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Shell model description of E3 transition strengths from the first 3− states in sd-shell even-even nuclei
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The electric-octupole E3 transition strengths from the first 3− state to the ground-state transition in sd shell
even-even nuclei with A = 16 to 40 are investigated within the shell model framework using the effective
(0+1)h̄ω PSDPF interaction. For this type of transition, new effective charges for protons and neutrons have been
determined. Their values 1.36 e for protons and 0.48 e for neutrons are close to those obtained previously for
electric-quadrupole E2 transitions in sd shell nuclei. The calculated E3 transition strengths from the 31

− → 0gs
+

transitions are compared to a compilation of experimental E3 data for even-even nuclei throughout the sd shell.
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I. INTRODUCTION

There exists a large amount of data concerning elec-
tromagnetic transitions (EMT) in sd shell nuclei. For the
energies of the 21

+ states and the E2 21
+ → 0gs

+ transition
strengths throughout the periodic table, compilations have
been published by Raman et al. in 2001 [1] and updated by
Pritychenko et al. in 2016 [2]. For the energies of the 3−

1

states and the E3 31
− → 0gs

+ transition strengths, existing
data are, of course, less abundant; a compilation was published
in 2002 by Kibédi et al. [3]. It is well known that besides the
level energies the EMT observables are excellent test cases
for nuclear models, especially the shell model in the case of
the still tractable (where the number of nucleons is concerned)
sd shell nuclei. In that spirit, E2 and M1 electromagnetic
transitions between-positive parity states in sd shell nuclei
have been calculated and compared to experimental results by
Richter et al. [4] using the so-called shell model USDA and
USDB Hamiltonians [5]. Up to now, no similar study has been
done for E1, M2, and E3 transitions connecting positive- and
negative-parity states.

The 0h̄ω USDA/B interactions describe very well the
spectroscopy of the normal positive-parity states in sd nuclei.
At relatively low excitation energies, the experimental energy
spectrum shows that the 0h̄ω states are very often mixed in
energy with the 1h̄ω intruder negative-parity levels. With the
aim of describing in a consistent way both 0 and 1 h̄ω states, we
developed the PSDPF interaction in the full p-sd-pf model
space using a 4He core [6,7]. This interaction, which incorpo-
rates the slightly adjusted USDB interaction, describes quite
well both 0 and 1 h̄ω states in nuclei throughout the sd shell.
All details concerning the construction of the PSDPF interac-
tion and some of the applications can be found in Refs. [6,7].

The PSDPF interaction can now be used to study the
properties (energy spectrum and EMT) of different nuclides
and isotopic chains in the sd shell. We would like here to
mention a few recent applications of PSDPF. We studied
the N = 18, 19, and 20 isotones of the Si to Ca sd nuclei
[8–11]. Excellent agreement with experiment was obtained,
particularly for the negative-parity states. One of our most
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important studies concerned the chain of phosphorus isotopes
from A = 30 to 35 [12–14]. In the first half of the sd
shell, results were also obtained for the Na and Mg isotopes
with A = 22 to 24 [15–17]. Our PSDPF interaction was
used to make a detailed spectroscopic description of the
mirror pairs 22Ne-22Mg and 31P-31S, which are essential to
interpret the important nuclear astrophysics capture reactions
21Na(p,γ )22Mg [18] and 30P(p,γ )31S [19].

From a theoretical point of view, calculations of spectro-
scopic observables such as electromagnetic transition strengths
are a difficult task because these quantities are strongly
dependent on and sensitive to the wave functions of the two
states involved in the transition. Until now, EMT in sd nuclei
connecting negative-parity states (M1 and E2) or states with
opposite parity (E1, M2, and E3) could not be investigated.
This is now possible using PSDPF, which, as will be shown
in Sec. II, accurately reproduces the excitation energies of the
first 3− states throughout the sd shell. The most interesting
cases to study are thus the B(E3, 31

− → 0gs
+) transition

strengths from 16O to 40Ca, these transition strengths being
strongly connected with the octupole degree of freedom. The
E3 operator involves effective charges for both protons and
neutrons, which can be determined using a fitting procedure
and also compared to effective charges used for E2 transitions
[4].

