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Background: Elastic scattering is probably the main event in the interactions of nucleons with nuclei. Even if
this process has been extensively studied in the past years, a consistent description, i.e., starting from microscopic
two- and many-body forces connected by the same symmetries and principles, is still under development.
Purpose: In a previous paper [M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)] we derived
a theoretical optical potential from NN chiral potentials at fourth order (N3LO). In the present work we use NN

chiral potentials at fifth order (N4LO), with the purpose to check the convergence and to assess the theoretical
errors associated with the truncation of the chiral expansion in the construction of an optical potential.
Methods: Within the same framework and with the same approximations as the previous paper [M. Vorabbi,
P. Finelli, and C. Giusti, Phys. Rev. C 93, 034619 (2016)], the optical potential is derived as the first-order
term within the spectator expansion of the nonrelativistic multiple scattering theory and adopting the impulse
approximation and the optimum factorization approximation.
Results: The pp and np Wolfenstein amplitudes and the cross section, analyzing power, and spin rotation of
elastic proton scattering from 16O, 12C, and 40Ca nuclei are presented at an incident proton energy of 200 MeV.
The results obtained with different versions of chiral potentials at N4LO are compared.
Conclusions: Our results indicate that convergence has been reached at N4LO. The agreement with the
experimental data is comparable with the agreement obtained in the previous paper [M. Vorabbi, P. Finelli,
and C. Giusti, Phys. Rev. C 93, 034619 (2016)]. We confirm that building an optical potential within chiral
perturbation theory is a promising approach for describing elastic proton-nucleus scattering.
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I. INTRODUCTION

Elastic scattering is probably the main event in the interac-
tion of nucleons with nuclei. A wealth of detailed information
on nuclear properties has been obtained from the existing
measurements of cross sections and polarization observables
for the elastic scattering of protons from a wide variety of stable
nuclei over a wide range of energies. A suitable and successful
framework to describe elastic nucleon-nucleus (NA) scattering
is provided by the nuclear optical potential [1]. With the optical
potential it is possible to compute the scattering observables
across wide regions of the nuclear landscape and to extend
calculations to inelastic scattering and to a wide variety of
nuclear reactions.

The optical potential can be derived phenomenologically
or, alternatively and more fundamentally, microscopically.
Phenomenological optical potentials are obtained assuming a
form and a dependence on a number of adjustable parameters
for the real and the imaginary parts that characterize the shape
of the nuclear density distribution and that vary with the
nuclear energy and the nuclear mass number. The parameters
are obtained through a fit to data of elastic proton-nucleus
(pA) scattering data. The calculation of a microscopic optical
potential requires, in principle, the solution of the full many-
body nuclear problem for the incident nucleon and the A
nucleons of the target, which is beyond present capabilities.
In practice, with suitable approximations, microscopic optical
potentials are usually derived from two basic quantities: the

nucleon-nucleon (NN ) t matrix and the matter distribution of
the nucleus.

The NN potential is an essential ingredient in the NA
scattering theory where its off-shell properties play an impor-
tant role. To obtain a good description of these properties
microscopic optical potentials are usually derived employ-
ing“realistic” NN potentials, which are able to reproduce the
experimental NN phase shifts with χ2/datum � 1.

In a previous paper of ours [2] a new microscopic optical
potential for elastic pA scattering was obtained employing
microscopic two-body chiral potentials, i.e., NN potentials
derived from first principles. The purpose of our work was just
to study the domain of applicability of chiral potentials in the
construction of an optical potential. The theoretical framework
basically follows the approach of Ref. [3], where the Watson
multiple scattering theory was developed expressing the NA
optical potential by a series expansion in terms of the free
NN scattering amplitudes. In the calculations of Ref. [2]
the expansion is truncated at the first-order term, medium
effects are neglected in the interaction between the projectile
and the target nucleon, and in the impulse approximation
the interaction is described by the free NN t matrix. In
addition, the optimum factorization approximation is adopted,
where the optical potential is given by the factorized product
of the free NN t matrix and the nuclear density. For the
NN interaction, in Ref. [2] two different versions of chiral
potentials at fourth order (N3LO) in the chiral expansion are
used, developed by Entem and Machleidt [4] and Epelbaum,
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Glöckle, and Meißner [5]. The results produced by the two
different versions of the chiral potential have been compared
for the NN scattering amplitudes and for the observables of
elastic proton scattering on 16O.

