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In this paper we study the monopole pairing correlation in 0+ states of semimagic nuclei under random
interactions. We calculate overlaps between S-pair wave functions and exact shell-model wave functions. No
dominance of the S-pair components is shown: In a single-j shell 0+ states have random overlaps with the
S-pair wave function; in a multi-j space the 0+

1 state has a small overlap with the S-pair wave function, and
this is particularly pronounced if the single-particle splitting is small and/or the spins j of single-particle orbits
are large. For the 0+

1 state in a multi-j space, the generalized seniority scheme and the seniority truncation of
the shell model provide similar results. We study the odd-even staggering of one-neutron separation energies
under random interactions. The odd-even staggering phenomenon survives in random samples where all the
even members have spin-zero ground states but disappears in random samples where all the even members have
spin-nonzero ground states.
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I. INTRODUCTION

The pairing correlation plays an important role in low-lying
states of atomic nuclei [1,2]. The ground states of even-even
nuclei always have spin and parity Iπ = 0+ without any
exception. One-proton separation energies of even-Z nuclei
are systematically larger than those of neighboring odd-Z
nuclei, and one-neutron separation energies of even-N nuclei
are systematically larger than those of neighboring odd-N
nuclei. Proton-proton or neutron-neutron pairs with spin J = 0
(namely S pairs) are found to be dominant ingredients in
low-lying states of semimagic nuclei [3]. These phenomena
were believed to be consequences of the strong and attractive
monopole pairing interaction between like nucleons.

In 1997, Johnson, Bertsch, and Dean found the dominance
of 0+ ground states (0 g.s.) in even-even nuclei under two-body
random ensembles (TBREs) [4]. Since then, many efforts
have been devoted to understanding this puzzle under random
interactions, as well as to studying collective motions in atomic
nuclei. For example, in Ref. [5] Bijker and Frank studied
vibrational and rotational motions in the interacting boson
model with random interactions; in Refs. [6,7] Zhao et al.
studied collective motions in nucleon-pair approximations
of the shell model; in Ref. [8] Johnson and Nam studied
correlation of yrast states using the Mallmann plot [9], and
the correlation was further investigated in Refs. [10–13]. See
Refs. [14–17] for a comprehensive review.

The monopole pairing correlation in semimagic nuclei was
studied in the framework of the shell model with random
interactions by Johnson et al. [18]. They found that one-
neutron separation energies of even-N calcium isotopes are
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systematically larger than those of the neighboring odd-N
calcium isotopes in the random samplings where all the even
members have 0 g.s. and that the pair-transfer fractional
collectivity between the ground states of n particles and n − 2
particles is close to 1. In Ref. [19] Lei et al. calculated
overlaps between the lowest-seniority wave function and the
shell-model wave function for the 0+

1 and 2+
1 states of six

neutrons in the sd shell and in the pf shell with random
interactions. They found that the S pairs are very important
as single-particle splittings are large. These results seem to
indicate that the pairing correlation remains important in
random quantum systems. However, in Ref. [20] Zhao et al.
calculated the seniority number for 0+

1 states of four and six
neutrons in a single-j shell with random interactions and found
no dominance of low seniority.

The purpose of this paper is to understand the inconsistency
of the previous conclusions. We systematically study the
monopole pairing correlation in 0+ states of semimagic nuclei
under random interactions. We focus attention on the structure
of wave functions, viz., comparing S-pair wave functions
and shell-model wave functions. The main results of our
analysis are (1) in a single-j shell, 0+ states have essentially
random overlaps with the S-pair wave function; (2) random
interactions favor one or more particular states as shell-model
solutions, but the S-pair wave function is not so favored; (3) in
a multi-j space, the 0+

1 state has a small overlap with the S-pair
wave function; (4) in a multi-j space, the generalized seniority
scheme and the seniority truncation of the shell model provides
similar results for the 0+

1 state; (5) in a multi-j space, the
overlap between the S-pair wave function and the shell-model
wave function is relatively larger for the lowest and the highest
0+ states; (6) the famous odd-even staggering of one-nucleon
separation energies is seen in random interactions when the
even nuclei have 0 g.s., but disappears when the ground states
have non-0 spins.
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This paper is organized as follows. In Sec. II we introduce
random interactions, S-pair wave functions, and random
matrices. In Sec. III we present the overlap between S-pair
wave functions and shell-model wave functions for 0+ states
of semimagic nuclei in a single-j shell and in a multi-j shell;
we study the odd-even staggering of one-neutron separation
energies under both the requirement of 0 g.s. and that of non-0
g.s. In Sec. IV we summarize our results.