The reduced electric-octupole transition probabilities,
B(E3, 31

− → 0+
1 ), for even-even nuclei throughout the pe-

riodic table were compiled and discussed by Kibédi and Spear
[3]. In their paper, the E3 transition strengths in Weisskopf
units (W.u.) | M(E3)|2 (for which we will adopt here the
notation S(E3) as defined in Ref. [20]) are presented as a
function of A, Z, and N in Figs. 1–3 of their article [3].
A very structured dependence is observed with essentially
five maxima: at 32

16S16 and 40
20Ca20 with S(E3) = 30 ± 5 and

28 ± 3 W.u., respectively, at 70
32Ge38 and 72

32Ge40 with S(E3) =
31 ± 5 and 29 ± 4 W.u., respectively, at 96

40Zr56 with S(E3) =
53 ± 6 W.u., at 148

64 Gd84 and 152
64 Gd88 with S(E3) = 42 ± 6

and 52 ± 17 W.u., respectively, and at 226
88 Ra138 with S(E3) =

54 ± 3 W.u. The maxima of the electric-octupole E3 transition
strengths thus vary from ∼30 W.u. in 32S to ∼50 W.u. in 226Ra.

As far as the E3 transition strength is concerned, it has
been shown by Butler and Nazarewicz [21] that the necessary
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FIG. 1. Comparison between experimental and calculated exci-
tation energies of the 31

− and 21
+ states in even-even sd nuclei

(with N = Z, Z + 2, and Z + 4), which have known E3 transition
strengths [3].

condition for low-energy electric-octupole collectivity is the
presence, near the Fermi level, of pairs of orbitals strongly
coupled by the octupole interaction. As indicated in Ref. [21],
for normally deformed systems, the condition for strong
octupole coupling is satisfied for particle numbers associated
with the maximum �N = 1 interaction between the intruder
orbital (with l,j ) and the normal-parity orbital (with l-3,
j -3). This condition is satisfied, Ref. [21], for the maxima
observed in S(E3) for the Ge, Zr, Gd, and Ra isotopes. In
70,72
32 Ge, there is strong proton coupling 1g9/2 ↔ 2p3/2; in 96

40Zr,
there is strong neutron coupling 1h11/2 ↔ 2d5/2; in 148,152

64 Gd,
there is strong neutron coupling 1i13/2 ↔ 2f7/2; and in 226

88 Ra,
there is strong proton coupling 1i13/2 ↔ 2f7/2 and also strong
neutron coupling 1j15/2 ↔ 2g9/2. In this spirit, we would like
to suggest that the S(E3) maxima observed in 32S and 40Ca

FIG. 2. RMSD as a function of the effective charges ep and en

for the E3 31
− → 0gs

+ transition strengths. In the fit, the transitions
of 15 sd even-even nuclei have been considered.

FIG. 3. Comparison experimental vs calculated transition
strengths S(E3) using the effective charges obtained in the present
work (top) and experimental transition strengths S(E2) (bottom) (see
text for details).

are connected with the strong proton and neutron coupling
1f7/2 ↔ 2s1/2; in this case, the intruder orbital is 1f7/2 and the
normal-parity orbital is 2s1/2.

In this work, we carried out a systematic study, using
the shell model with our PSDPF interaction, of the electric-
octupole E3 transition strengths of the electromagnetic tran-
sitions from the first excited 3− states to the 0+ ground
states in sd shell even-even nuclei. We considered all known
transition strengths given in the literature using the compilation
of Kibédi and Spear [3] and the updated compilation of the
National Nuclear Data Center (NNDC) [22]. A fit of the
calculated S(E3) to the compiled experimental data has been
performed with the aim of extracting the requesed proton and
neutron effective charges. The final S(E3) results using the
new proposed proton and neutron effective charges will be
presented and discussed. All shell model calculations were
performed with the computer code NATHAN [23–25].