Recently, NN potentials at fifth order (N4LO) of chiral
effective field theory were presented by Epelbaum, Krebs,
and Meißner (EKM) [6,7] and Entem, Machleidt, and Nosyk
(EMN) [8,9]. These new chiral NN potentials are used in the
present work to calculate the optical potential within the same
theoretical framework as in Ref. [2]. The main aims of our
work are to check the convergence of the chiral perturbation
theory (ChPT) expansion, to investigate the sensitivity of
the results to the choice of the NN potential and to the
adopted regularization prescription, and to assess theoretical
uncertainties on elastic NA scattering observables.

The paper is organized as follows: In Sec. II A we outline
the theoretical framework used to calculate the NA optical
potential. In Sec. II B we introduce the chiral NN potentials at
fifth order recently presented in Refs. [6,7] (EKM) and [8,9]
(EMN). In Sec. III we show and discuss our results for the NN
Wolfenstein amplitudes and for the scattering observables on
a small set of light nuclei (12C, 16O, and 40Ca) calculated
with both NN potentials. Predictions based on EKM and
EMN potentials are compared with available experimental
data. Finally, in Sec. IV we draw our conclusions.

II. OPTICAL POTENTIALS

A. Theoretical framework

Proton elastic scattering off a target nucleus with A
nucleons can be formulated in the momentum space by the
full Lippmann-Schwinger (LS) equation [1,10]

T = V (1 + G0(E)T ), (1)

where the operator V represents the external interaction which,
if we assume only two-body forces, is given by the sum over
all the target nucleons of two-body potentials describing the
interaction of each target nucleon with the incident proton and
G0(E) is the free Green’s function for the (A + 1)-nucleon
system.

As a standard procedure, Eq. (1) is separated into a set of
two coupled integral equations: the first one for the so-called
T matrix,

T = U (1 + G0(E)PT ), (2)

and the second one for the optical potential U ,

U = V (1 + G0(E)QU ). (3)

In Eqs. (2) and (3), the operator P projects onto the elastic
channel and the projection operator Q is defined, as usual, by
the completeness relation P + Q = 1.

In order to develop a consistent framework to compute the
optical potential U and the transition amplitude for the elastic
NA scattering observables, we follow the path initiated by
Kerman et al. [3], and subsequently improved by Picklesimer
et al. [11], that is based on the multiple scattering theory
and we retain only the first-order term, corresponding to
the single-scattering approximation, where only one target
nucleon interacts with the projectile. In addition, we adopt

the impulse approximation, where nuclear binding forces on
the interacting target nucleon are neglected. For all relevant
details and an exhaustive bibliography we refer the reader to
Ref. [2], where the theoretical framework of the present work
is extensively described.

After some lengthy manipulations, the optical potential
is obtained in a factorized form (in the so-called optimum
factorization approximation) as the product of the free NN t
matrix and the nuclear matter densities

U (q,K ; ω) = A − 1

A
η(q,K )

∑
N=n,p

tpN (q,K ,ω) ρN (q), (4)

where q and K are the momentum transfer and the total
momentum, respectively, in the NA reference frame, tpN

represents the proton-proton (pp) and proton-neutron (pn)
t matrix, ρN represents the neutron and proton profile density,
and η(q,K ) is the Møller factor, which imposes the Lorentz
invariance of the flux when we pass from the NA to the NN
frame in which the t matrices are evaluated. Through the
dependence of η and tpN upon K , the optimally factorized
optical potential given in Eq. (4) exhibits nonlocality and
off-shell effects (see Ref. [2]). The energy ω at which the
matrices tpN are evaluated is fixed at one-half of the kinetic
energy of the projectile in the laboratory system.