II. FRAMEWORK

A. The random interaction

In random two-body interactions, we treat two-body matrix
elements V

(JT )
j1j2j3j4

= 〈j1j2JT |V |j3j4JT 〉 as random parame-
ters which follow the Gaussian distribution

ρ
(
V

(JT )
j1j2j3j4

) = 1√
2πx

exp

[
−

(
V

(JT )
j1j2j3j4

)2

2x

]
, (1)

where

x =
{

1 if |〈j1j2JT |j3j4JT 〉| = 1,
1
2 otherwise.

(2)

In this paper we use two random ensembles of Hamiltonian
as follows.

(a) We use TBRE for a single-j shell or the pf shell:
The single-particle energies are zero, and the two-body
matrix elements are defined by Eq. (1).

(b) We use two-body random ensemble with random
single-particle energies (TBRE-RSPE) for a two-j
shell (j1 and j2): The two-body matrix elements are
defined by Eq. (1), and the single-particle splitting,
ε ≡ εj2 − εj1 , follows the uniform distribution between
−10 and 10.

B. The S-pair wave function

In this work we obtain the S-pair wave function by using
two pair-truncation schemes: the seniority truncation of the
shell model and the generalized seniority scheme.

In the seniority truncation of the shell model [21] (it is also
called the noncollective S-pair approximation), the building
blocks are S pairs of single-j orbits, i.e.,

S
†
j = (a†

j × a
†
j )(J=0), (3)

where aj
† denotes a nucleon on orbit j . The basis states of 2N

neutrons with spin 0 are constructed by such pairs, i.e.,

1

N
[
S
†
j1

× S
†
j2

× · · · × S
†
jN

](I=0)|0〉, (4)

where N is a normalization factor. By taking all possible
combinations of the ji , one gets a complete basis set for
the seniority-zero space, and we diagonalize the Hamiltonian
matrix in this space. The dimension is denoted by dST, and
the calculated wave functions are denoted by |�ST(0+

i )〉, with
i = 1,2, . . . ,dST, where we use “ST” to represent “seniority
truncation.”

In the generalized seniority scheme [3] (it is also called
the collective S-pair approximation), the building blocks are
collective (alternatively, correlated) S pairs, i.e.,

S† =
∑

j

yjS
†
j , (5)

where yj are a set of structure coefficients to be determined
properly. The wave function of 2N neutrons with spin 0 is
constructed by the collective S pairs, i.e.,

|�GS〉 ≡ 1

N (S† × S† × · · · × S†)(I=0)|0〉, (6)

where we use the subscript “GS” to represent “generalized
seniority.” The structure coefficients of the collective S pairs,
yj , are determined by minimizing the expectation value of the
Hamiltonian, 〈�GS|Ĥ |�GS〉, through an iterative procedure.
In this work we compute yj using a calculating technique in
Ref. [22].

In a multi-j shell the generalized seniority scheme can be
regarded as an approximate solution of the seniority truncation
of the shell model. In a single-j shell both the generalized
seniority scheme and the seniority truncation are reduced to
the “standard” seniority scheme [23]; i.e., we have dST = 1
and |�GS〉 = |�ST(0+

1 )〉.
We calculate 0+ states of semimagic nuclei in the full shell-

model space. The dimension of the 0+ states is denoted by dSM

(in the j -j coupled scheme), and the calculated wave functions
are denoted by |�SM(0+

i )〉, with i = 1,2, . . . ,dSM, where we
use “SM” to represent “shell model.”

C. The random matrix

Random matrices were introduced into physics by Wigner
in the 1950s, which was used to understand the level spacings
in resonances of slow-neutron scattering on heavy nuclei [24].
It is a useful tool to study spectral fluctuations, symmetries,
and quantum chaos. See Refs. [16,17] for a comprehensive
review.

We denote the random Hamiltonian matrix by H , the matrix
elements by Hij , and the dimension of H by dH . In the
Gaussian orthogonal ensemble (GOE), the matrix elements
follow three properties:

(a) Hij = Hji = Hij
∗;

(b) Hij (i � j ) are independent;
(c) because the original basis states are arbitrarily chosen,

the distribution of H is invariant under an arbitrary
unitary transformation of the basis states [25].