II. EXCITATION ENERGIES OF 31
− STATES

IN EVEN-EVEN SD NUCLEI

From the NNDC compilation of Ref. [22] it can be seen
that for the even-even sd nuclei the first positive- and negative-
parity states have, generally, Jπ = 2+ and 3−, respectively. As
noted before, the positive-parity states, in particular the 21

+

states, are well described using the shell model with USDA
and USDB interactions [4,5]. For the negative-parity states
and, in particular, for the 31

− states, the shell model using the
PSDPF interaction can now be used to calculate their excitation
energies and EMT. Of course, calculations using the PSDPF
interaction can also be used to describe 0h̄ω states. We first
calculated the excitation energies of the 31

− states in even-even
nuclei with N = Z, Z + 2, and Z + 4, which have known E3
transition strengths [3]. The comparison of experiment and
theory is shown in Fig. 1. Experimental and theoretical results
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TABLE I. Calculated and experimental S(E3) (31
− → 0gs

+)
transition strengths known in selected even-even sd nuclei. All
3− excitation energies are given in MeV and their corresponding
transition strengths are given in Weisskopf units (W.u.).

E(3−) SExp(E3) ST h(E3)

16O 6.130 13.9 ± 0.4 14.4
18O 5.098 9.3 ± 0.4 8.0
20O 5.614 3.2 ± 1.1 7.9
20Ne 5.621 13 ± 3 9
22Ne 5.910 4.3 ± 1.2 5.9
24Mg 7.616 6.3 ± 0.7 5.3
26Mg 6.876 2.7 ± 0.5 5.2
28Si 6.879 12.9 ± 1.5 14.7
30Si 5.488 6 ± 2 7
32S 5.006 30 ± 5 20
34S 4.624 17 ± 5 19
36S 4.193 15 ± 5 16
36Ar 4.178 20.6 ± 2.0 21.9
38Ar 3.810 16 ± 5 18
40Ca 3.737 28 ± 3 21

for the 21
+ states in the same nuclei are also shown in Fig. 1.

Good agreement is observed for both states throughout the
shell. The exception is for the 3− state in 24Mg, which is
predicted to be ∼1 MeV lower than experiment; this level was
discussed in Ref. [17].

An examination of the excitation energy behavior of the
31

− states through the sd shell suggests that there are three
distinct regions: from 16O to 22Ne, the 31

− excitation energy
is rather constant ∼5.5 ± 1.0 MeV and the wave function has
a main (1p1/2 − 1d5/2) component; from 24Mg to 28Si the 31

−

energy is around 7 MeV and the wave function evolves from a
(1p1/2-1d5/2) component to a (1d5/2-1f7/2) component which
is the main component in the case of the 31

− state in 28Si; and
from 30Si to 40Ca, the 31

− energy decreases gradually to reach
3.74 MeV in 40Ca and the (2s1/2,1d3/2-1f7/2) component is
dominant.

With respect to the 21
+ state, Fig. 1 shows that its energy

is relatively stable (∼1.75 ± 0.5 MeV) between 18O and 38Ar,
with a higher value (3.29 MeV) for 36S due to its neutron
closed shell and also lower values in 22Ne and 24Mg (∼1.3
MeV), nuclei known to be deformed. The first 2+ states in the
doubly magic nuclei 16O and 40Ca lie at excitation energies
of 6.92 and 3.90 MeV, respectively, above the 31

− states in
these nuclei. It is well known that these 2+ states are collective
and deformed with a strong 4-particle–4-hole configuration
[26,27], and they cannot be included in our 0h̄ω model space
for positive-parity states.

