similarly to the GSM, in the GCC
technique we used the Berggren basis for K ≤ 6 channels
and the HO basis for higher-angular-momentum channels.
The complex-momentum contour of the Berggren basis
is defined as k = 0 → 0.3 − 0.2i → 0.5 → 0.8 → 1.2 → 4
(all in fm−1), with each segment discretized with 10 points.
We took the HO basis with b = 2 fm and nmax = 20. As
k2
ρ = k2

x + k2
y , the energy range covered by the GCC basis

is roughly doubled compared to that of the GSM. For the
constant � in the Pauli operator, (2), we use 107 MeV. We
have checked that our results do not depend on � in the range
� = 105 to 109 MeV.

For the core-valence Coulomb potential, we use the
dilatation-analytic form [49,56,57]

U (Z)
c (r) = e2Zc

erf(r/νc)

r
, (14)

where νc = 4R0/(3
√

π ) fm, R0 is the radius of the WS
potential, and Zc is the number of core protons.

We emphasize that the large continuum space, containing
states of both parities, is essential for the formation of
the dineutron structure in nuclei such as 6He and 26O
[24,25,52,58–60]. In the following, we study the effect of
including positive- and negative-parity continuum shells on
the stability of threshold configurations.

III. RESULTS

A. Structure of A = 6 systems

We begin with the GCC-GSM benchmarking for A = 6
systems. Figure 2 shows the convergence rate for the g.s.
energies of 6He, 6Li, and 6Be with respect to 
max. (See
Ref. [61] for a similar comparison between GSM and complex
scaling results.) While the g.s. energies of 6He and 6Be
are in reasonable agreement with experiment, that of 6Li is
overbound. This is because the Minnesota interaction does
not explicitly separate the T = 0 and T = 1 channels. The
structure of 6He and 6Be is given by the T = 1 force, while
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FIG. 2. Comparison between GSM and GCC results for the two-
nucleon separation energies of 6Be, 6Li, and 6He obtained in different
model spaces defined by 
max. Vertical bars in (a) represent decay
widths.

the T = 0 channel, which is crucial for 6Li, has not been
optimized. This is of minor importance for this study, as our
goal is to benchmark the GCC method and GSM, not to provide
quantitative predictions. As we use different coordinates in the
GCC basis and the GSM, their model spaces are manifestly
different. Still for 
max = 10 both approaches provide very
similar results, which is most encouraging.

One can see in Fig. 2 that calculations done with Jacobi
coordinates converge more rapidly than those done with
COSM coordinates. This derives from the attractive character
of the nucleon-nucleon interaction, which results in the
presence of a dinucleon structure (see discussion below).
Consequently, as T-type Jacobi coordinates well describe the
dinucleon cluster, they are able to capture correlations in
a more efficient way than COSM coordinates. This is in
agreement with the findings in Ref. [34] based on the complex
scaling method with COSM coordinates, which obtained a g.s.
energy for 6He that was slightly less bound compared to the
results in Ref. [39] using Jacobi coordinates. In any case, our
calculations have demonstrated that one obtains very similar
results in the GCC technique and GSM when sufficiently
large model spaces are considered. As reported in Table I,
the energy difference between GCC and GSM predictions for
A = 6 systems is very small, around 20 keV for the majority of
states. The maximum deviation of ∼70 keV is obtained for the

TABLE I. Comparison between energies (in MeV) and widths
(in keV) predicted for 6He, 6Li, and 6Be in the GSM and GCC
approach in the 
max = 10 model space.

Nucleus J π GSM GCC

6He 0+ −0.933 −0.934
2+ 0.800(98) 0.817(42)

6Li 1+ −5.680 −5.698
3+ −2.097 −2.167
0+ −0.041 −0.048

6Be 0+ 1.314(25) 1.275(54)

3+ state of 6Li. However, because of the attractive character of
the T = 0 interaction, the GSM calculation for this state has
not fully converged at 
max = 10.