To satisfy property (c), the distribution of the matrix
elements is given by

ρ(Hij ) = 1√
2πx

exp

[
− (Hij )2

2x

]
, (7)

where

x =
{

1 if i = j ,
χ2/2 if i < j ,

and χ = 1. (8)

If one takes a smaller value of χ (0 < χ < 1), the magni-
tude of the off-diagonal matrix elements is smaller, which
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leads to weaker configuration mixings between the origi-
nal basis states, and the distribution of H is not unitary
invariant.

The submatrix of H is simply defined as

H ′ = (Hij ), i,j = 1,2, . . . ,dH ′ , (9)

where dH ′ is the dimension of the submatrix (0 < dH ′ � dH ).

III. RESULTS

In this paper we call the quantity 〈�a|�b〉2 overlap between
two wave functions |�a〉 and |�b〉. We investigate 0+ states
of four and six neutrons (n = 4 and 6) in a single-j shell and
in a multi-j shell. We calculate overlaps between S-pair wave
functions and shell-model wave functions with the TBRE or
the TBRE-RSPE.

A. The single- j shell

Let us begin with random ensembles in a single-j shell. It
is worth noting that there is only one 0+ state for a semimagic
even-even nucleus in the single-j � 7/2 shell, and this state
has seniority quantum number ν = 0 trivially. Thus, we take
j � 9/2. We investigate the cases of j = 9/2, 11/2, 13/2,
15/2, 17/2, and 21/2. In each case we diagonalize 1000
sets of the TBRE matrices and calculate overlaps between
the S-pair wave function and the shell-model wave functions,
〈�GS|�SM(0+

i )〉2 with i = 1,2, . . . ,dSM.
In Fig. 1 one sees that distributions of 〈�GS|�SM(0+

i )〉2

with different i are very similar to each other. This means
S pairs do not favor the lowest 0+ state in a single-j
shell under random interactions. For the cases with dSM = 2,
i.e., four neutrons in the j = 9/2, j = 11/2, and j = 13/2
shells, we find two statistical peaks at 〈�GS|�SM(0+

i )〉2 = 0
and 〈�GS|�SM(0+

i )〉2 = 1, respectively. For the cases with
dSM � 3, i.e., four neutrons in the j = 15/2 shell and in the
j = 21/2 shells and six neutrons in the j � 11/2 shells, we
find one sharp peak at 〈�GS|�SM(0+

i )〉2 = 0, and the statistical
probability decreases rapidly as 〈�GS|�SM(0+

i )〉2 increases.
For 〈�GS|�SM(0+

i )〉2 = 1, the probability is close to 0.
The above results can be modeled by behavior of random

unit vectors in a dSM-dimensional space. We regard the S-pair
wave function as a fixed unit vector and the shell-model
wave functions obtained under the TBRE as random unit
vectors in a dSM-dimensional space. The exact distribution
of overlaps between a fixed unit vector and random unit
vectors is presented in Fig. 1 (see the Appendix for the
analytic formula); we find that it reasonably explains the
distribution of 〈�GS|�SM(0+

i )〉2. This means the validity of
the S-pair approximation for 0+ states of semimagic nuclei
in a single-j shell is essentially random. We also see small
deviations from the random distribution; for example, for
the cases with dSM = 2 [see Figs. 1(a)–1(c)], the probability
of 〈�GS|�SM(0+

i )〉2 ≈ 0.5 is higher than the purely random
probability; for six neutrons in the j = 11/2 shell and in the
j = 13/2 shell [see Figs. 1(f) and 1(g)], the probability of
〈�GS|�SM(0+

i )〉2 ≈ 1 is higher than the random probability.
One might ask whether the shell-model wave functions

obtained under the TBRE are random unit vectors in the

FIG. 1. Distributions of overlaps between the S-pair wave func-
tion and the shell-model wave functions, 〈�GS|�SM(0+

i )〉2, with
i = 1,2, . . . ,dSM, for four and six neutrons in a single-j shell with the
TBRE. The average value of the probability density is set to 1. n is the
neutron number, and dSM is the dimension of the shell-model space for
0+ states. The curves in black are distributions of 〈�GS|�SM(0+

i )〉2

for the random ensemble. The dashed curve in green is the exact
distribution of overlaps between a fixed unit vector and random unit
vectors in a dSM-dimensional space.

dSM-dimensional Hilbert space. We investigate three cases:
four neutrons in the j = 13/2 shell (dSM = 2), four neutrons in
the j = 15/2 shell (dSM = 3), and six neutrons in the j = 21/2
shell (dSM = 13).