The optimally factorized optical potential is then written
exploiting its spin-dependent component (see Sec. II C of
Ref. [2]) and then expanded on its partial-wave components.
Once the LJ components of the elastic transition operator are
determined, the calculation of the three scattering observables
(the unpolarized differential cross section dσ/d�, the analyz-
ing power Ay , and the spin rotation Q) is straightforward.

Two basic ingredients are required to calculate the optical
potential: the NN potential and the neutron and proton
densities of the target nucleus. For the latter quantities we
follow the same path initiated in Ref. [2] using a relativistic
mean-field (RMF) description [12]. In the past years this
approach has been very successful in the description of ground
state and excited state properties of finite nuclei, in particular
in a density dependent meson exchange (DDME) version,
where the couplings between mesonic and baryonic fields are
assumed as functions of the density itself [13]. We are aware
that a phenomenological description of the target is not fully
consistent with the goal of a microscopic description of elastic
NA scattering. A forthcoming paper will be devoted to the
inclusion of matter densities from ab initio calculations.

For the NN interaction we use here two different versions
of the N4LO chiral potentials recently derived by EKM [6,7]
and EMN [8,9]. Some basic features of these chiral potentials
are outlined in Sec. II B.

B. N4LO chiral potentials

ChPT is a perturbative technique for the description of
hadron scattering amplitudes based on expansions in powers of
a parameter that can be generally defined as (p,mπ )/	b, where
p is the magnitude of 3-momenta of the external particles, mπ

is the pion mass, and the symmetry breaking scale 	b can be
safely estimated for chiral symmetry as 	b ∼ 4πfπ [14] or,
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alternatively, using the lightest non-Goldstone meson mass as
an energy scale, 	b ∼ mρ .

As an effective field theory (EFT) [15], ChPT respects
the low-energy symmetries of quantum chromodynamics
(QCD) and, up to a certain extent, is model independent and
systematically improvable by an order-by-order expansion,
with controlled uncertainties from neglected higher-order
terms.

Nevertheless, calculations in the NN sector are particularly
complicated due to large scattering lengths and, in particular,
the shallow deuteron bound state: a clear indication of a
nonperturbative character of the NN system [16,17].

At the beginning of the 1990s, Weinberg [18] proposed a
practical method to calculate the NN scattering amplitude: as
a first step, a nuclear potential V is calculated as the sum of
all irreducible diagrams; then, solving the LS equation, V is
iterated to all orders.

Of course the LS equation is divergent and needs to be
regularized. In conventional field theories, the integrals are
regulated and the dependence on the regularization parameters
(cutoffs) is removed by renormalization. At the end of the
procedure the calculations do not depend on cutoffs or renor-
malization scales. A successful renormalization procedure for
the NN potential in which the cutoff parameter is carried to
infinity is only available at leading order (LO), as proved by
Nogga et al. in Ref. [19]. An extension to higher orders is, at
the moment, impracticable because no reliable power counting
scheme would be available [20,21]. For our purposes, cutoffs
should be limited to a specific energy domain 	 � 	b. In
fact, in EFTs a different approach is pursued with the goal to
maintain a regulator-independent procedure (within a range of
validity determined by the breakdown scale) and, at the same
time, a practical power counting scheme: EFTs are usually
renormalized order by order [22].

A standard choice is to multiply the potential V with a
regulating function in the momentum space:

f	(k′,k) = exp

(
−

(
k′

	

)2m

−
(

k

	

)2m
)

. (5)

In general, the cutoff parameter is estimated by choosing a
value for 	 close to 500 MeV, safely below the EFT breakdown
scale 	b. Concerning the exponents, m = 2 or 3 is a commonly
adopted choice in the existing literature [23].