Motivated by the discussion in Ref. [39], we have also
studied the effect of the 
-dependent core-nucleus potential.
To this end, we changed the WS strength V0 from 47 to 49 MeV
for 
 = 1 partial waves while keeping the standard strength for
the remaining 
 values. As shown in Fig. 3, the convergence
behavior obtained with Jacobi and COSM coordinates is fairly
similar to that shown in Fig. 2, where the WS strength V0 is
the same for all partial waves. For 
max = 12, the difference
between the GSM and the GCC energies of 6He becomes very
small. This result is consistent with the findings in Ref. [62] that
the recoil effect can indeed be successfully eliminated using
COSM coordinates at the expense of reduced convergence.

In order to see whether the difference between the model
space of the GCC approach and that of the GSM can be
compensated by renormalizing the effective Hamiltonian, we
slightly readjusted the depth of the WS potential in GSM
calculations to reproduce the g.s. GCC energy of 6He at the
model space of 
max = 7. As a result, the strength V0 changed
from 47 to 47.05 MeV. Except for the 2+ state of 6He, the GSM
and GCC energies for A = 6 systems became significantly
closer as a result of this renormalization. This indicates that
the differences between COSM and Jacobi coordinates can be
partly accounted for by refitting the interaction parameters,

2 3 4 5 6 7 8 9 10 11 12
-1.9

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

GSMS 2
n (

M
eV

)

GCC

0+6He g.s.

FIG. 3. Similar to Fig. 2, but for the two-neutron separation
energy of 6He obtained with the angular-momentum dependent
Hamiltonian; see text for details.
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even though the model spaces and asymptotic behavior are
different.

The GCC method is also in rough agreement with the
GSM when comparing decay widths, considering that they
are very sensitive to the asymptotic behavior of the wave
function, which is treated differently with Jacobi and COSM
coordinates. Also, the presence of the recoil term in the GSM,
which is dealt with by means of the HO expansion, is expected
to impact the GSM results for decay widths.

In order to check the precision of decay widths calculated
with the GCC technique we adopted the current expression
[63]

 = i

∫
(�†Ĥ� − �Ĥ�†)dxd y∫ |�|2dxd y

, (15)

which can be expressed in hyperspherical coordinates as
[64,65]

 = i
h̄2

m

∫
d�5Im

[
ψ ∂

∂ρ
ψ†]∣∣

ρ=ρmax∫ ρmax

0 |ψ |2dρd�5
, (16)

where ρmax is larger than the nuclear radius (in general, the
decay width should not depend on the choice of ρmax). By
using the current expression, we obtain  = 42 keV for the 2+
state of 6He and  = 54 keV for the 0+ state of 6Be, which
are practically the same as the GCC values in Table I obtained
from the direct diagonalization.

We now discuss the angular correlation of the two valence
neutrons in the g.s. of 6He. Figure 4 shows GSM and GCC re-
sults for model spaces defined by different values of 
max. The
distribution ρ(θ ) shows two maxima [24,34,51,52,62,66,67].
The higher peak, at a small opening angle, can be associated
with a dineutron configuration. The second maximum, found in
the region of large angles, represents a cigarlike configuration.
The GCC results for 
max = 2 and 10 are already very
close. This is not the case for the GSM, which shows
sensitivity to the cutoff value of 
. This is because a large
continuum space, including states of positive and negative
parity, is needed in the COSM picture to describe dineutron
correlations [25,52,58–60]. Indeed, as 
max increases, the
angular correlations obtained in the GSM and GCC method
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FIG. 4. Comparison between GSM and GCC results for the two-
neutron angular correlation in 6He for different model spaces defined
by 
max.

are very similar. This indicates that the Jacobi and COSM
descriptions of ρ(θ ) are essentially equivalent provided that
the model space is sufficiently large.