For four neutrons in the j = 13/2 shell, we diagonalize
10 000 sets of TBRE matrices. The 0+

1 -state shell-model wave
functions, as well as the S-pair wave function, are represented
by the polar coordinate ϕ. The distribution is presented in
Fig. 2(a), and the probability density is approximately given
by the following equation:

ρ(ϕ) ≈ 1 + 0.440 sin(4ϕ − 0.829). (10)
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FIG. 2. Distribution of 0+
1 -state shell-model wave function ob-

tained under the TBRE in the dSM-dimensional Hilbert space. The
average value of the probability density is set to 1 in panel (a) and
Y0,0 (= 1/

√
4π = 0.282) in panel (b). The coordinates of the S-pair

wave function are also presented.

There is a correlation between the shell-model wave functions,
and it is broadened by randomness. For a two-dimensional
system, if a particular state is preferred, as either the lowest
state or the highest state, the orthogonal state must be preferred.
This is because as the Hamiltonian is random it can be
multiplied by an overall sign. In Fig. 2(a) one sees two
statistical peaks around ϕ = −0.31π and 0.19π . The S-pair
wave function is found at ϕ = 0.41π , and it is not favored
by the TBRE. The above feature leads to the small deviations
from the purely random distribution in Figs. 1(a)–1(c).

For four neutrons in the j = 15/2 shell (dSM = 3), we
diagonalize 7.5 × 104 sets of TBRE matrices. The 0+

1 -state
wave functions, as well as the S-pair wave function, are
represented by the spherical coordinates θ and ϕ. The dis-
tribution is presented in Fig. 2(b), and the probability density

is approximately given by the multipole expansion in the real
spherical-harmonic basis, i.e.,

ρ(θ,ϕ) ≈ Y0,0 + 0.018Y2,−2 + 0.024Y2,−1

+ 0.088Y2,0 − 0.002Y2,1 − 0.014Y2,2

− 0.181Y4,−4 + 0.243Y4,−3 + 0.462Y4,−2

+ 0.172Y4,−1 − 0.051Y4,0 − 0.139Y4,1

− 0.154Y4,2 + 0.041Y4,3 − 0.206Y4,4. (11)

A strong hexadecapole oscillation shows up. In Fig. 2(b) one
sees that there are three particular states that are favored in this
three-dimensional system, and they are orthogonal to each
other. This leads to the small deviations from randomness in
Fig. 1(d).

For six neutrons in the j = 21/2 shell (dSM = 13), we
diagonalize 7.5 × 105 sets of TBRE matrices. We calculate
the average overlap of the 0+

1 -state shell-model wave functions
with a given state |� ′〉. In this work we randomly choose ten
of the 0+

1 -state shell-model wave functions as our |� ′〉, and
the resulting average overlaps are equal to 0.108, 0.159, 0.112,
0.112, 0.118, 0.103, 0.105, 0.115, 0.127, 0.112, respectively.
These values are larger than one would expect in the case of
purely random vectors which would give the average overlap
1/dSM (=0.077 in our case) [26,27]. If we choose the S-pair
wave function as |� ′〉, the average overlap is equal to 0.112.
In Ref. [28] Horoi et al. chose the 0+

1 -state wave function
obtained by realistic interactions as |� ′〉 and found that the
average overlap is larger than 1/dSM. It indicates that the
“realistic” 0+

1 state is favored by random interactions.

B. The multi- j shell

Now we come to random ensembles in multi-j shells.
Here we investigate 0+ states of four and six neutrons in the
schematic g9/2i11/2 shell and in the pf shell. For the case of the
g9/2i11/2 shell, we diagonalize 5000 sets of the TBRE-RSPE
matrices. For the case of the pf shell, we diagonalize 1000
sets of the TBRE matrices.

