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Nonmesonic weak decay of � hypernuclei: The �N-�N coupling
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The nonmesonic weak decay of � hypernuclei is studied within a microscopic diagrammatic approach which
is extended to include the �N -�N strong interaction coupling. We adopt a nuclear matter formalism which,
through the local density approximation, allows us to model finite hypernuclei. One-meson-exchange potentials
are used for the weak and strong four-baryon interactions. The rates for the neutron- and proton-induced
weak decays, �N → nN and �N → �N → nN (N = n or p; � = �−, �0, and �+), are predicted for
12
� C, 28

� Si, 56
� Fe, and 208

� Pb. The �N -�N coupling turns out to provide a contribution of about 23% (5%) to
the total neutron-induced rate (proton-induced rate). Again as an effect of the hyperon coupling, the total
one-nucleon-induced rate increases by about 9%, while the �n/�p ratio increases by about 17%. The saturation
property of the nonmesonic rates with increasing hypernuclear mass number is clearly obtained and explained.
The above percentage modifications remain almost unaltered through the hypernuclear mass number. All the
non-negligible changes introduced by the �N -�N coupling lead to a definite improvement of our predictions
once compared with the available KEK and FINUDA data.
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I. INTRODUCTION

Hypernuclei containing a � baryon are produced in the
ground state or in an excited state of the �-particle neutron-
hole configuration. When a � hypernucleus is excited above
the particle emission threshold it decays dominantly by the
strong interaction, through nucleon or cluster emission. The
remaining strange nuclear system then deexcites to its ground
state via electromagnetic transitions. A � hypernucleus in the
ground state is stable at the nuclear time scale (∼10−23 s)
and thus can only decay to nonstrange nuclear systems, via
weak interaction processes, which are by far slower. These
strangeness-changing processes can take place in two different
ways. The mesonic mode, � → πN , resembles what happens
to the � in free space, but is increasingly suppressed in
hypernuclei due to the Pauli principle as the mass number
increases. The nonmesonic mode, with channels �N → nN ,
�NN → nNN , etc, can only occur in nuclear systems, and
provides an invaluable tool for investigating weak baryon in-
teractions. The nonmesonic mode dominates over the mesonic
mode for all but the s-shell hypernuclei, and only for very light
systems (A � 5) are the two decay modes competitive.

After more than 60 years from its inception, hypernuclear
physics is a mature field of research [1] which in many aspects
is located at the crossroads between hadronic and nuclear
physics. It implies important connections with QCD and with
dense astrophysical objects. This is true, in particular, for the
nonmesonic hypernuclear weak decay [2]. The equilibrium
between NN → �N and �N → NN nonmesonic weak
processes is expected to be extremely important for explaining
the stability of rotating neutron stars with respect to the
emission of gravitational waves. The fundamental property
which controls the stability of a neutron star is the viscosity,
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which dominantly depends on nonmesonic weak processes
involving hyperons. Other related hyperon-induced weak
interactions (the so-called Urca processes) provide a relevant
contribution to the cooling mechanism of neutron stars. The
occurrence of hyperon superfluidity is indispensable for this
hyperon cooling scenario to be consistent with the observations
on cold neutron stars.

Nowadays, a more than satisfactory consensus has been
reached between the theoretical description and experiments
on the mesonic decay. Concerning the nonmesonic decay,
we recall that the innovative experiments performed in the
last 20 years or so and the advent of elaborated theoretical
models allowed us to reach a reasonable agreement between
data and predictions for the total and partial nonmesonic
rates—especially the ratio �n/�p ≡ �(�n → nn)/�(�p →
np) between the neutron- and the proton-induced decay
rates and the two-nucleon-induced decay rate �2—and the
intrinsic asymmetry parameter for the decay of polarized
hypernuclei. Complete reviews of the experimental results and
the theoretical approaches on these issues can be found in [1,3].

It is widely recognized that the so-called �n/�p and
asymmetry puzzles have been satisfactorily resolved.
However, the relatively large experimental error bars still do
not allow us to discriminate between various proposed weak
interaction schemes. Moreover, discrepancies between theory
and experiment (and in some case even between different
experiments) are still present for the emission spectra involving
protons. This could signal an imperfect implementation of
final state interaction effects in the theoretical and/or
experimental analysis or the relevance of other theoretically
unknown mechanisms. For instance, it is still unclear what
role is played in the nonmesonic decay by possible violations
of the �I = 1/2 rule on the isospin change. Nowadays, no
experimental indication supports or excludes the validity
of this rule for the weak couplings of the � hyperon with
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mesons heavier than the pion in the �N → nN processes. In
particular, the quality of present data on the one-nucleon-
induced nonmesonic weak decay prevents us from extracting
the effect of �I = 3/2 terms. New and more precise exper-
iments are necessary (for details on the status concerning this
issue see the first review paper in [1]). A detailed description of
the hyperon weak interactions underlying hypernuclear decay
is thus impossible at present. From the theoretical viewpoint,
given the aforementioned discrepancies between theory and
hypernuclear data, new decay mechanisms should be explored.

Another aspect which deserves further attention concerns
the relevance of the �N -�N strong coupling on the non-
mesonic weak decay. This interaction mechanism, which
we study in this contribution, introduces, besides the well
known nonmesonic decay channels �N → nN , new, second-
order processes �N → �N → nN . The strong interaction
coupling between �N and �N states (analogously, among
��, �N , and �� states for multistrangeness systems) has
proven to be important to understand the structure of �
hypernuclei (double-� and � hypernuclei) and in studies of
dense stars. One can interpret the �N -�N baryon coupling
as a source of a � admixture in � hypernuclear states, i.e.,
a virtual excitation of the � into a �. We summarize in the
following paragraphs the current knowledge on the influence
of this coupling on the structure of � hypernuclei and later we
return to the issue of the nonmesonic weak decay.

The �NN strong three-body interaction was revealed to be
an important ingredient to investigate the structure of � hy-
pernuclei [4], especially for light systems [5]. This interaction
turned out to be crucial to solve the so-called overbinding prob-
lem concerning s-shell hypernuclei. In particular, the relevant
part of the �NN interaction is the one which is induced by the
�N -�N strong coupling, which also leads to a non-negligible
second-order tensor force in the �N strong interaction. Effects
of the coupling between �N and �N states are also found
in hypernuclei with a neutron excess [6] and possibly in the
composition and the equation of state of neutron stars [7]. In
hypernuclei, the coupling to intermediate �N states in the
�N strong interaction is more important—especially because
of the relatively small �-� mass difference, m� − m� ∼
78 MeV—than the NN -�N coupling in conventional nuclei,
where the latter plays a very small role in binding few-nucleon
systems since m� − mN ∼ 293 MeV.

Another signal of the �N -�N coupling probably comes
from the observation that in S-wave relative states the �p
interaction is more attractive than the �n interaction. This
follows from a comparison of the experimental � binding
energies for the ground states and the first excited states
in the isospin I = 1/2 doublet formed by 4

�He and 4
�H,

(with separations of 0.35 MeV between the ground states
and of 0.24 MeV for the excited states), which implies a
relevant charge symmetry breaking for the �N interaction.
Although this has been known for some decades, the issue has
awakened interest in experimentalists [8] and theoreticians
[9] in recent years. Despite the complete origin of the strong
charge symmetry breaking in hypernuclei is still not known,
one can safely say that a relevant contribution to it is given
by the coupling between the �N and �N states, which turns
out to be quite sensitive to the mass difference between the

initial and the final two-baryon states, thus preferring the
process �p → �+n (�m ∼ 75 MeV) over the processes
�p → �0p, �n → �0n (�m ∼ 77 MeV) and �n → �−p
(�m ∼ 80.5 MeV).

We also mention that the present status of the shell model
fits to the experimental � energy levels in p-shell hypernuclei
[10], the so called γ -ray data, show the need for alternative
and/or improved descriptions of the �N -�N coupling (see
also the discussion of the first paper quoted in [1]). Finally,
we remind the reader that also the deviations of the magnetic
moments of � hypernuclei from the Schmidt values have been
interpreted as a signal of the relevance of the �N -�N coupling
[11]. Despite these clues on the importance of the �N -��
coupling in nuclear matter, the detailed � admixture properties
in � hypernuclei and the � content and effects in compact stars
are not known satisfactorily. It is an issue by which it is in
principle possible to establish solid and prolific links between
hypernuclei and compact stars.