At the same time, an implicit renormalization of the NN
amplitude is achieved by fitting to experimental phase shifts
[24] the low-energy constants (LECs) related to the contact
interaction terms in the Lagrangian [25,26].

In our previous work [2], where we introduced our model
for the first time, calculations were performed using two
different versions of the N3LO chiral potential based on the
works of Entem and Machleidt (EM) [4] and Epelbaum,
Glöckle, and Meißner (EGM) [5]. Both versions employed
a regulator function f	 [with three choices of the cutoff: 	 =
450, 600, and 500 (EM) or 550 (EGM) MeV] to regulate
the high-momentum components in the LS equation, but
they approached differently the treatment of the short-range
part of the two-pion exchange (2PE) contribution, which has
unphysically strong attraction. EM treated divergent terms in

the 2PE contributions with dimensional regularization (DR),
while EGM used a spectral function regularization (SFR),
which introduces an additional cutoff 	̃ in the evaluation of
the potential and, as a consequence, also into the perturbative
resummation.

Several issues arise with the SFR procedure, as pointed out
in Ref. [7]:

(1) The inconsistency with available calculations of the
three-body forces (3NF) at and beyond the N3LO level
that employ the standard DR [27–30] is one of the most
relevant. As discussed in Ref. [7], the introduction of
SFR on some of the 3NF contributions, such as the ring
diagrams, appears to be a difficult task.

(2) The values of some pion-nucleon (πN ) low-energy
constants, in particular the ci’s, is another matter of
concern. In fact, they are involved both in the NN
sector, through the 2PE potential, and in the long- and
intermediate-range 3NFs. In Ref. [5], for example, the
value of c3 was reduced in order to tame the unphysical
attraction leading to unphysical deeply bound states in
the NN system.

(3) In EFTs it is a common procedure to estimate errors due
to truncation of the expansion at a given order by means
of a cutoff dependence. Introducing 	̃ undermines a
reliable assessment of the theoretical accuracy.

Because of the above mentioned arguments, the authors of
Refs. [6,7] claim that using DR instead of SFR would be the
optimal choice to calculate the chiral NN potential.

Furthermore, the same authors [6,7] argued that even
the choice to employ a nonlocal momentum-space regulator
in the NN potentials [4,5] leads to some inconsistencies,
considering that it affects the long-range part of the interaction,
as extensively discussed in Refs. [7,31,32]. A possible solution
to reduce finite-cutoff artifacts consists in a regularization
in coordinate space. As stated in Ref. [7], this particular
choice of a coordinate space regulator makes the adoption
of SFR for the treatment of pion exchange contributions
unnecessary. This choice would also allow one to avoid any
fine tuning of the low-energy constants ci and di determined
from pion-nucleon scattering. Such regularization was initially
adopted by Gezerlis et al. in the construction of local chiral
NN potentials up to N2LO [33,34].

1. The EKM approach

The strategy followed in Refs. [6,7] consists in a regular-
ization for the long-range contributions such as

Vlong-range(r) → V
reg

long-range(r) = Vlong-range(r)f

(
r

R

)
, (6)

where f is a regulator function defined as

f

(
r

R

)
=

(
1 − exp

(
− r2

R2

))n

, (7)

and a conventional momentum space regularization, see
Eq. (5), for the contact terms with 	 = 2R−1 and m = 2.
As explained in Ref. [7], it is necessary to choose n � 4 in
order to have the correct behaviors of the 2PE contributions.

044001-3



MATTEO VORABBI, PAOLO FINELLI, AND CARLOTTA GIUSTI PHYSICAL REVIEW C 96, 044001 (2017)

To guarantee more stable results from a numerical point of
view, n = 6 is the adopted value. Five available choices of
R are available: 0.8, 0.9, 1.0, 1.1, and 1.2 fm, leading to
five potentials with different χ2/datum. As shown in Table 3
of Ref. [7], they are almost equivalent for energies below
200 MeV, with larger discrepancies for higher energies, in
particular for the softest (1.2 fm) and the hardest cases
(0.8 fm).