First let us focus on the 0+
1 state. For the case of the g9/2i11/2

shell, we present the distribution of the overlap between
the seniority-truncated wave function and the shell-model
wave function, 〈�ST(0+

1 )|�SM(0+
1 )〉2, versus the single-particle

splitting, ε = εi11/2 − εg9/2 , in Fig. 3. We find a statistical
valley at [ε,〈�ST(0+

1 )|�SM(0+
1 )〉2] = (0,1) and a statistical

peak around (0,0). This means that the seniority truncation is
not favored in the 0+

1 state with small single-particle splittings.
As the single-particle splitting increases, 〈�ST(0+

1 )|�SM(0+
1 )〉2

increases statistically. If the splitting is very large (e.g., |ε| ∼
10), the distribution of 〈�ST(0+

1 )|�SM(0+
1 )〉2 in the g9/2i11/2

shell is reduced to that in the single-g9/2 or single-i11/2 shell,
which exhibits random behavior.

In Ref. [19], Lei et al. present the overlap between the
generalized-seniority wave function and the shell-model wave
function, 〈�GS|�SM(0+

1 )〉2, for six neutrons in the sd shell and
in the pf shell, under random interactions. They found that
the 0+

1 ground state is very well described by the generalized
seniority scheme when single-particle splittings are very large.
This result can be understood as follows. When single-particle
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FIG. 3. Distributions of the overlap between the seniority-
truncated wave function and the shell-model wave function,
〈�ST(0+

1 )|�SM(0+
1 )〉2, for semimagic nuclei in the schematic g9/2i11/2

shell under the TBRE-RSPE. Here ε = εi11/2 − εg9/2 . The average
value of the probability density is set to 1.

splittings are very large, low-lying states calculated in a multi-j
shell can be approximately represented by those in a single-j
shell. In the sd and pf shells spins j of the single-particle
orbits are not larger than 7/2. Thus, there is only one 0+ state
in the single-j shell, which has seniority quantum number
ν = 0.

For six neutrons in the g9/2i11/2 shell, the 0+
1 state is not

well described by the seniority truncation even if the single-
particle splitting is very large [see Fig. 3(b)]. The 0+

1 state
has a smaller overlap with the S-pair wave function when the

FIG. 4. Comparison of the generalized seniority scheme and the
seniority truncation of the shell model for the 0+

1 state of semimagic
nuclei in the pf shell under the TBRE: the left two panels show
〈�GS|�SM(0+

1 )〉2 versus 〈�ST(0+
1 )|�SM(0+

1 )〉2, and the right two panels
show δEGS versus δEST. The generalized seniority scheme and the
seniority truncation of the shell model provide very similar results.

spins j of single-particle orbits are larger. This conclusion is
also consistent with the following numerical experiment. We
calculate the overlap 〈�GS|�SM(0+

1 )〉2 for six neutrons in the
g9/2i11/2 shell (dSM = 55) and in the pf shell (dSM = 137),
respectively, with the TBRE. The probability of large overlap
(let us say the overlap >0.9) is equal to 6.7% for the case in the
pf shell, and is lower than 0.1% for the case in the g9/2i11/2

shell.
We compare the generalized seniority scheme and the

seniority truncation of the shell model for the 0+
1 state. For the

case of the pf shell under the TBRE, we calculate overlaps,
xGS

2 = 〈�GS|�SM(0+
1 )〉2 and xST

2 = 〈�ST(0+
1 )|�SM(0+

1 )〉2,
and relative energy errors which are defined by

δEGS = EGS − ESM(0+
1 )

ESM(0+
1 )

, (12)

δEST = EST(0+
1 ) − ESM(0+

1 )

ESM(0+
1 )

. (13)

The results are presented in Fig. 4. We find that most of
the random samples follow the relations xGS

2 ≈ xST
2 and

δEGS ≈ δEST, which means the generalized seniority scheme
and the seniority truncation of the shell model provide very
similar results.