We now return to the main topic of this contribution, i.e.,
the weak decay of � hypernuclei. We adopt a nuclear matter,
many-body formalism extended to finite hypernuclei by the lo-
cal density approximation (LDA), to describe the effects of the
�N -�N coupling on the nonmesonic weak decay of 12

� C, 28
� Si,

56
� Fe, and 208

� Pb hypernuclei. All isospin channels of the decays
stimulated by one, two, or more nucleons can in principle be in-
cluded in our diagrammatic approach. In the present paper, as a
first step, we only consider explicitly the one-nucleon-induced
channels �N → nN and �N → �N → nN . However, a
few considerations on the contribution of the two-nucleon-
induced decay complement our discussion of the results. The
adopted microscopic framework allowed us to demonstrate
the importance of ground state contributions in one- and
two-nucleon-induced decay processes [12]. In [13,14], the
approach was applied to the calculation of the nucleon spectra
emitted in the nonmesonic weak decay, while the three-
nucleon-induced mode was studied for the first time in [15].
Finally, we recall that the same formalism was used to evaluate
the nonmesonic decay widths for double-� hypernuclei [16].

Only a few predictions are available on the �N → �N →
nN decay mechanism [17–19]. Unfortunately, there are major
disagreements among the predictions of these works, which
adopted different approximation frameworks and potential
models and considered different hypernuclei from the ones
studied in the present paper: the ones in [17,18] deal with
hypernuclei of the s shell, while the calculation in [19] is
performed in nuclear matter, but without implementing the
LDA. We perform some comparison with the latter approach
in the “Results” section.

The paper is organized as follows. In Sec. II we present
the theoretical formalism employed for the evaluation of the
decay rates. In Sec. III the numerical results are discussed and
compared with data. In Sec. IV we draw our conclusions.
Finally, we relegate some technical details regarding the
calculation of the decay rates to a few appendices.

II. FORMALISM

Our main concern in the present contribution is the effect
of the � baryon on the nonmesonic weak decay widths of
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FIG. 1. The �N → �N → nN transition amplitudes originated by the �N -�N coupling. Diagrams (a) and (b) [(c) to (f)] contribute to
the neutron-induced (proton-induced) rate �n (�p). In Appendix A we give the isospin wave functions for each contribution.

� hypernuclei. Being heavier than the �, the � enters the
problem through an intermediate, virtual �N two-baryon
state: as we limit ourselves to one-nucleon-induced decays, the
process �N → �N → nN has to be added to the customary
one, �N → nN .

Let us now introduce some generalities on the notation
adopted for the decay widths. Limiting ourselves up to
two-nucleon-stimulated decays, the total nonmesonic decay
rate is given by

�NM = �1 + �2, (1)

where �1 and �2 denote the decay rates for the one-nucleon
(�N → nN and �N → �N → nN ) and the two-nucleon-
stimulated decays (�NN → nNN and �NN → �NN →
nNN ) (N = n or p). In terms of the various isospin channels,
the one- and two-nucleon-induced rates are decomposed as

�1 = �n + �p, (2)

�2 = �nn + �np + �pp. (3)

The subindices on the right-hand-side expressions indicate
the initial (multi)nucleon state stimulating the weak decay:
�p ≡ �(�p → np and �p → �N → np), etc.

For the description of the decay rates we adopt a many-body
technique, first introduced in [20], in which the calculation is
performed in infinite nuclear matter and then it is extended
to finite nuclei through the LDA. Let us then introduce the
following schematic writing of the one-nucleon-stimulated
decay width in nuclear matter:

�1(k,kF ) =
∑
f

∣∣〈f |[V �N→nN (Q) + V �N→nN (Q)]

× |0〉kF

∣∣2
δ(Ef − E0), (4)

where k = (k0,k) stands for the � four-momentum inside
infinite nuclear matter with Fermi momentum kF , while |0〉kF

and |f 〉 are the initial hypernuclear ground state (whose energy
is E0) and the 2p-1h final state (with energy Ef ), respectively.
Moreover, V �N→nN represents the meson-exchange weak
transition potential adopted for the process �N → nN (Q is
the exchanged momentum) and is given later in the beginning
of the next section. The effect of the � hyperon can be
introduced by resorting to the following weak transition

potential:

V �N→nN (Q) =
∑

i,Q=q−p

V �N→nN (p) |i〉 1

Ei − E0

×〈i| V �N→�N (q), (5)

where the sum on the index i runs over the intermediate
two-baryon configurations with energy Ei given by |�0n〉,
|�0p〉, |�−p〉, and |�+n〉. Expressions for the newly intro-
duced meson-exchange transition potentials V �N→nN (p) and
V �N→�N (q) are given soon. In Fig. 1 we show all the two-body
transitions amplitudes involving the � and differentiating
among the isospin channels which contribute to the one-
nucleon-stimulated decay mechanism. Diagrams (a) and (b)
contribute to �n, while diagrams (c) to (f) contribute to �p.

The rates for a finite hypernucleus are obtained from
the ones in nuclear matter of Eq. (4) by the local density
approximation [20], i.e., after averaging the nuclear matter
widths over the � momentum distribution in the considered
hypernucleus, |ψ̃�(k)|2, and over the local Fermi momentum,
kF (r) = {3π2ρ(r)/2}1/3, ρ(r) being the density profile of the
hypernuclear core. From Eq. (4) one thus obtains

�1 =
∫

dk|ψ̃�(k)|2
∫

d r|ψ�(r)|2�1(k,kF (r)), (6)

where for the wave function ψ�(r) and its Fourier transform
ψ̃�(k) we adopt the 1s1/2 harmonic oscillator wave function
with frequency h̄ω adjusted to the experimental energy
separation between the s and p � levels in the hypernucleus.
Specific values of h̄ω are reported in the “Results” section. The
� total energy is given by k0 = m� + (h̄k)2/(2m�) + B�, B�

being the � binding energy.
At this point it is convenient to step back in order to split

Eq. (4) into three terms as follows:

�1(k,kF ) = �0
1(k,kF ) + ��0�

1 (k,kF ) + ���
1 (k,kF ), (7)

where

�0
1(k,kF ) =

∑
f

∣∣〈f |V �N→nN (Q)|0〉kF

∣∣2
δ(Ef − E0), (8)

��0�
1 (k,kF ) = 2

∑
f

kF
〈0|(V �N→nN (Q))†

× |f 〉〈f |V �N→nN (Q)|0〉kF
δ(Ef − E0), (9)
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FIG. 2. Goldstone diagrams for the evaluation of the one-
nucleon-stimulated decay rates in infinite nuclear matter once the
�N -�N strong coupling is taken into account.

���
1 (k,kF ) =

∑
f

∣∣〈f |V �N→nN (Q)|0〉kF

∣∣2
δ(Ef − E0). (10)

Here, the �0
1 decay width corresponds to the usual one-body-

induced decay process, �N → nN . The effect of the �
hyperon is contained in the two remaining terms: ��0�

1 , which
represents the interference between the �N → nN and the
�N → �N → nN amplitudes, and ���

1 , which corresponds
to the �N → �N → nN process. Goldstone diagrams for
these three contributions are depicted in Fig. 2.

Let us then consider the expressions for the transition
potentials. The weak transition potential V YN→nN , with Y =
� or �, and the strong interaction potential V �N→�N read

V YN→Nn(�N→�N)(t) =
∑

τ

OτVYN→Nn(�N→�N)
τ (t), (11)

where the isospin dependence is given by

Oτ =
⎧⎨⎩I for τ = 0,

τ 1 · τ 2 for τ = 1,
T 1 · τ 2 for τ = 2,

(12)

where I represents the identity operator. Concerning the sum
over τ in Eq. (11), the values τ = 0 and 1 refer to the isoscalar
and isovector parts of the interactions, respectively, while for
τ = 2 we have introduced the I = 1/2 to I = 3/2 isospin
transition operator T needed by the � hyperon (details are
given in Appendix A). The spin and momentum dependence

h
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FIG. 3. Goldstone diagram contributing to ���
1 . Concerning the

values of the flowing energy-momenta, it is easy to see that p2 =
h + q − p, p′

2 = h + q, p′′
2 = h + q − p + p′, and Q = q − p =

q ′ − p′. In this diagram, the dotted line shows the final state.

of the weak transition potential is given by

VYN→Nn
τ (t) = (

GF m2
π

)
[VS,τ (t) σ 1 · t̂ + VS ′,τ (t) σ 2 · t̂

+ iVSV ,τ (t)(σ 1 × σ 2) · t̂ + VC,τ (t)

+Vσ,τ (t)(σ 1 · σ 2) + VL,τ (t)σ 1 · t̂ σ 2 · t̂], (13)

where the functions VS,τ (t), VS ′,τ (t), VSV ,τ (t)VC,τ (t), Vσ,τ (t),
and VL,τ (t), which include short-range correlations, can be ad-
justed to reproduce any weak transition potential. Furthermore,
the expression for the strong interaction potential is given by

V�N→�N
τ (t) = f 2

π

m2
π

[UC,τ (t) + Uσ,τ (t)(σ 1 · σ 2)

+UL,τ (t)σ 1 · t̂ σ 2 · t̂], (14)

where the functions UC,τN
(t), Uσ,τN

(t), and UL,τN
(t) can also

be adjusted to reproduce any strong interaction one wishes.
The parametrizations chosen for the above weak and strong
potential are discussed at the beginning of the next section.