III. THE E3(31
− → 0gs

+) TRANSITION STRENGTHS

Any global systematic study or fit requires a solid set of
experimental data. All available information concerning the
31

− states: energies (Ei) and 31
− → 0gs

+ transition strengths
SExp (E3) is given in Table I. The transition strengths have
been obtained from the compilation of Kibédi and Spear [3]
and include 15 even-even sd nuclei with N = Z, Z + 2, and

Z + 4. In the literature, the transition probabilities B(E3) are
often quoted for 3− to 0+ transitions for example. The single-
particle transition strength S(E3) is related to B(E3) by the
following expression:

S(E3) = 16.83A−2B(E3)↓, (1)

where S(E3) is in W.u., B(E3) ↓ in e2 fm6, and the nuclear
radius is given by R = r0A

1/3 with r0 = 1.20 fm (all the useful
formulas can be found in Ref. [20]).

As noted before, the main focus of the present work is
on the E3 transition strengths of the lowest lying 3− state.
It is well known that the electromagnetic operators need
effective charges (electric and magnetic), which depend on
the model space used. These effective charges compensate for
shell contributions in the full space not taken into account in
the truncated model space (in 0 or 1 h̄ω calculations in our
case) used here.

IV. PROTON AND NEUTRON EFFECTIVE
CHARGES IN E3 TRANSITIONS

As mentioned previously, for the shell model calculations
of the electric E3 transitions, effective charges are needed for
both protons and neutrons. To obtain these effective charges,
ep = (1 + δp) e and en = δn e (δ is the so-called charge
polarization) in units of e, a fit is made between experimental
and shell model values of S(E3) for a range of values of
effective charges, ep and en. (See below for details.) Of course,
the transition strengths STh depend on the wave functions
of the initial (31

−) and final (0gs
+) states. Note also that in

the calculations a harmonic oscillator basis is used with an
oscillator length parameter b, which characterizes the potential
width, and is given by the two combined equations:

b ≈ 197.33√
940 × h̄ω [MeV]

fm,

h̄ω = (45A−1/3 − 25A−2/3) MeV. (2)

The width b varies from 1.724 fm in 16O to 1.938 fm in 40Ca.
We calculated the reduced transition probabilities B(E3)

and the corresponding S(E3) transition strengths using proton
and neutron effective charges defined above. For the proton
effective charge ep, we changed the polarizations δp from 0
to 1.0 (in steps of 0.1), and for each δp, we varied δn from 0 to
1.0 (in steps of 0.1). This procedure was adopted in order to
minimize the root mean square deviation (RMSD) given by

RMSD =
√√√√ 1

N

N∑
k=1

(
Sk

Exp − Sk
Th

)2

�Sk
Exp

. (3)

The smallest RMSD values for a given value of the pair
(δp, δn) are presented in Fig. 2. Note that in the definition of
RMSD, we used a fitting weight of 1/�Sk

Exp instead of the
square of this quantity. N is the number of data points.

A minimum value of RMSD for the E3 transitions is
obtained for ep = 1.36 and en = 0.48. Note that the minima
observed are rather shallow. Using these new effective charges
ep = 1.36, en = 0.48, the S(E3) transition strengths were
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calculated and compared to the experimental E3 transition
strengths in Fig. 3. Also shown, for the sake of comparison, are
corresponding plots of experimental E2 21

+ → 0gs
+ transition

strengths obtained from the compilation of Raman et al. [1].
The calculated S(E3) transition strengths values are given
in Table I. Rather good agreement is obtained with perhaps
some lack of octupole collectivity for 32S and 40Ca. But, as
noted in the introduction, 32S and 40Ca are good candidates
for octupole collectivity due to the strong proton and neutron
2s1/2 ↔ 1f7/2 coupling. Looking now at the experimental data
in Fig. 3, the E3 transition strengths vary from about 3 W.u.
in 20O and 26Mg to about 30 W.u. in 32S and 40Ca. The E2
transition strengths vary from about 2 W.u. in 20O and 40Ca to
about 20 W.u. in 20Ne and 24Mg. What is also remarkable is
the different trends in S(E2) and S(E3) transition strengths:
They are strong in the first half of the shell for E2 and
strong in the second half of the shell for E3. These features
are probably connected with the E2 quadrupole collectivity
contribution in the first half of the shell and E3 octupole
collectivity contribution in the second half of the shell. The
minima of S(E2) observed experimentally in O isotopes, 36S,
38Ar, and 40Ca are due to the magicity of these nuclei. For the
isotopes of Ne and Mg as well as the 28Si, the large values
of S(E2) are the sign of collectivity and also of deformation.
This is confirmed by the measured quadrupole Q moments
[28], which are Q = −23 ± 3 e fm2 for 20Ne,−19 ± 4 e fm2