Now let us consider not only the 0+
1 state but also excited

0+ states. For the cases of the g9/2i11/2 and pf shells, we
calculate overlaps between seniority-truncated wave functions
and shell-model wave functions, 〈�ST(0+

i )|�SM(0+
j )〉2, with

1 � i � dST and 1 � j � dSM, under random interactions. For
each combination of i and j , we obtain a distribution of the
overlap; here we focus our attention on the probability of
〈�ST(0+

i )|�SM(0+
j )〉2 > 0.9. In Table I one sees the probability
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TABLE I. Probability of 〈�ST(0+
i )|�SM(0+

j )〉2 > 0.9 (i =
1,2, . . . ,dST and j = 1,2, . . . ,dSM) under random interactions. Here
dSM is the dimension of the shell-model space for 0+ states, and
dST is the dimension of the seniority-truncated space. Only a few
combinations of i and j are shown in this table, because for the rest
of the combinations the probability of 〈�ST(0+

i )|�SM(0+
j )〉2 > 0.9 is

very close to zero.

i j Probability (%)

n = 4, g9/2i11/2 shell (dSM = 12, dST = 3), TBRE-RSPE
1 1 5.8
1 2 5.0
3 11 5.0
3 12 6.4

n = 6, g9/2i11/2 shell (dSM = 55, dST = 4), TBRE-RSPE
1 1 2.5
1 2 3.0
4 54 3.1
4 55 2.9

n = 4, pf shell (dSM = 28, dST = 9), TBRE
1 1 1.5
9 28 2.1

n = 6, pf shell (dSM = 137, dST = 15), TBRE
1 1 2.9
15 137 3.4

is lower than 7%, and this again demonstrates that S pairs
are not dominant ingredients in wave functions of random
many-body systems.

Interestingly, we find the probability of
〈�ST(0+

i )|�SM(0+
j )〉2 > 0.9 is relatively higher if both

i and j are very close to 1 or to the maximum. For
example, for four neutrons in the pf shell, the probability
of 〈�ST(0+

1 )|�SM(0+
1 )〉2 > 0.9 is equal to 1.5%, and the

probability of 〈�ST(0+
9 )|�SM(0+

15)〉2 > 0.9 is equal to 2.1%;
for other combinations of i and j , the probability is very
close to 0. Similarly, for six neutrons in the pf shell, the
probability of 〈�ST(0+

1 )|�SM(0+
1 )〉2 > 0.9 is equal to 2.9%,

and the probability of 〈�ST(0+
15)|�SM(0+

137)〉2 > 0.9 is equal
to 3.4%; for other combinations of i and j , the probability
is very close to 0. This phenomenon is very different from
what we find in a single-j shell: The overlap between the
S-pair wave function and the shell-model wave function has
the same distribution for all 0+ states. An interesting question
is whether this phenomenon attributes to random behavior.
Below we study this using random matrices.

The definition of the random Hamiltonian matrix H and its
submatrix H ′ are given in Eqs. (7) and (9) with a parameter
χ . For comparing with the case of four neutrons in the pf
shell, we take dH = dSM = 28, dH ′ = dST = 9, and χ = 0.27;
for comparing with the case of six neutrons in the pf shell,
we take dH = 137, dH ′ = 15, and χ = 0.087. We diagonalize
H ′ and H and sort the eigenvectors by the eigenenergies from
the smallest to the largest, respectively; the sorted eigenvectors
are denoted by |v′

i〉 with i = 1,2, . . . ,dH ′ and |vj 〉 with j =
1,2, . . . ,dH . We calculate overlaps |〈v′

i |vj 〉|2. In this work we
consider 1000 sets of random matrices. For each combination

TABLE II. Probability that the overlap between the eigenvectors
of a random matrix H and those of its submatrix H ′, |〈v′

i |vj 〉|2, is
larger than 0.9 (i = 1,2, . . . ,dH ′ and j = 1,2, . . . ,dH ). H and H ′ are
defined by Eqs. (7) and (9); dH is the dimension of H ; dH ′ is the
dimension of H ′; χ is a parameter which represents the magnitude of
the off-diagonal matrix elements. Only a few combinations of i and
j are shown in this table, because for the rest of the combinations the
probability of |〈v′

i |vj 〉|2 > 0.9 is very close to zero.

i j Probability (%)

dH = 28, dH ′ = 9, χ = 0.27
1 1 2.1
9 28 1.7

dH = 137, dH ′ = 15, χ = 0.087
1 1 3.0
15 137 2.7

of i and j we obtain a distribution of |〈v′
i |vj 〉|2. The probability

of |〈v′
i |vj 〉|2 > 0.9 is presented in Table II. One sees a similar

phenomenon: The probability of |〈v′
i |vj 〉|2 > 0.9 is relatively

higher if both i and j are equal to 1 or to the maximum; for
other combinations of i and j , the probability is very close
to 0.