In order to benchmark the GCC and GSM calculations for
the valence-proton case, in Fig. 5 we compare two-nucleon
angular correlations for the A = 6 nuclei 6He, 6Li, and 6Be.
Similarly to Refs. [51] and [52], we find that the T = 1
configurations have a dominant S = 0 component, in which
the two neutrons in 6He or two protons in 6Be are in the spin
singlet state. The amplitude of the S = 1 density component
is low. For all nuclei, the GCC and GSM angular correlations
are close.

Similarly to 6He, the two peaks in 6Be indicate diproton
and cigarlike configurations [68] (see also Refs. [69–73]). It
is noteworthy that the dineutron peak in 6He is slightly higher
than the diproton maximum in 6Be. This is due to the repulsive
character of the Coulomb interaction between valence protons.
The large maximum at small opening angles seen in 6Li
corresponds to a deuteronlike structure. As discussed in
Ref. [66], this peak is higher than the dineutron peak in 6He.
Indeed, the valence proton-neutron pair in 6Li is very strongly
correlated because the T = 0 interaction is much stronger
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GSM (S=1)
GCC (total)
GCC (S=1)

θ (degrees)

ρ
(θ

)

FIG. 5. Two-nucleon angular densities (total and in the S = 1 channel) in the g.s. configurations of (a) 6He, (b) 6Li, and (c) 6Be obtained
in the GSM and GCC approach with 
max = 10.
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FIG. 6. Two-neutron separation energy of the g.s. of 26O com-
puted with the GSM and GCC method for different values of 
max.

than the T = 1 interaction. The different features in the
two-nucleon angular correlations in the three A = 6 systems
shown in Fig. 5 demonstrate that the angular correlations
contain useful information on the effective interaction between
valence nucleons.

B. Structure of unbound 26O

After benchmarking the GSM and GCC approach for A = 6
systems, we apply both models to 26O, which is believed
to be a threshold dineutron structure [13,20–25]. It is a
theoretical challenge to reproduce the resonances in 26O as
both continuum and high partial waves must be considered.
As 24O can be associated with a subshell closure in which the
0d5/2 and 1s1/2 neutron shells are occupied [74], it can be used
as the core in our three-body model.

Figure 6 illustrates the convergence of the g.s. of 26O
with respect to 
max in GSM and GCC calculations. It is
shown that in the GCC approach the energy converges nearly
exponentially and that the stable result is practically reached
at 
max = 7. While slightly higher in energy, the GSM results
are quite satisfactory, as they differ only by about 30 keV from
the GCC benchmark. Still, it is clear that 
max = 12 is not
sufficient to reach full convergence in the GSM.

The calculated energies and widths of the g.s. and 2+ state of
26O are listed in Table II; they are both consistent with the most
recent experimental values [21]. The amplitudes of dominant
configurations listed in Table II illustrate the importance of

TABLE II. Energies and widths (all in keV) predicted for 26O
in GSM and GCC in the 
max = 12 model space. Also listed are the
dominant GSM (
1, 
2) and GCC (
x, 
y) configurations.

J π GSM GCC

0+ 101 81% (d,d) 69 46% (p,p)
11% (f,f ) 44% (s,s)
7% (p,p) 3% (d,d)

2+ 1137(33) 77% (d,d) 1150(14) 28% (f,p)
7% (p,p) 27% (p,f )
7% (d,s) 10% (d,d)
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FIG. 7. GCC wave function of the g.s. of 26O in the Jacobi
coordinates nn and 24O−2n.

considering partial waves of different parities in the GSM
description of a dineutron g.s. configuration in 26O [25].