We present now the explicit expression for ���
1 (k,kF ),

while we leave to Appendix C the case of ��0�
1 (k,kF ).

The expression of �0
1(k,kF ) can instead be found in [21]. In

Fig. 3, we show the Goldstone diagram for ���
1 , including the

notation adopted for giving the energy-momentum for each
line. By replacing the sum over momenta by integrals and by
performing the energy integrations and the spin plus isospin
summation in Eq. (10), the following expression is obtained:

���
NN ′(k,kF ) = 1

(2π )11

(
GF m2

π

)2
(

f 2
π

m2
π

)2 ∫∫ ∫∫
dq d p d p′dh W��

NN ′ (q,p,p′)θ (|k − q + p| − kF )θ (|h + q| − kF )

× θ (|h + q − p| − kF )θ (|h + q − p + p′| − kF )θ (kF − |h|) 1

�E1(k,q,h)

× 1

�E1′ (k,q,h,p,p′)
δ(Ef (k,q,h,p) − Ei(k)), (15)
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where W��
NN ′ (q,p,p′) represents the spin plus isospin summation together with the momentum dependence of the different

interactions (its expression is given in Appendix B). The energies entering the previous equation are

Ei(k) = ε�(|k|) = k0,

Ef (k,q,h,p) = εN (|k − q + p|) + εN ′′ (|h + q − p|) − εN ′ (|h|),
�E1(k,q,h) = [ε�(|k − q|) + εN (|h + q|) − εN ′ (|h|)] − ε�(|k|),

�E1′(k,q,h,p,p′) = [ε�(|k − q + p − p′|) + εN (|h + q − p + p′|) − εN ′ (|h|)] − ε�(|k|).
Here, the generic single-particle energy reads εB(|t|) = mB + (h̄t)2/(2mB) + BB , where BB stands for the binding energy of the
baryon B = n, p, or �.

III. RESULTS

All baryon-baryon interactions are described in terms of
meson-exchange potentials: (1) the �N → nN weak potential
contains the exchange of the full set of mesons of the
pseudoscalar (π , η, K) and vector octets (ρ, ω, K∗), with
strong coupling constants and cutoff parameters deduced from
the Nijmegen soft-core interaction NSC97f [22] (for details
on the weak transition potential we refer to [23]); (2) the
�N → �N strong potential includes the exchange of π and
ρ mesons; (3) the �N → nN weak potential includes the
exchange of π and K mesons. For the novel potentials of
the previous points (2) and (3) we provide in Tables I and
II the strong and weak coupling constants adopted in the
present calculation. For each of the mesons involved in these
potentials, we have employed the same cutoff parameters as
the ones in (1). At variance with the most studied �N → nN
weak potential, the current limited knowledge of both the weak
and the strong interactions involving the � particle leads us
to restrict to a π + ρ (π + K) meson-exchange model for the
�N → �N strong interaction (�N → nN weak interaction).
Analyses of the �-hyperon formation spectra in the (K−,π±)
and (π+,K+) reactions (see for instance [24]) showed that
the �-nucleus potential has a substantial isospin dependence
and, with the exception of very light systems, is repulsive:
U� = +(30 ± 20) MeV at normal nuclear density. In the
present calculation we always adopt the value B� = +30 MeV
for the binding energy of the �. The � binding energies in the
various hypernuclei are taken from experiment [25].

In Table III we give our results for the nonmesonic decay
rates for 12

� C arising from the �N -�N coupling for the
neutron- and proton-induced channels, �n → �N → nn and

TABLE I. Nijmegen [26] strong coupling constants relevant for
the transition amplitudes of Fig. 1.

Meson Coupling

π gNNπ = 13.3

g��π = 12.0

K g�NK = 4.28

ρ gV
NNρ = 3.16

gT
NNρ = 13.3

gV
��ρ = 0

gT
��ρ = 11.2

�p → �N → np, respectively (see the various contributions
in Fig. 1). We remind the reader that the total neutron- and
proton-induced rates are decomposed as �n = �0

n + ��0�
n +

���
n and �p = �0

p + ��0�
p + ���

p , respectively. The widths
�0

n and �0
p refer to the �n → nn and �p → np processes,

respectively, and are discussed later on. The results in Table III
correspond to the cases of a weak �N → nN potential
modeled in terms of one-pion-exchange only (second line)
and in terms of the exchange of pion plus K meson (third
line). The interference terms show different behaviors: ��0�

n

(��0�
p ) provides a positive (negative) contribution to �n (�p).

Moreover, the ���
n and ���

p rates are more important than
the interference contributions. Due to the peculiar interference
effect, the overall contribution of the �N -�N coupling is
larger for the neutron-induced rate than for the proton-induced
rate, thus increasing the value of the �n/�p ratio (we discuss
this important ratio in the following). We also notice that the
K exchange tends to increase both the �-driven decay rates,
although its contribution is limited. This increase is at variance
with the cases of the �-independent processes, �n → nn and
�p → np, for which the K meson implies a reduction of
both the corresponding rates �0

n and �0
p. This outcome is a

simple consequence of the different relative sign between the
K- and π -exchange potentials for the �-independent and the
�-dependent processes.

In Table IV we report, again for 12
� C, the separate contribu-

tions of the parity-violating (PV) and the parity-conserving
(PC) baryon-baryon transitions to the total decay rates,
��0�

n + ���
n and ��0�

p + ���
p , induced by the �N -�N

coupling. Results are given for the complete weak �N → nN

TABLE II. Parity-violating (PV) and parity-conserving (PC)
weak coupling constants relevant for the transition amplitudes of
Fig. 1. The � (K) couplings were taken from [17] (second paper in
[23]). The values are given in units of GF m2

π .

Vertex PV (S wave) PC (P wave)

�+pπ 0 − 1.45 − 12.89
�+nπ+ 0.04 − 20.17
�−nπ− 1.95 0.76
�0nπ 0 1.00 − 9.26
�0pπ− 1.45 12.89
K+pn 0.76 − 23.70
K0pp 2.09 8.33
K0nn 2.85 − 15.37
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TABLE III. Contribution of the �N -�N coupling to the neutron-
and proton-induced weak decay rates of 12

� C, �n → �N → nn and
�p → �N → np. Two potential models for the weak �N → nN

processes are considered. The predictions are in units of the free �

decay rate and we have used a frequency h̄ω = 11.00 MeV, taken
from [25], for the harmonic oscillator � wave function. See text for
further details.

V �N→nN ��0�
n ���

n ��0�
n + ���

n ��0�
p ���

p ��0�
p + ���

p

π 0.010 0.018 0.020 − 0.025 0.044 0.019
π + K 0.012 0.021 0.033 − 0.029 0.051 0.022

potential model containing (π + K) exchange. Both for the
neutron- and the proton-induced rates the PC terms are about
five times larger than the PV ones. In contrast, it is a well
established fact that for the customary �N → nN decay the
PC transitions only dominate in the case of proton-induced
rates (the major contribution to the rate �0

1 = �0
n + �0

p is,
however, given by the PV transition). The dominance of the
neutron- and proton-induced PC rates exhibited in Table IV is
explained as follows. The potential V �N→nN (Q) describing
the �N → �N → nN processes is build up from the strong
V �N→�N (q) and the weak V �N→nN (p) potentials, as shown
in Eq. (5) and Fig. 3. Concerning the four-momentum, for the
�N → �N → nN transition one has Q = q − p = q ′ − p′,
where p and p′ (the four-momenta of the weak interaction
lines, see Fig. 3) are independent of each other. The PV
contribution to the �-driven decay rates is proportional to
(σ · p̂)(σ · p̂′); for this term the spin summation provides
tr(σ · p̂ σ · p̂′) = 2( p̂ · p̂′). Once integrated over the four-
momentum variables, this spin summation, being a scalar
product, is responsible for the significant reduction of the
PV contributions to the �N → �N → nN rates, as shown
in Table IV. It should be noted how the effect is due to the
topology of the Goldstone diagram of Fig. 3, which contains
two interaction lines and corresponds to decay processes
involving the �N -�N coupling.