2. The EMN approach

However, Machleidt et al. [8,9] pursued a slightly more
conventional approach to develop a NN potential at N4LO.
They employed a SFR with a cutoff 	̃ = 700 MeV (while, at
lower orders, 	̃ = 650 MeV) in order to regularize the loop
contributions. The long-range parts are constrained by a recent
Roy-Steiner (RS) analysis by Hoferichter et al. [35,36]. With
RS equations the LECs can be extracted from the subthreshold
point in πN scattering data with extremely low uncertainties
(see Table II of Ref. [9] for more details). As a last step, to
deal with infinities in the LS equation, a conventional regulator
function [Eq. (5)] is employed, with 	 = 450, 500, and
550 MeV as available choices, and m = 2 and 4 for multipion
and single-pion exchange contributions, respectively. For all
details we refer the reader to Refs. [8,9]. The N4LO potential
produced with the previous approach is able to reproduce a
very large NN database (see Sec. III A of Ref. [9]) with a
“realistic” χ2/datum ∼1.15.

It is therefore very interesting to compare these two
different approaches and to study the differences produced
on elastic NA scattering observables by the different NN
potentials and their regularizations. In particular, our goal is
to study what regularization prescription is more suitable and
successful in reproducing empirical data. In the following,
results are presented and compared for the NN Wolfenstein
amplitudes and for elastic proton-scattering observables on
12C, 16O, and 40Ca nuclei.

III. RESULTS

A. N N amplitudes

In this section we present and discuss the theoretical results
for the pp and pn Wolfenstein amplitudes [37,38]. For the
J = 0+ nuclei we are interested in in the present work, only a
and c amplitudes survive and they are connected to the central
and the spin-orbit part of the NN t matrix, respectively (more
details can be found, e.g., in Sec. II B of Ref. [2]).

All calculations are performed with one of the EKM [6,7]
potentials (red bands in Fig. 1), corresponding to R = 0.9
fm, and with the EMN [8,9] potential (cyan bands in Fig. 1),
which employs a momentum cutoff regularization with
	 = 500 MeV.

In both cases we plot bands and not just lines because, for
this class of chiral potentials, it is possible to assess theoretical
errors associated with the truncation of the chiral expansion. To
estimate the size of these theoretical uncertainties, we follow
the same approach proposed in Refs. [6,7]. Given an observ-
ableO(p) as a function of the center-of-mass momentum p, the
uncertainty 
On(p) at order n is given by the size of neglected

higher-order terms. For example, at N4LO order we have


ON4LO(p) = max (Q6 × |OLO(p)|,
×Q4 × |OLO(p) − ONLO(p)|,
×Q3|ONLO(p) − ON2LO(p)|,
×Q2 × |ON2LO(p) − ON3LO(p)|,
×Q|ON3LO(p) − ON4LO(p)|), (8)

where Q is defined as

Q = max

(
p

	b

,
Mπ

	b

)
, (9)

and 	b = 600 MeV is an optimal choice [6,7,39]. Concerning
error estimates, other prescriptions can be used [39]. For
example, the simplest one would be to explore cutoff
dependencies. We have performed some preliminary
calculations and, in our opinion, the method introduced in
Refs. [6,7] seems to be the best choice.

We also tested that predictions based on different values
of R and 	b are quite close and consistent with each other
(as remarked in Ref. [6], larger values of R are probably
less accurate due to a larger influence of cutoff artifacts). We
are therefore confident that for our present purposes showing
results with only a single potential of the EKM set will not
affect our conclusions in any way. The same assumption can
be made about the EMN potentials: changing the cutoffs does
not lead to sizable differences in χ2/datum (see Table VIII
in Ref. [9]) and it is safe to perform calculations with only a
single potential.