The g.s. wave function of 26O computed in the GCC
approach is shown in Fig. 7 in Jacobi coordinates. The
corresponding angular distribution is displayed in Fig. 8. Three
pronounced peaks, associated with the dineutron, triangular,
and cigarlike configurations [23,75], can be identified. In
the GCC approach, the (
x, 
y) = (s,s), (p,p) components
dominate the g.s. wave function of 26O; this is consistent with
a sizable clusterization of the two neutrons. In COSM coordi-
nates, it is the (
1, 
2) = (d,d) configuration that dominates,
but the negative-parity (f,f ) and (p,p) channels contribute
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)

FIG. 8. Two-neutron angular correlation for (a) the 0+ g.s. and (b)
the 2+

1 -state configurations of 26O computed with the GCC approach
(solid line) and GSM (dashed line) with 
max = 10. The dash-dotted
curve labeled GCC′ in (a) shows GCC results obtained with the
strength of the neutron-neutron interaction reduced by 50%.
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∼20%. Again, it is encouraging to see that at 
max = 10 both
approaches predict very similar two-nucleon densities.

In Table II we also list the predicted structure of the excited
2+ state of 26O. The predicted energy is close to experiment
[21] and other theoretical studies (see, e.g., [22], [23], and
[76–78]). We obtain a small width for this state, which is
consistent with the GSM + density-matrix renormalization-
group calculations in Ref. [25]. The GCC occupations in
Table II indicate that the wave function of the 2+ state is spread
out in space, as the main three configurations, of the cluster
type, contribute only 65% to the wave function. Considering
the GSM wave function, the (d,d) configuration dominates.
The corresponding two-neutron angular correlation shown in
Fig. 8(b) exhibits a broad distribution with a maximum around
90◦. This situation is fairly similar to what has been predicted
for the 2+ state of 6He [34,52].

Finally, it is interesting to study how the neutron-neutron
interaction impacts the angular correlation. To this end,
Fig. 8(a) shows ρ(θ ) values obtained with the Minnesota
neutron-neutron interaction, whose strength has been reduced
by 50%. While there are still three peaks present, the distribu-
tion becomes more uniform and the dineutron component no
longer dominates. We can thus conclude that the nn angular
correlation can be used as an indicator of the interaction
between valence nucleons.

IV. CONCLUSIONS

We have developed a Gamow coupled-channel (GCC)
approach in Jacobi coordinates with the Berggren basis to
describe structure and decays of three-body systems. We
have benchmarked the performance of the Gamow shell
model (GSM) against the new approach. Both methods are
capable of considering large continuum spaces but differ in
their treatment of the three-body asymptotics, center-of-mass
motion, and Pauli operator. We have demonstrated that the
Jacobi-coordinate-based framework (GCC) is accurate and
robust for three-body systems. It is also encouraging to see
that, in spite of these differences, the COSM-coordinate-based
framework (GSM) yields fairly similar results, provided that
the continuum space is sufficiently large.

For benchmarking and illustrative examples we choose
6He, 6Li, 6Be, and 26O—all viewed as a core-plus-two-
nucleon systems. We discuss the spectra, decay widths,
and nucleon-nucleon angular correlations in these nuclei.
The Jacobi coordinates capture cluster correlations (such as
dineutron and deuteron type) more efficiently; hence, the
convergence rate of the GCC method is faster than that of the
GSM.

For 26O, we have demonstrated the sensitivity of the nn
angular correlation to the valence-neutron interaction. It will
be interesting to investigate this aspect further to provide
guidance for future experimental investigations of dinucleon
correlations in bound and unbound states of dripline nuclei.

In summary, we have developed an efficient approach
to study of structure and decays of three-cluster systems.
The GCC method is based on a Hamiltonian involving an
interaction between valence nucleons and a core-nucleon
potential. The advantage of the model is its ability to
correctly describe the three-body asymptotic behavior and
the efficient treatment of the continuum space, which is of
particular importance for the treatment of threshold states
and narrow resonances. The model can be easily extended
along the lines of the resonating-group method by introducing
a microscopic picture of the core [15,79]. Meanwhile, it
can be used to elucidate experimental findings on dripline
systems and to provide fine-tuned predictions to guide A-body
approaches.
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