The predictions for the neutron- and proton-induced de-
cay rates, �n = �0

n + ��0�
n + ���

n and �p = �0
p + ��0�

p +
���

p , for 12
� C are shown in Table V together with the �n/�p

ratio and the one-nucleon-induced rate, �1 = �n + �p. The
latest KEK [27] and FINUDA [28] data are also given for
comparison. The second (third) column shows the results
without (with) the inclusion of the �N -�N coupling. The
overall effect of this coupling is to increase �n by about 23%
and �p by about 5%. The smaller variation for �p is due to

TABLE IV. Parity-violating (PV) and parity-conserving (PC)
contributions of the �N -�N coupling to the neutron- and proton-
induced weak decay rates of 12

� C. The full model for the weak
�N → nN potential, containing π and K exchange, is considered.
The predictions are in units of the free � decay rate.

(��0� (��0� (��0� (��0�

+���)PV +���)PC +���)PV +���)PC

0.005 0.028 0.004 0.018

TABLE V. Predictions and recent data from KEK-E508 [27]
and FINUDA [28] for the one-nucleon-stimulated nonmesonic weak
decay widths of 12

� C. The results are in units of the free � decay rate.

Rate Without � With � KEK-E508 [27] KEK-FINUDA [28]

�n 0.145 0.178 0.23 ± 0.08 0.28 ± 0.12
�p 0.455 0.477 0.45 ± 0.10 0.493 ± 0.088
�1 0.600 0.656 0.68 ± 0.13 0.78 ± 0.09
�n/�p 0.319 0.374 0.51 ± 0.14 0.58 ± 0.27

the previously discussed negative value of the interference rate
��0�

p . The �n/�p ratio thus increases, by about 17%, thanks
to the implementation of the �N -�N coupling.

A few details on the experiments are needed for a better
understanding of the comparison with our results. The deter-
minations listed as KEK-FINUDA have been reconstructed in
the FINUDA paper [28] by starting from existing KEK data
on �p and the total (�T) and mesonic rates (�M), together
with FINUDA data for �p and the two-nucleon-induced decay
rate, �2. The KEK-FINUDA rate �n (�1) is obtained as the
difference �n = �T − �M − �p − �2 (�1 = �T − �M − �2).
Moreover, the KEK-FINUDA result for �p is nothing but the
weighted average between the KEK and FINUDA data. A
rather good agreement of our final predictions (containing
the �N -�N coupling contribution) with the experiments is
evident from Table V, especially as far as KEK data are
considered (not considering the �-baryon effect would lead
to predictions that are worse compared to the data). The
differences with data are below the 1σ level. In particular,
notice that the prediction for the �n/�p ratio agrees with
both KEK and KEK-FINUDA determinations only when the
�N -�N coupling is taken into account. The only discrepancy
which exceeds, although moderately, the level of 1σ concerns
the KEK-FINUDA determination of �1. This is related to the
fact that our result for �n underestimates the central value of
the KEK-FINUDA determination, while a good agreement is
evident concerning �p.

In Table VI the final decay rates (including the effect
of the �N -�N coupling) predicted for a few hypernuclei
over the periodic table are presented. We limit ourselves to
consider those hypernuclei for which data are available for
comparison. The �N -�N coupling term, ��0�

1 + ���
1 , turns

out to provide a contribution to the total one-nucleon-induced
rate, �1 = �0

1 + ��0�
1 + ���

1 , of about 9% for all considered
hypernuclei. The weight of the � hyperon is, however, more
important for the �n/�p ratio: this ratio indeed increases by
about 17% with respect to the �-independent prediction for all
hypernuclei. The �N -�N coupling improves the comparison
with the experimental determinations of the �n/�p ratio in
all cases. Note that the given percentage changes only slightly
vary from 12

� C to 208
� Pb.

Consider now the one-nucleon-induced and the total non-
mesonic widths, �1 and �NM = �1 + �2. Only for 12

� C is a
measurement of �1 available; we reproduce the KEK-E508
determination. For the rest of hypernuclei the only data at
disposal refer to �NM, which contain multinucleon-induced
contributions. In particular, two-nucleon-stimulated decays are
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TABLE VI. Decay rates predicted for various hypernuclei (in units of the free � decay rate). Experimental results for 12
� C are from

KEK-E508 [27]; for 28
� Si and 56

� Fe they are from KEK-E307 [29]; finally, the datum for 208
� Pb is from COSY, Jülich [30]. The values for the

harmonic oscillator frequencies are taken from [25], having employed h̄ω = 9.6, 8.0 and 4.4 MeV for 28
� Si, 56

� Fe and 208
� Pb, respectively.

Hypernucleus �n �p �n/�p �1 �NM (�n/�p)Exp �
Exp
1 �

Exp
NM

12
� C 0.18 0.48 0.37 0.66 0.88 0.51 ± 0.14 0.68 ± 0.13 0.953 ± 0.044
28
� Si 0.24 0.57 0.43 0.81 1.05 0.53 ± 0.28 1.125 ± 0.125
56
� Fe 0.31 0.61 0.50 0.92 1.20 0.87 ± 0.29 1.21 ± 0.08
208
� Pb 0.38 0.58 0.66 0.96 1.27 1.82 ± 0.14

important: for all hypernuclei from 12
� C to 208

� Pb, we have
shown (see the second paper of [12]) that the ratio �2/�1

is rather mass independent, with the result �2 ∼ 0.3�1. We
expect that this prediction does not change much after adding
the �-baryon contribution. Thus, from the present predictions
for �1 we obtain the values for �NM = �1(1 + �2/�1) quoted
in Table VI by adopting the predictions for �2/�1 of the
second paper of [12]. A good agreement with KEK-E307
�NM data is obtained for 28

� S and 56
� Fe. This is not the

case for 208
� Pb, where we largely underestimate the result

obtained by the COSY Collaboration by averaging over
measurements performed in the region of mass numbers A
ranging from 180 and 220. A large overestimation is also
seen if we consider older experimental determinations, with
the exception of a CERN experiment of the 1980s, which,
however, suffered from large error bars. The COSY datum
is also difficult to reconcile with the nonmesonic decay rate
measured by KEK-E307 for 56

� Fe: no known mechanism can
be responsible for a large increase in the nonmesonic decay
rate when going from 56

� Fe to the A ∼ 200 region. Such an
increase contradicts the saturation property of the dominating
�N → nN interaction rate expected for increasing mass
number and exhibited by all calculations to date; indeed,
the range of the one-nucleon-induced process is consistently
smaller than the radius of hypernuclei already in the region of
56
� Fe. Concerning the COSY datum, we have to note that, given
the difficulty in employing direct timing methods for heavy hy-
pernuclei, it has been obtained in experiments which measured
the fission fragments—which are supposed to be generated
by the nonmesonic decay—emitted by hypernuclei produced
in proton-nucleus reactions. Large uncertainties affect such
delayed fission experiments, because of the limited precision of
the employed recoil shadow method: the produced hypernuclei
cannot be unambiguously identified with this method. It is
therefore not possible to exclude that mechanisms other than

TABLE VII. Decay rates for infinite nuclear matter extracted
from Table XII in [19]. The widths are in units of the free � decay rate.
The line “Without �” (With �) corresponds to the line “All-Tensor”
(All-�) in the quoted table. For more details we refer the reader to
the just mentioned work.

�n �p �1

Without � 0.38 1.64 2.02

With � 0.49 2.85 3.34

the nonmesonic decay (faster than the nonmesonic decay)
contributed to hypernuclear fission in these experiments.