In Fig. 1 the theoretical results for the real and imaginary
parts of the pp and pn amplitudes (a and c), computed at
an energy of 200 MeV, are shown as functions of the center-
of-mass NN angle φ and compared with the experimental
amplitudes, which have been extracted from the experimental
NN phase shifts [24]. We have chosen a rather high energy for
our calculations in order to enlarge the differences among the
potentials employed. As shown in Figs. 1 and 2 of Ref. [2], no
appreciable differences are given by different NN potentials
at lower energies. In Fig. 1 the experimental data are globally
very well reproduced by the theoretical results, with the only
remarkable exception of the real part of the cpp amplitude that
is overestimated. It must be considered, however, that cpp is
a very small quantity, i.e., two orders of magnitude smaller
than the respective imaginary part, and it will only provide a
very small contribution to the optical potential. We do not find
appreciable differences with respect to the choice of the NN
potential; in fact the cyan bands largely overlap the red bands
for any amplitudes. In both cases, the bands are very narrow,
maybe with mild exceptions for the real part of app and the
imaginary components of cpp and cpn. As a consequence, we
can conclude that the NN sector has already reached a robust
convergence at N4LO and we do not expect large contributions
from the N5LO extension [40,41].

B. Elastic proton-nucleus scattering observables

In this section we present and discuss our numerical results
for the pA elastic scattering observables calculated with the
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FIG. 1. Real (left) and imaginary (right) parts of pp and pn a and c Wolfenstein amplitudes as functions of the center-of-mass NN angle
φ. All the amplitudes are computed at 200 MeV using one of the EKM [6,7] potentials (red bands determined by R = 0.9 fm) and one of
the EMN [8,9] potentials (cyan bands) which uses a momentum cutoff 	 = 500 MeV. To estimate theoretical errors, we used Eq. (8) with
	b = 600 MeV. Empirical data are taken from Ref. [24].

microscopic optical potential obtained within the theoretical
framework described in the previous sections. We consider
elastic proton scattering on 12C, 16O, and 40Ca.

The main goal of our work is to investigate the sensitivity
of the results to the choice of the NN potential and to
assess theoretical uncertainties for the scattering observables.
In Ref. [2] we studied the limits of applicability of chiral
potentials in terms of the proton energy. In the present work
we show results for a single proton energy of 200 MeV, a
value that represents a good compromise between the limits
of applicability of our model (the results shown in Ref. [2]
indicate that for energies larger than 200 MeV the agreement
between the results from chiral potentials and data gets worse
and it is plausible to believe that ChPT is no longer applicable)
and the necessity to emphasize the differences between the NN
potentials employed, that increase with increasing energy.

In Figs. 2, 3, and 4 we show the differential cross section
(dσ/d�), the analyzing power Ay , and the spin rotation Q for
elastic proton scattering on 16O, 12C, and 40Ca, respectively,
as functions of the center-of-mass scattering angle θ . The
results are compared with the experimental data taken from
Refs. [42,43].

As in Sec. III A, all calculations are performed with one
of the EKM potentials (R = 0.9 fm) and with one of the
EMN potentials (with 	 = 500 MeV). Red and cyan bands for
the EKM and EMN results are produced following the above

mentioned prescription [see Eq. (8)] with 	b = 600 MeV. The
Coulomb interaction between the proton and the target nucleus
is included in the calculations as described in Ref. [2].