for 22Ne,−18 ± 2 e fm2 for 24Mg, and −14 ± 3 e fm2 for
26Mg. The negative sign of Q implies that these nuclei are
of prolate shape. For 28Si, Q is 16 ± 3 e fm2. In this case,
the value of Q is positive, which implies an oblate form for
28Si. There is therefore a rapid shape transition from prolate
(isotopes of Ne and Mg) to oblate (28Si) in this region. An
argument in favor of octupole collectivity contribution comes
from the wave functions of the 3− states in the concerned nuclei
which are very fragmented. The largest component of the 3−
wave functions in 32S is 4%, corresponding to a one-nucleon
2s1/2 → 1f7/2 jump. In the other self-conjugate nuclei 36Ar
and 40Ca, the main configurations are (1d3/2 → 1f7/2) or
(2s1/2 → 1f7/2) one-nucleon jumps with probabilities (7%,
25%) and (7%, 14%) for 36Ar and 40Ca, respectively. A proton
2s1/2 → 1f7/2 or a neutron 1d3/2 → 1f7/2 jump constitutes the
important configurations of the 3− states in 34S, 36S, and 38Ar
with wave function components for protons (9%, 19%, 16%)
and (7%, 31%, 35%) for neutrons in each nucleus, respectively.
These configurations of the 3− states satisfy the condition for

low-energy electric-octupole collectivity [21] mentioned in the
introduction.

We have thus obtained the effective charges ep = 1.36
and en = 0.48 using a selected set of electric-octupole E3
transitions in sd nuclei. These results have been obtained using
the shell model and the PSDPF interaction. Using the shell
model calculations, the USDB interaction and a large set of
experimental E2 transition strengths throughout the sd shell,
Richter et al. [4] obtained the effective charges ep = 1.36
and en = 0.45. The effective charge values for E3 transitions
obtained in the present work are indeed very close to those for
E2 transitions obtained empericaly using a least-square fit [4]
or deduced theoretically by Dufour and Zuker (ep = 1.31 and
en = 0.46) [29] for the sd shell.

V. CONCLUSION

The main aim of the present work was a shell model
description of E3 transitions in a selected set of even-even sd
nuclei. The calculations are based on the PSDPF interaction,
which was built to describe simultaneously the 0 and 1 h̄ω
states in sd nuclei. It has been shown that the excitation
energies of the 31

− states throughout the shell are well
reproduced.

To further test the PSDPF interaction, proton and neutron
effective charges were obtained through a fitting procedure
comparing experimental and theoretical E3 (31

− → 0gs
+)

transitions. The effective charges obtained for the E3 tran-
sitions are almost the same as those obtained previously for
the E2 transitions by Richter et al. [4].

We thus propose that for future shell model calculations
of E3 transition strengths in sd nuclei the following effective
charges be used: ep = 1.36, en = 0.48.

These values have been obtained for sd shell nuclei but can
also be used, at least as a starting point, in other mass regions.
We can justify this by the fact that the en/ep ratio is almost
constant for different mass regions. The estimated en/ep ratio
varies from 0.2 in light nuclei [30] to 0.3–0.8 for heavy nuclei
using different models; as an example, see Refs. [1,31,32]. The
en/ep ratio is about 0.3 for the proposed E3 transition effective
charges as well as for the E2 transition effective charges [4]
in sd shell which is very close also to that obtained with the
standard effective charges, proposed for both light and heavy
nuclei.
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