In reference to a comparison with other calculations, the one
in [19] deserves attention as it is performed in nuclear matter.
In this work, a partial wave expansion of the nuclear matter
decay width is performed and the “s-wave approximation”
is employed: the total angular momentum corresponding to
the relative motion of the initial �N pair is taken equal to
zero. The s-wave approximation is sometimes employed in
finite nuclei calculations, for p-shell and heavier hypernuclei,
although its applicability becomes increasingly questionable
as the hypernuclear mass number increases. This work does not
implement the LDA, and a nuclear matter Fermi momentum
kF = 270 MeV/c is adopted. In addition, this approach
replaces some momentum and angular variables by constant
average values. We should also mention that the effect of the �
hyperon on the decay width is implemented by a modified wave
function, in which some average values are again employed.
It is important to emphasize that, beyond the common use of
nuclear matter, the formalism in [19] is different than ours.
In Table VII we report some numerical results extracted from
Table XII of [19]; they correspond to the case of the complete
weak interaction potential. The alternatives without and with
the contribution of the �N -�N coupling are considered. The
rather large values for �1 are attributed by the authors to
the lack of strong nucleon-nucleon interactions in the final
state in their approach.1 We can compare the results of [19]
of Table VII for nuclear matter with our predictions for the
largest hypernucleus considered, 208

� Pb. With the incorporation
of the �-hyperon effect, the rate �n increases by ∼29%
in [19], while we find an increase of ∼23%. Considering
in addition the absolute rates, we can conclude that for the
neutron-induced channel there is an acceptable agreement
between our prediction and that of [19]. Instead, the big effect
of the � on the rate �p exhibited in [19] is not confirmed in our
approach, as we find a ∼5% increase. The moderate variations
of �n and �p obtained in the present work are consistent with
the perturbative character inherent in the implementation of
the �N -�N coupling in our diagrammatic approach.

We conclude our discussion by an approximate interpreta-
tion of our predictions. It turns out that for all hypernuclei we
considered in the present work the decay rates for the various

1Our definition of �1 is the one in Eq. (2), which is different from
the one in [19].
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�N → nN and �N → �N → nN processes satisfy, to a
high degree of approximation, the following simple relations:

�0
n

�0
p

∼ 0.38
N

Z
,∣∣��0�

n

∣∣∣∣��0�
p

∣∣ ∼ ���
n

���
p

∼ 0.50
N

Z
, (16)

�n

�p

≡ �0
n + ��0�

n + ���
n

�0
p + ��0�

p + ���
p

∼ 0.45
N

Z
,

where N and Z denote the hypernuclear numbers of neutrons
and protons, respectively. These outcomes naturally originate
from the use of the local density approximation. An eventual
finite nucleus calculation would modify some of the above
neutron-to-proton ratios for particular hypernuclei while main-
taining the general trend, proportional to N/Z. Due to the just
discussed saturation property of the decay rates, to which we
return in the next paragraph, the naive predictions of Eq. (16)
do not mean that, separately, �0

n is proportional to N , �0
p is

proportional to Z, etc., up to the heaviest hypernuclei. This is
only true for light hypernuclei, say up to 12

� C. What occurs
is that the pairs of widths in each neutron-to-proton ratio
separately saturate with increasing N and Z in such a way
as to make these ratios proportional to N/Z.

This and other interesting points can be made easy to
understand if one resorts to the qualitative description of the
decay widths discussed in [31]. Let us consider the �N → nN
nonmesonic decay as a four-baryon pointlike interaction. In the
semiclassical approximation one can then write the neutron-
and proton-induced rates as follows:

�n(p) = Rn(p)

∫
d r|ψ�(r)|2ρn(p)(r), (17)

where Rn(p) denote spin-averaged rates for the neutron-
induced (proton-induced) process, |ψ�(r)| is the � wave
function (normalized to 1), and ρn(p)(r) the neutron and
proton densities in the hypernucleus (normalized to N and Z,
respectively) [31]. Note that the just introduced naive equations
for �n and �p only consist of weighting the nucleon densities
ρn(r) and ρp(r), respectively, by the � wave function ψ�(r).
As ρn(r) = (N/A)ρ(r) and ρp(r) = (Z/A)ρ(r), ρ(r) being
the nuclear density, Eq. (17) provides

�n = Rn

N

N + Z
ρA, (18)

�p = Rp

Z

N + Z
ρA, (19)

�n + �p = (Rn + Rp)ρA, (20)

in terms of the average nuclear density at the position of the �
hyperon, ρA = ∫

d r|ψ�(r)|2ρ(r). Note that this approximate
reasoning can also be applied to all one-nucleon-induced
rates discussed in the present paper, including the ones
originating from the �N -�N coupling. From the above
approximate formulas one expects to obtain a saturation of
�n with N , �p with Z, and �n + �p with the mass number
A = N + Z. However, the ratios N/(N + Z) and Z/(N + Z)
display behaviors that are different from each other: due to

the particular N and Z values which correspond to existing
hypernuclei, the former increases with N while the latter
decreases with Z. According to this trend, by inspecting
Eqs. (18) and (19) one would say that the proton-induced
(neutron-induced) rate decreases (increases) for increasing
A. However, the spin-averaged rates Rn and Rp provide
themselves contributions to the decay rates, as indicated in
Eqs. (18)–(20). Summarizing, the behavior exhibited by �n,
�p and �n + �p originates from the competition between two
effects: the particular numbers of neutrons and protons and
the spin-average for the neutron- and proton-stimulated decay
processes. A net result is obtained in our complete numerical
results: the decreasing of the proton-induced rates with Z is
only seen by passing from 56

� Fe to 208
� Pb: all rates �0

p, ��0�
p ,

and ���
p for 208

� Pb are slightly smaller than the corresponding

ones for 56
� Fe, as one can see in Table VI for the final rate �p.

On the other hand, from the same table it is evident that the rate
�1 = �n + �p is always an increasing and saturating function
of A: this trend is justified in our exemplified discussion by
the nuclear density at the � position ρA appearing in Eq. (20),
which roughly counts the number of nucleon which, in a
given hypernucleus, can stimulate one-nucleon-induced weak
decays. Concluding, our schematic discussion of Eqs. (18) and
(19) also provides

�n

�p

= Rn

Rp

N

Z
, (21)

which justifies the numerically obtained ratios of Eq. (16) with
nearly constant values of Rn/Rp.

IV. CONCLUSIONS AND OUTLOOK

In the present contribution we have studied the effect of the
�N -�N strong coupling in the nonmesonic weak decay of �
hypernuclei. This coupling introduces new decay channels,
�N → �N → nN . A nuclear matter formalism has been
adopted together with the local density approximation for
calculations in hypernuclei ranging from 12

� C to 208
� Pb. The

many-body content of the adopted diagrammatic approach is
displayed in Fig. 1 for the decay amplitudes and Fig. 2 for
the decay Goldstone diagrams. We have devoted particular
attention to the one-nucleon-stimulated decay widths �n =
�0

n + ��0�
n + ���

n and �p = �0
p + ��0�

p + ���
p .

As expected, the dominant contributions to the neutron-
and proton-induced decay rates are the �-independent rates
�0

n and �0
p. Moreover, the rates ���

n and ���
p turn out to be

larger than the interference rates ��0�
n and ��0�

p . For 12
� C the

total �-dependent rate ��0�
n + ���

n (��0�
p + ���

p ) amounts
to about 23% (5%) of the rate �n (�p). The difference in the
weights of the neutron- and proton-induced rates is due to
a positive (negative) interference effect exhibited by ��0�

n

(��0�
p ). This outcome evidently leads to an increase of the

�n/�p ratio. Concerning the total one-nucleon-induced rate,
�1 = �n + �p, it increases by about 9% as a result of the
�N -�N coupling. The �n/�p ratio instead increases by about
17%. For hypernuclei heavier than 12

� C the above percentages
tend to slightly decrease with the mass number A. The parity-
conserving part of the �-dependent rates dominate over the
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parity-violating part by a factor of about 5 both for neutron-
and proton-induced decays and for all hypernuclei.

For hypernuclei heavier than 12
� C only data for the non-

mesonic rate �NM = �1 + �2 are available. Limiting ourselves
to two-nucleon-stimulated decays, for all hypernuclei studied
from 12

� C to 208
� Pb we have adopted here the predictions for the

ratio �2/�1 previously obtained in the second paper of [12]
(one should also add that the ratio �2/�1 is rather stable over
all of the mass number range starting from 12

� C; moreover, this
ratio is expected to be only slightly varied by the inclusion of
�N -�N coupling dependent contributions). The nonmesonic
rates were then obtained as �NM = �1(1 + �2/�1), starting
from present results for �1. The predictions obtained in this
way have the advantage of making comparison possible with
the experimental determinations. The KEK and FINUDA data
for the �n/�p ratio and the rates �1 and �NM available for
12
� C, 28

� Si and 56
� Fe have been reproduced rather well. The only

exception is the case of the COSY measurement of the
nonmesonic rate for 208

� Pb, which, however, is also impossible
to reconcile with the KEK data for 28

� Si and 56
� Fe as far as the

saturation mechanism of the decay rates is invoked.
Finally, we have also discussed an approximate interpre-

tation of our numerical results, through the simple ratios
of Eq. (16). The agreement of our calculations with these
expressions shows that each individual neutron- and proton-
stimulated decay rate separately saturates as a function of the
neutron (proton) number N (Z) in such a way as to make
the various neutron-to-proton ratios proportional to N/Z. In
particular, we have also explained how it is possible that the
proton-induced rates �0

p, ��0�
p , and ���

p have the tendency, at
a certain point, to decrease (instead of continuing to increase)
with the mass of the hypernucleus.