The first nucleus we consider is 16O, in Fig. 2, which
was also investigated in Ref. [2]. At the calculated energy of
200 MeV all sets of potentials, regardless of their theoretical
differences, give very similar results for the differential cross
section. Small discrepancies in comparison with empirical data
appear at small (θ � 5◦) and large (θ � 50◦) angles, but the
experimental cross section is well reproduced by all potentials
in the minimum region, between 20◦ and 25◦. Concerning
the analyzing power Ay , both potentials overestimate the
experimental data for angles larger than 20◦ but the overall
behavior is nicely reproduced. The numerical results for the
spin rotation Q exhibit a good agreement with empirical
data. This is a nontrivial task considering that polarization
observables are usually more difficult to reproduce. The cyan
and red bands, assessing theoretical errors due to the truncation
of the chiral expansion, for both potentials are narrow at small
angles and a bit larger around the minima and at larger angles,
where theoretical uncertainties increase and also the agreement
with data declines.

In comparison with the corresponding results in Fig. 8 of
Ref. [2], which are calculated for the same nucleus at the same
energy and within the same theoretical framework for the NA
optical potential but with the EM and EGM chiral potentials
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FIG. 2. Scattering observables (differential cross section dσ/d�,
analyzing power Ay , and spin rotation Q) as a function of the
center-of-mass scattering angle θ for elastic proton scattering on 16O
computed at 200 MeV (laboratory energy). We employ one of the
EKM [6,7] potentials (red bands determined by R = 0.9 fm) and one
of the EMN [8,9] potentials (cyan bands) which uses a momentum
cutoff 	 = 500 MeV. To estimate theoretical errors, we used Eq. (8)
with 	b = 600 MeV. Coulomb distortion is included as explained in
Ref. [2]. Empirical data are taken from Refs. [42,43].

at fourth order (N3LO), the present results in Fig. 2 give a
comparable, and in general not particularly better, description
of the experimental data. From this point of view, they confirm
our previous results of Ref. [2]. The aim of our investigation
was not to obtain perfect agreement with the data (although
not perfect, the agreement can be considered reasonable if we
bear in mind the approximations of our model), but to study
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FIG. 3. The same as in Fig. 2 for 12C at an energy of 200 MeV.
Empirical data are taken from Refs. [42,43].
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FIG. 4. The same as in Fig. 2 for 40Ca at an energy of 200 MeV.
Empirical data are taken from Refs. [42,43].

the applicability of microscopic two-body chiral potentials in
the construction of an optical potential. More specifically, in
this work, our aim is to check the convergence of the ChPT
perturbative expansion and the sensitivity of the results to the
choice of the NN potential and to the adopted regularization
prescription. Different NN potentials, able to give equivalently
good descriptions of NN elastic-scattering data, may have
a different off-shell behavior, and it is this behavior, that
cannot be tested in the comparison with NN scattering data,
that can produce different results when the NN potentials
are used to calculate the optical potential for elastic NA
scattering.

Also for 12C in Fig. 3 all sets of NN potentials give
very close results for the calculated differential cross sections
and somewhat larger, although not crucial, differences for the
analyzing power Ay and the spin rotation Q. The experimental
cross section is well described by our results for angles up to
θ � 45◦ and somewhat underestimated at larger angles. Our
calculations are able to describe the behavior (the shape better
than the size) of the experimental Ay . No empirical data are
available for Q.

For 40Ca in Fig. 4 all sets of NN potentials give very close
results and a generally good description of the experimental
cross section. The experimental analyzing power Ay is
somewhat overestimated (but for small angles), in particular
around the minima.

Generally speaking, red bands are narrower than cyan
ones, suggesting a stronger control of theoretical errors at
N4LO for the EKM potentials. Concerning the order-by-order
convergence pattern (N2LO, N3LO, N4LO) for the scattering
observables of elastic proton scattering on 16O, an example
calculated with the EKM potential is presented in Fig. 5.
The error bands and therefore the theoretical uncertainties
are clearly reduced from N2LO to N4LO, the convergence
pattern is clear, and we can conclude that convergence has
been reached at N4LO. We do not expect large contributions
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FIG. 5. Scattering observables as a function of the center-of-mass
scattering angle θ for elastic proton scattering on 16O computed at
200 MeV (laboratory energy) with the EKM potential [6,7] at different
orders: green bands are the N2LO results, and blue and red bands are
the N3LO and N4LO results, respectively. Empirical data are taken
from Refs. [42,43].

from the higher-order extensions in the NN sector, but it could
be interesting to see what happens with NN potentials at N5LO
[40,41].