We also investigate the GOE matrices (namely, we set χ =
1). The only difference between the GOE matrices and random
matrices with χ < 1 is that configuration mixings between the
original basis states in the latter are weaker than configuration
mixings in the former. Our numerical experiment shows that
for all combinations of i and j the probability of |〈v′

i |vj 〉|2 >
0.9 is very close to 0 in the GOE.

C. One-neutron separation energy

In the final part of this section, we arrive at the one-neutron
separation energy. It is well known that one-neutron (-proton)
separation energies of even-N (-Z) nuclei are systematically
larger than those of neighboring odd-N (-Z) nuclei, which is at-
tributed to the monopole pairing correlation. In Ref. [18] John-
son et al. found that the odd-even staggering phenomenon sur-
vives with random interactions, under the requirement of 0 g.s.

In this work we study the odd-even staggering phenomenon
under both the requirement of 0 g.s. and that of non-0 g.s.
The odd-even staggering is well represented by the so-called
three-point formula [29]

�(3)
n (Z,N ) ≡ (−)N+1

2
[Sn(Z,N + 1) − Sn(Z,N )]

= (−)N+1

2
[B(Z,N + 1) + B(Z,N − 1)

− 2B(Z,N )], (14)

where B is the binding energy, and Sn is the one-neutron
separation energy, i.e., Sn(Z,N ) = B(Z,N ) − B(Z,N − 1).
We investigate systems with neutron number n = 3–6 in the
single-j = 11/2 shell. We calculate ground state energies and
�(3)

n under 1000 sets of the TBRE. The probability that both the
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FIG. 5. Distributions of �(3)
n for three to six neutrons in the

single-j = 11/2 shell under TBRE. The curve in black represents
the random ensembles that both the n = 4 and 6 systems have 0
g.s., and the curve in red represents those that both the n = 4 and 6
systems have non-0 g.s. The average value of the probability density
is set to 1.

systems with n = 4 and 6 have 0 g.s. is ∼26%; the probability
that both the even systems have non-0 g.s. is ∼30%.

In Fig. 5 the distribution of �(3)
n of the random samples

that both the even systems have 0 g.s. is presented by the
curve in black. �(3)

n has a very high probability to be positive,
which indicates that the odd-even staggering of one-nucleon
separation energy survives. This result agrees with that of
Ref. [18]. The distribution of �(3)

n of the random samples that
both the even systems have non-0 g.s. is presented by the
curve in red. Surprisingly, one sees a sharp peak at �(3)

n = 0;
the odd-even staggering phenomenon disappears. Thus, the 0
g.s. dominance and the odd-even staggering of one-nucleon
separation energy under random interactions may share the
same origin.

IV. SUMMARY

In this paper, we study the monopole pairing correlation
in 0+ states of semimagic nuclei under random interac-
tions. We investigate four and six neutrons in a single-j
shell and in a multi-j shell. We present overlaps between
the S-pair wave functions and the exact shell-model wave
functions for the random ensembles. Our conclusions are as
follows.

(1) In a single-j shell, the 0+-state shell-model wave
functions have random overlaps with the S-pair wave
function. It is interpreted as the overlaps between
random unit vectors and a fixed unit vector in a
dSM-dimensional space (see in Fig. 1). Small deviations
from the purely random distribution are seen.

(2) The shell-model wave functions obtained by the TBRE
are not purely random unit vectors in Hilbert space.

There are one or more particular states that are
favored by the random interactions, but the S-pair wave
function is not so favored. This leads to the small
deviations mentioned in (1).

(3) In a multi-j space, the 0+
1 -state shell-model wave func-

tion has a small overlap with the S-pair wave function.
This is particularly pronounced if the single-particle
splitting is small and/or the spins j of single-particle or-
bits are large. When the single-particle splitting is much
larger than the magnitude of two-body interactions, the
0+

1 -state shell-model wave function is reduced to that in
a single-j shell. For j � 7/2 there is only one 0+ state
in a single-j shell. It leads to the result of Ref. [19] that
the 0+

1 state of six neutrons in the sd and pf shells
has seniority zero with a very large single-particle
splitting.

(4) For the 0+
1 state in a multi-j space, the level energy and

the wave function obtained by the generalized seniority
scheme are close to those obtained by the seniority
truncation of the shell model.