The agreement among our final results and data is quite
good and clearly demonstrates the necessity of including the
effects of the �N -�N strong coupling. Anyway, we believe
that a refinement of the present microscopic approach can still
be pursued. This improvement concerns the possible violation
of the �I = 1/2 isospin rule in the one-nucleon-induced
nonmesonic weak decay. Almost all calculations to date
adopted meson-exchange models which only contain pure
�I = 1/2 transitions. It is true that the quality of present
data does not allow us to establish the degree of violation
of the �I = 1/2 isospin rule in the one-nucleon-induced
nonmesonic weak decay, but new theoretical hints could be of
interest, especially for experimentalists. Without a resolution
of this important question one will never be able to achieve the
primary purpose of hypernuclear weak decay studies, which
is to access the properties of baryon strangeness-changing
processes such as �N → nN .

We conclude with a brief review of the experiments
scheduled for the future. An approved proposal at J-PARC
consists of the E18 experiment [32]. It is designed to have much
better statistics than KEK-E508 and concerns measurements
of the rates �n, �p, and �2 for 11

� B and 12
� C. Triple nucleon

coincidence measurements could lead to (the first) direct
measurements of �2 with a 10% statistical error. A second
J-PARC approved experiment, E22 [33], consists of a high
statistics study of the �I = 1/2 rule for 4

�H and 4
�He. An

indication for the possibility of new experiments, which could

be performed at J-PARC by using the successful techniques
developed by FINUDA, has been put forward in the last paper
quoted in [3]. It consists of measurements of the full set of
decay rates (including the total and the mesonic ones) for 5

�He,
7
�Li, 9

�Be, 11
� B, 12

� C, 15
� N, and 16

� O with a statistical precision of
∼5%. We also remind the reader of the proposal in [34] for new
measurements of the lifetimes and the proton-induced rates of
3
�H, 4

�H, 12
� B and other neutron-rich p-shell hypernuclei.
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APPENDIX A: ISOSPIN SUMMATIONS

In this Appendix we develop isospin summation expres-
sions for the decay rates ���

1 and ��0�
1 . For the hyperons �

and �, having isospin 0 and 1, respectively, we adopt the
isospurion formalism. This consists in formally requesting
isospin conservation at each weak baryonic vertex, i.e., in
coupling the � and � hyperons into isospurions with isospin
numbers I = 1/2 and Iz = −1/2. The procedure is trivial for
the �: |�〉 = |0,0〉 ⊗ |1/2,−1/2〉 = |1/2,−1/2〉. As far as
the isospin quantum number is concerned, the � particle is
thus modeled to behave as a neutron. For the � particle, the
coupling to the isospurion runs as follows:

|�0〉 = 1√
3

∣∣∣∣1

2
,−1

2

〉
+

√
2

3

∣∣∣∣3

2
,−1

2

〉
,

|�−〉 =
∣∣∣∣3

2
,−3

2

〉
,

|�+〉 =
√

2

3

∣∣∣∣1

2
,
1

2

〉
+ 1√

3

∣∣∣∣3

2
,
1

2

〉
. (A1)

An inspection of Fig. 2, which shows the possible nonmesonic
transitions amplitudes, leads to the following baryon-baryon
isospin wave functions:

|nn〉 =
∣∣∣∣1

2
,
1

2
,1,−1

〉
,

|np〉 = 1√
2

(∣∣∣∣1

2
,
1

2
,1,0

〉
−

∣∣∣∣1

2
,
1

2
,0,0

〉)
,

|pn〉 = 1√
2

(∣∣∣∣1

2
,
1

2
,1,0

〉
+

∣∣∣∣1

2
,
1

2
,0,0

〉)
,

|�n〉 =
∣∣∣∣1

2
,
1

2
,1,−1

〉
,

|�p〉 = 1√
2

(∣∣∣∣1

2
,
1

2
,1,0

〉
−

∣∣∣∣1

2
,
1

2
,0,0

〉)
,

|�0n〉 = 1√
3

∣∣∣∣1

2
,
1

2
,1,−1

〉
+

√
2

3

(√
3

2

∣∣∣∣3

2
,
1

2
,2,−1

〉

+ 1

2

∣∣∣∣3

2
,
1

2
,1,−1

〉)
,
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|�0p〉 = 1√
6

(∣∣∣∣1

2
,
1

2
,1,0

〉
−

∣∣∣∣1

2
,
1

2
,0,0

〉)
+ 1√

3

(∣∣∣∣3

2
,
1

2
,2,0

〉
−

∣∣∣∣3

2
,
1

2
,1,0

〉)
,

|�−p〉 = 1

2

(∣∣∣∣3

2
,
1

2
,2,−1

〉
−

√
3

∣∣∣∣3

2
,
1

2
,1,−1

〉)
,

∣∣�+n
〉 = 1√

3

(∣∣∣∣1

2
,
1

2
,1,0

〉
+

∣∣∣∣1

2
,
1

2
,0,0

〉)
+ 1√

6

(∣∣∣∣3

2
,
1

2
,2,0

〉
+

∣∣∣∣3

2
,
1

2
,1,0

〉)
. (A2)

Let us start by considering the isospin summations for
the particular case of a spin-independent weak interaction
(�N → NN ),

V (t) = V0(t) + V1(t) τ 1 · τ2 + V2(t) T 1 · τ 2, (A3)

where t is the energy-momentum transferred by the interaction,
τ denote the usual isospin-1/2 Pauli operators and T the 1/2
to 3/2 isospin transition operators. For details on this operator
we refer the reader to [35], where it is employed in connection
with the �(1232)-isobar particle. In a similar way and by
making the substitution V → U in Eq. (A3), we build up the
strong interaction (�N → �N ), having the same spin-isospin

dependence that V (t). The next appendix is devoted to spin-
dependent interactions and the relevant spin sums.

We can write down the different isospin amplitudes a to f
depicted in Fig. 1 as

A(�0n)nn(p,q) = 〈nn|V (p)|�0n〉〈�0n|U (q)|�n〉,
A(�−p)nn(p,q) = 〈nn|V (p)|�−p〉〈�−p|U (q)|�n〉,
A(�0p)np(p,q) = 〈np|V (p)|�0p〉〈�0p|U (q)|�p〉,
A(�0p)pn(p,q) = 〈pn|V (p)|�0p〉〈�0p|U (q)|�p〉,
A(�+n)pn(p,q) = 〈pn|V (p)|�+n〉〈�+n|U (q)|�p〉,
A(�+n)np(p,q) = 〈np|V (p)|�+n〉〈�+n|U (q)|�p〉, (A4)

with A(�0n)nn(p,q) corresponding to the amplitude a, etc.
Note that the notation for the amplitude is A(int)f (p,q), where
int is the intermediate configuration and f is the final state.
We now replace the isospin wave functions by their explicit
expressions from Eqs. (A2), and, using the values for the
isospin matrix elements 〈1/2,1/2,0,0|τ 1 · τ2|1/2,1/2,0,0〉 =
−3, 〈1/2,1/2,1,MT |τ 1 · τ2|1/2,1/2,1,MT ′ 〉 = δMT ,MT ′ and,
〈1/2,1/2,1,MT |T 1 · τ 2|3/2,1/2,1,MT ′ 〉 = −4/

√
6δMT ,MT ′ ,

we get

A(�0n)nn(p,q) = {3[V0(p) + V1(p)][U0(q) + U1(q)] + 4V2(p)U2(q)}/9,

A(�−p)nn(p,q) = 2V2(p)U2(q),

A(�0p)np(p,q) = {3[V0(p) − V1(p)][U0(q) − U1(q)] + 4V2(p)U2(q)}/9,

A(�0p)pn(p,q) = {6V1(p)[U0(q) − U1(q)] + 4V2(p)U2(q)}/9,

A(�+n)pn(p,q) = {12[(V0(p) − V1(p)]U1(q) + 2V2(p)U2(q)}/9,

A(�+n)np(p,q) = [24V1(p)U1(q) + 2V2(p)U2(q)]/9. (A5)