IV. CONCLUSIONS

In a previous paper [2] we derived a new microscopic
optical potential for elastic pA scattering from NN chiral
potentials at fourth order (N3LO) [4,5], with the purpose to
study the domain of applicability of microscopic two-body
chiral potentials in the construction of an optical potential.
In the present work a microscopic optical potential has been
derived, within the same theoretical framework and adopting
the same approximations as in Ref. [2], from NN chiral
potentials at fifth order (N4LO) based on the recent works
of Epelbaum et al. [6,7] and Entem et al. [8,9]. Our main
aims were to check the convergence of the ChPT perturbative
expansion, assessing theoretical errors associated with the
truncation of the chiral expansion, and to compare the results
produced by the different NN chiral potentials and their
different regularizations on elastic NA scattering observables.

Numerical results have been presented for the pp and np
Wolfenstein amplitudes (a and c), that are employed in the
calculation of the optical potential to compute the NN t
matrix, and for the observables (the unpolarized differential
cross section dσ/d�, the analyzing power Ay , and the spin
rotation Q) of elastic proton scattering from 12C, 16O, and 40Ca
nuclei. A single proton energy of 200 MeV has been chosen
for all the calculations. The chosen energy value is rather
high, in order to enlarge the differences between the different
potentials, that increase with increasing energy, but within

the limit of applicability for chiral potentials. It was indeed
shown in Ref. [2] that for energies larger than 200 MeV the
agreement between the results from chiral potentials and data
gets worse and it is plausible to believe that ChPT is no longer
applicable.

The experimental pp and np a and c amplitudes are globally
very well reproduced by both NN chiral potentials, with
the only exception of the real part of the cpp amplitude,
which is anyhow extremely small and provides a practically
negligible contribution to the optical potential. Theoretical
errors associated with the truncation of the chiral expansion
are generally very small, indicating that a robust convergence
has already been reached at N4LO. The results for elastic pA
scattering observables show that the different chiral potentials
give, for all three nuclei considered, very similar cross sections,
in a generally good agreement with the experimental data.
Polarization observables are more sensitive to the differences
in the NN interaction. For 16O the numerical results, in
particular with the EKM potential, are in fair agreement with
the experimental spin rotation (empirical data are not available
for 12C and 40Ca). For all three nuclei both EKM and EMN
potentials describe the overall behavior of the experimental
analyzing power but the size is somewhat overestimated at
larger scattering angles.

The bands associated with the theoretical errors due to
the truncation of the chiral expansion are small for the cross
sections and larger for the polarization observables. The bands
are somewhat larger for the EMN potential, suggesting a
stronger control of theoretical errors at N4LO for the EKM
potential. The order-by-order convergence pattern (an example
was presented for 16O with the EKM potential) is clear and
we can conclude that convergence has been reached at N4LO
and we do not expect large contributions from the higher-order
extensions in the NN sector. Anyhow, it will be interesting to
discuss in a forthcoming paper the results with NN potentials
at N5LO [40,41].

The agreement of the present results with empirical data is
comparable with (but in general not better than) the agreement
obtained in Ref. [2] with chiral potentials at fourth order
(N3LO). A better agreement would require improving or
reducing the approximations adopted in the calculation of the
optical potential. As possible improvements, in the future we
plan to include three-body forces and nuclear-medium effects
and to go beyond the optimum factorization approximation
and calculate the optical potential from a full-folding integral.

In addition, we plan to extend our investigation to N �= Z
nuclei. In particular for these nuclei, proton and neutron
densities from ab initio calculations would improve the
microscopic character and the predictive power of the optical
potential.
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