(5) For not only the 0+
1 state but also excited 0+ states

in a multi-j space, we have investigated overlaps
between the seniority-truncated wave functions and
the shell-model wave functions, 〈�ST(0+

i )|�SM(0+
j )〉2.

The overlap is relatively larger (although still small) if
both i and j are very close to 1 or to the maximum.
This feature is also found in the random matrix, where
weaker off-diagonal elements increase the probability
of overlap of extremal vectors of the full matrix and its
submatrix.

(6) The odd-even staggering of one-nucleon separation
energies survives in random interactions when the even
nuclei have 0 g.s., but disappears when the ground
states have non-0 spins.

The 0 g.s. and the odd-even staggering of one-nucleon
separation energies are regarded as two textbook phenomena
of the strong monopole pairing correlation in atomic nuclei.
Under random interactions, scientists find the dominance
of 0 g.s. [4], and the odd-even staggering survives in
0 g.s. systems [18]. The results in this work show that
there is no dominance of monopole pairing in random
many-body systems, contrasting with the prior results of
Refs. [18,19].
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APPENDIX: THE DISTRIBUTION OF OVERLAPS BETWEEN A FIXED UNIT VECTOR
AND RANDOM UNIT VECTORS IN A d-DIMENSIONAL SPACE

Random unit vectors are uniformly distributed over a d-dimensional sphere. The d-dimensional sphere volume is given by

Vd (R) = adR
d, with ad = πd/2

�
(

d
2 + 1

) , (A1)

where R is the radius, and �(k) is the � function. If k is a positive integer or a positive half integer, the � function is reduced to
a simple formula,

�(k) = (k − 1)�(k − 1) = · · · =
{

(k − 1)(k − 2) · · · 1 × �(1) if k = 2,3,4, . . .,

(k − 1)(k − 2) · · · 1
2 × �( 1

2 ) if k = 3
2 , 5

2 , 7
2 , . . .,

�(1) = 1, �

(
1

2

)
= √

π. (A2)

The d-dimensional Cartesian coordinates are denoted by x1,x2, . . . ,xd . Assuming the center of the d-dimensional sphere is
located at x1 = x2 = · · · = xd = 0, we cut the sphere into three pieces along planes perpendicular to the x1 axis: x1 � −√

y,
x1 � √

y, and −√
y < x1 <

√
y, where 0 � y � R. Here we focus on the third piece, whose volume is calculated as follows:

Vd

(
R; x2

1 < y
) =

∫ √
y

−√
y

Vd−1
(√

R2 − x2
1

)
dx1 = ad−1

∫ √
y

−√
y

(
R2 − x2

1

) d−1
2 dx1

= ad ×
⎡
⎣ d/2∑

r= 1
2 or 1

√
y�(r)√

π�
(
r + 1

2

) (R2 − y)r−
1
2 Rd−2r + 1 + (−)d

π
arcsin

(√
y

R

)
Rd

⎤
⎦. (A3)

In deriving the above equation, we use the result of Eqs. (A1) and (A2). The surface area is as follows:

Sd

(
R; x2

1 < y
) = dVd

(
R; x2

1 < y
)

dR

= ad ×
⎧⎨
⎩

d/2∑
r= 1

2 or 1

√
y�(r)√

π�
(
r + 1

2

) [(2r − 1)(R2 − y)r−
3
2 Rd−2r+1 + (d − 2r)(R2 − y)r−

1
2 Rd−2r−1]

+ 1 + (−)d

π

[
d arcsin

(√
y

R

)
Rd−1 − √

y(R2 − y)−
1
2 Rd−1

]⎫⎬
⎭. (A4)

The overlap between a fixed unit vector, 
v, and random unit vectors, 
r , in a d-dimensional space is denoted by o = |
v · 
r|2.
The probability of the overlap o < y (where 0 � y � 1) is

Pd (o < y) = Sd (R; x1
2 < y)

Sd (R)

∣∣∣∣
R=1

= Sd

(
R; x2

1 < y
)∣∣

R=1

add

= d−1 ×
⎧⎨
⎩

d/2∑
r= 1

2 or 1

√
y�(r)√

π�
(
r + 1

2

) [(2r − 1)(1 − y)r−
3
2 + (d − 2r)(1 − y)r−

1
2 ]

+ 1 + (−)d

π
[d arcsin(

√
y) − √

y(1 − y)−
1
2 ]

⎫⎬
⎭. (A5)
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