For diagram ���
1 (see Fig. 2) the isospin summations can be written as

W��
nn (q,p,p′) = [A(�−p)nn(p′,q ′) + A(�0n)nn(p′,q ′)]†[A(�−p)nn(p,q) + A(�0n)nn(p,q)],

W��
np (q,p,p′) = [A(�+n)np(p′,q ′) + A(�0p)np(p′,q ′)]†[A(�+n)np(p,q) + A(�0p)np(p,q)],

W��
pn (q,p,p′) = [A(�+n)pn(p′,q ′) + A(�0p)pn(p′,q ′)]†[A(�+n)pn(p,q) + A(�0p)pn(p,q)],

where q ′ = q − p + p′ and the intermediate summations have been performed, up to this point, only for the isospin quantum
number. Finally, using Eq. (A5) we have

W��
nn (q,p,p′) = 1

81 [3{V0(p) + V1(p)}{U0(q) + U1(q)} + 22V2(p)U2(q)]

× [3{V0(p′) + V1(p′)}{U0(q ′) + U1(q ′)} + 22V2(p′)U2(q ′)],

W��
np (q,p,p′) = 1

9 [{V0(p) − V1(p)}U0(q) + {−V0(p) + 9V1(p)}U1(q) + 2V2(p)U2(q)]

× [{V0(p′) − V1(p′)}U0(q ′) + {−V0(p′) + 9V1(p′)}U1(q ′) + 2V2(p′)U2(q ′)],

W��
pn (q,p,p′) = 4

9 [V1(p)U0(q) + {2V0(p) − 3V1(p)}U1(q) + V2(p)U2(q)]

× [V1(p′)U0(q ′) + {2V0(p′) − 3V1(p′)}U1(q ′) + V2(p′)U2(q ′)]. (A6)
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Following the same procedure for the diagram ��0�
1 one gets

W0�
nn (q,p) = 1

9 [3{V0(p) + V1(p)}{U0(q) + U1(q)} + 22V2(p)U2(q)][V0(Q) + V1(Q) + V2(Q)],

W0�
np (q,p) = 1

3 [{V0(p) − V1(p)}U0(q) + {−V0(p) + 9V1(p)}U1(q) + 2V2(p)U2(q)][V0(Q) − V1(Q) − V2(Q)], (A7)

W0�
pn (q,p) = 4

3 [V1(p)U0(q) + {2V0(p) − 3V1(p)}U1(q) + V2(p)U2(q)][V1(Q) + V2(Q)],

where Q = q − p.

APPENDIX B: SPIN PLUS ISOSPIN SUMMATIONS FOR ���
1

In this Appendix we show the analytical expression of the function W��
NN ′ (q,p,p′), which for convenience is expressed as

W��
NN ′ (q,p,p′) =

∑
i,j,k,l

K��
i,j,k,l(q,p,p′)W��,NN ′

i,j,k,l (q,p,p′). (B1)

The functions W��,NN ′
i,j,k,l (q,p,p′) contain the isospin summation [see Eq. (A6)] and are given by

W��,nn
i,j,k,l (q,p,p′) = 1

81 [3{Vj,0(p) + Vj,1(p)}{Ui,0(q) + Ui,1(q)} + 22Vj,2(p)Ui,2(q)]

× [3{Vk,0(p′) + Vk,1(p′)}{Ul,0(q ′) + Ul,1(q ′)} + 22Vk,2(p′)Ul,2(q ′)],

W��,np
i,j,k,l (q,p,p′) = 1

9 [{Vj,0(p) − Vj,1(p)}Ui,0(q) + {−Vj,0(p) + 9Vj,1(p)}Ui,1(q) + 2Vj,2(p)Ui,2(q)]

× [{Vk,0(p′) − Vk,1(p′)}Ul,0(q ′) + {−Vk,0(p′) + 9Vk,1(p′)}Ul,1(q ′) + 2Vk,2(p′)Ul,2(q ′)],

W��,pn
i,j,k,l (q,p,p′) = 4

9 [Vj,1(p)Ui,0(q) + {2Vj,0(p) − 3Vj,1(p)}Ui,1(q) + Vj,2(p)Ui,2(q)]

× [Vk,1(p′)Ul,0(q ′) + {2Vk,0(p′) − 3Vk,1(p′)}Ul,1(q ′) + Vk,2(p′)Ul,2(q ′)]. (B2)

In these expressions the V’s and U’s are taken from Eqs. (13) and (14), respectively, while the indices run as follows: {i,l} = C,
σ , and L and {j,k} = C, σ , L, S, S ′, and SV . Finally, the spin summation is represented by the functions K��

i,j,k,l(q,p,p′):

K��
C,C,C,C = K��

C,C,L,σ = K��
C,L,C,σ = K��

L,C,C,σ = K��
C,C,σ,L = K��

C,σ,C,L = K��
σ,C,C,L

= K��
C,L,σ,C = K��

L,σ,C,C = K��
C,σ,L,C = K��

σ,L,C,C = K��
C,S,S ′,σ = K��

σ,S,S ′,C = 1,

K��
C,C,σ,σ = K��

C,σ,σ,C = K��
σ,σ,C,C = K��

σ,C,C,σ = K��
σ,C,σ,C = K��

C,σ,C,σ = 3,

K��
C,σ,σ,σ = K��

σ,C,σ,σ = K��
σ,σ,C,σ = K��

σ,σ,σ,C = −6,

K��
σ,σ,σ,σ = 21, K��

σ,σ,σ,L = K��
σ,σ,L,σ = K��

σ,L,σ,σ = K��
L,σ,σ,σ = 7,

K��
σ,σ,C,L = K��

σ,C,σ,L = K��
C,σ,σ,L = K��

σ,σ,L,C = K��
σ,L,σ,C = K��

L,σ,σ,C

= K��
σ,C,L,σ = K��

C,L,σ,σ = K��
σ,L,C,σ = K��

L,C,σ,σ = K��
σ,S,S ′,σ = −2,

K��
C,C,L,L = K��

C,σ,L,L = K��
σ,C,L,L = ( p̂′ · q̂ ′)2,

K��
C,L,L,C = K��

L,C,C,L = K��
σ,L,L,C = K��

C,L,L,σ = ( p̂ · p̂′)2, K��
L,L,C,C = (q̂ · p̂)2, K��

L,C,L,C = (q̂ · p̂′)2,

K��
C,L,C,L = = K��

σ,L,C,L = K��
C,L,σ,L = ( p̂ · q̂ ′)2, K��

L,C,σ,L = K��
L,σ,C,L = (q̂ · q̂ ′)2, K��

L,L,C,σ = K��
L,L,σ,C = (q̂ · p̂)2,

K��
C,L,L,L = −[(q̂ ′ ∧ p̂) · p̂′]2, K��

L,C,L,L = −[(q̂ ∧ q̂ ′) · p̂′]2,

K��
L,L,C,L = −[(q̂ ∧ q̂ ′) · p̂]2, K��

L,L,L,C = −[(q̂ ∧ p̂′) · p̂]2,

K��
σ,σ,L,L = [2 + (q̂ ′ · p̂′)2], K��

σ,L,L,σ = [2 + ( p̂ · p̂′)2], K��
L,L,σ,σ = [2 + ( p̂ · q̂)2],

K��
L,σ,L,σ = [2 + (q̂ · p̂′)2], K��

σ,L,σ,L = [2 + (q̂ ′ · p̂)2], K��
L,σ,σ,L = [2 + (q̂ · q̂ ′)2],

K��
L,σ,L,L = [(q̂ · q̂ ′)2 + (q̂ · p̂′)2 + (q̂ ′ · p̂′)2 − 2( p̂′ · q̂)( p̂′ · q̂ ′)(q̂ · q̂ ′)],

K��
σ,L,L,L = [( p̂ · q̂ ′)2 + ( p̂ · p̂′)2 + ( p̂′ · q̂ ′)2 − 2( p̂ · p̂′)( p̂′ · q̂ ′)( p̂ · q̂ ′)],

K��
C,σ,L,L = K��

σ,C,L,L = [−1 + ( p̂′ · q̂ ′)2], K��
σ,L,C,L = K��

C,L,σ,L = [−1 + ( p̂ · q̂ ′)2],
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K��
σ,L,L,C = K��

C,L,L,σ = [−1 + ( p̂ · p̂′)2], K��
L,C,σ,L = K��

L,σ,C,L = [−1 + (q̂ · q̂ ′)2],

K��
L,L,C,σ = K��

L,L,σ,C = ([−1 + (q̂ · p̂)2], K��
L,L,σ,L = [(q̂ · q̂ ′)2 + ( p̂ · q̂)2 + (q̂ ′ · p̂)2 − 2( p̂ · q̂)( p̂ · q̂ ′)(q̂ · q̂ ′)],

K��
L,L,L,σ = [(q̂ · p̂′)2 + (q̂ · p̂)2 + ( p̂ · p̂′)2 − 2(q̂ · p̂)( p̂ · p̂′)(q̂ · p̂′)],

K��
L,L,L,L = [( p̂ · p̂′)(q̂ · q̂ ′) − ( p̂ · q̂ ′)( p̂′ · q̂) + ( p̂ · q̂)( p̂′ · q̂ ′)]2,

K��
L,S,S,L = [−( p̂ · q̂ ′)( p̂′ · q̂) + ( p̂′ · q̂ ′)( p̂ · q̂) + ( p̂ · p̂′)(q̂ · q̂ ′)](q̂ · q̂ ′),

K��
C,S,S,C = K��

σ,S,S,L = K��
L,S,S,σ = ( p̂ · p̂′), K��

σ,S,S,σ = 3( p̂ · p̂′), K��
C,S ′,S ′,C = K��

C,S,S,C = ( p̂ · p̂′),

K��
σ,S ′,S ′,σ = 3( p̂ · p̂′), K��

C,SV ,SV ,C = 2( p̂ · p̂′), K��
σ,SV ,SV ,σ = 10( p̂ · p̂′),

K��
L,SV ,SV ,L = 2[( p̂ · p̂′) − ( p̂′ · q̂)( p̂ · q̂ ′) − ( p̂′ · q̂)( p̂ · q̂) + 2( p̂′ · q̂ ′)( p̂ · q̂)(q̂ ′ · q̂)],

K��
C,SV ,SV ,σ = K��

σ,SV ,SV ,C = −2( p̂ · p̂′), K��
C,SV ,SV ,L = −2( p̂′ · q̂ ′)( p̂ · q̂ ′), K��

L,SV ,SV ,C = −2( p̂′ · q̂)( p̂ · q̂),

K��
σ,SV ,SV ,L = 2[2( p̂′ · p̂) − ( p̂′ · q̂ ′)( p̂ · q̂ ′)], K��

L,SV ,SV ,σ = 2[2( p̂ · p̂) − ( p̂′ · q̂)( p̂ · q̂)],

K��
L,S,S ′,L = −[( p̂′ ∧ q̂ ′) · q̂][( p̂ ∧ q̂ ′) · q̂], K��

C,S,S ′,L = ( p̂′ · q̂ ′)( p̂ · q̂ ′), K��
L,S,S ′,C = ( p̂′ · q̂)( p̂ · q̂),

K��
σ,S,S ′,L = [−( p̂ · p̂′) + ( p̂′ · q̂ ′)( p̂ · q̂ ′) + ( p̂′ · q̂ ′)−( p̂ · q̂ ′)], K��

L,S,S ′,σ = [−( p̂ · p̂′) + ( p̂′ · q̂)( p̂ · q̂) + ( p̂′ · q̂) − ( p̂ · q̂)],

K��
σ,S,SV ,σ = 4( p̂ · p̂′), K��

L,S,SV ,L = [( p̂′ · q̂ ′)( p̂ · q̂ ′) + ( p̂ · q̂)][( p̂′ · q̂) − 2( p̂′ · q̂ ′)(q̂ · q̂ ′)],

K��
C,S,SV ,σ = K��

σ,S,SV ,C = −2( p̂ · p̂′), K��
C,S,SV ,L = [−( p̂ · p̂′) + ( p̂′ · q̂ ′)( p̂ · q̂ ′)],

K��
L,S,SV ,C = [−( p̂ · p̂′) + ( p̂′ · q̂)( p̂ · q̂)], K��

σ,S,SV ,L = [( p̂ · p̂′) + ( p̂′ · q̂ ′)( p̂ · q̂ ′)],

K��
L,S,SV ,σ = [( p̂ · p̂′) + ( p̂′ · q̂)( p̂ · q̂)], (B3)

andK��
i,j,k,l = 0 otherwise. Notice that in the above left-hand-side expressions we have not shown the explicit (q,p,p′) dependence

for simplicity.

APPENDIX C: THE ��0�
1 TERM

Finally, we present expressions for the interference rate ��0�
1 . This rate is represented by the Goldstone diagram of Fig. 4.

By following the same procedure described in the main text for ���
1 we obtain

��0�
NN ′ (k,kF ) = 1

(2π )8
(GF m2

π )2 f 2
π

m2
π

∫∫∫
dq d p dhW0�

NN ′ (q,p)θ (|k − q + p| − kF )θ (|h + q| − kF )θ (|h + q − p| − kF )

×θ (kF − |h|) 1

�E1(k,q,h)
δ(Ef (k,q,h,p) − Ei(k)), (C1)

whereW0�
NN ′ (q,p) represents the spin plus isospin summation, together with the momentum dependence arising from the different

interactions. The energies in Eq. (C1) read

Ei(k) = ε�(|k|) = k0,

Ef (k,q,h,p) = εN (|k − q + p|) + εN ′′ (|h + q − p|) − εN ′ (|h|), (C2)

�E1(k,q,h) = [ε�(|k − q|) + εN (|h + q|) − εN ′ (|h|)] − ε�(|k|).
We also have

W0�
NN ′ (q,p) =

∑
i,j,l

K0�
i,j,l(q,p)W0�,NN ′

i,j,l (q,p), (C3)

where,

W0�,nn
i,j,l (q,p) = 1

9 [3{Vj,0(p) + Vj,1(p)}{Ui,0(q) + Ui,1(q)} + 22Vj,2(p)Ui,2(q)][Vl,0(Q) + Vl,1(Q) + Vl,2(Q)],

W0�,np
i,j,l (q,p)= 1

3 [{Vj,0(p) − Vj,1(p)}Ui,0(q) + {−Vj,0(p) + 9Vj,1(p)}Ui,1(q) + 2Vj,2(p)Ui,2(q)][Vl,0(Q) − Vl,1(Q) − Vl,2(Q)],

W0�,pn
i,j,l (q,p) = 4

3 [Vj,1(p)Ui,0(q) + {2Vj,0(p) − 3Vj,1(p)}Ui,1(q) + Vj,2(p)Ui,2(q)][Vl,1(Q) + Vl,2(Q)]. (C4)
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h
k − q + p

k

k

p2

Λ

Λ

k − q p2
p

Q = q − p

q

Σ

FIG. 4. Goldstone diagram corresponding to the interference rate
��0�

1 . The energy-momentum transfer is shown along each line (note
that p2 = h + q − p and p′

2 = h + q).

Finally we have,

K0�
C,C,C = 1, K0�

σ,σ,σ = −6, K0�
C,σ,σ = K0�

σ,C,σ = K0�
σ,σ,C = 3,

K0�
σ,σ,L = K0�

σ,L,σ = K0�
L,σ,σ = −2, K0�

C,L,L = ( p · q)2,

K0�
L,C,L = ( Q · q)2, K0�

L,L,C = ( Q · p)2,

K0�
L,L,L = −[( p ∧ Q) · q]2, K0�

σ,L,L = (−1 + ( p · Q)2),

K0�
L,σ,L = (−1 + (q · Q)2), K0�

L,L,σ = (−1 + ( p · q)2),

K0�
C,Sv,Sv

= 2( Q · p), K0�
σ,Sv,Sv

= −2( Q · p),

K0�
L,Sv,Sv

= −2( Q · q)( p · q), K0�
C,S,S = K0�

C,S ′,S ′ = ( p · Q),

K0�
L,Sv,S

= K0�
L,S,Sv

= [−( Q · p) + ( p · q)( Q · q)],

K0�
L,Sv,S ′ = K0�

L,S ′,Sv
= ( Q · p) − ( p · q)( Q · q),

K0�
σ,Sv,S

= K0�
σ,S,Sv

= −2( p · Q),

K0�
σ,Sv,S ′ = K0�

σ,S ′,Sv
= 2( p · Q), K0�

σ,S,S ′ = K0�
σ,S ′,S = ( p · Q),

K0�
L,S,S ′ = K0�

L,S ′,S = ( Q · q)( p · q),

and K0�
i,j,k,l = 0 otherwise.
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