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Enhanced nucleon transfer in tip collisions of 238U+124Sn

Kazuyuki Sekizawa*

Faculty of Physics, Warsaw University of Technology, Ulica Koszykowa 75, 00-662 Warsaw, Poland
(Received 9 August 2017; revised manuscript received 9 October 2017; published 30 October 2017)

Multinucleon transfer processes in low-energy heavy ion reactions have attracted increasing interest in recent
years aiming at the production of new neutron-rich isotopes. Clearly, it is an imperative task to further develop
understanding of underlying reaction mechanisms to lead experiments to success. In this paper, from systematic
time-dependent Hartree-Fock calculations for the 238U+124Sn reaction, it is demonstrated that transfer dynamics
depend strongly on the orientations of 238U, quantum shells, and collision energies. Two important conclusions
are obtained: (i) Experimentally observed many-proton transfer from 238U to 124Sn can be explained by a
multinucleon transfer mechanism governed by enhanced neck evolution in tip collisions; (ii) novel reaction
dynamics are observed in tip collisions at energies substantially above the Coulomb barrier, where a number of
nucleons are transferred from 124Sn to 238U, producing transuranium nuclei as primary reaction products, which
could be a means to synthesize superheavy nuclei. Both results indicate the importance of the neck (shape)
evolution dynamics, which are sensitive to orientations, shell effects, and collision energies, for exploring
possible pathways to produce new unstable nuclei.
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Introduction. Neck development is one of the fundamental
degrees of freedom in nuclear dynamics. When a nucleus
splits into two— nuclear fission [1,2]—the ways of evolving
a neck characterize the fission outcomes such as kinetic
and excitation energies as well as mass and charge of the
fission products [3]. Since neck formation lowers the Coulomb
barrier height [4–6], it significantly affects the fusion cross
section. Moreover, the neck plays an important role in, e.g.,
nucleon exchanges and energy dissipation [7–15]. This work
strengthens the importance of neck evolution dynamics in
multinucleon transfer processes that could be a key element
toward the synthesis of yet-unknown superheavy nuclei.

Recently, the multinucleon transfer reaction is considered as
a promising means to produce new neutron-rich heavy nuclei
and has been extensively studied [16–59]. In this context,
among the pioneering experiments [60–68], Mayer et al. at
GSI reported [69] measurements of production cross sections
for lighter (target-like) fragments in 238U-induced dissipative
collisions with 110Pd and 124Sn targets, employing the inverse
kinematics. It was observed that for the 238U+124Sn reaction
at Ec.m. � 465 MeV, up to around 15 protons are transferred
from 238U to 124Sn, whereas the neutron number of the lighter
fragments tends to be close to the neutron magic number,
N = 82 [see Fig. 1(g) for the experimental data]. Similar
shell effects were observed also for the 238U+110Pd reaction.
The authors of Ref. [69] thus concluded that strong structural
effects may be present in the 238U-induced dissipative
collisions, where the shell effects of N = 82 play a crucial
role during the multiproton transfer processes. Even though
the finding is fascinating, a clear theoretical explanation for
this particular observation has not yet been given.

In this Rapid Communication, it is demonstrated,
based on microscopic time-dependent Hartree-Fock (TDHF)
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calculations, that the observed multiproton transfer processes
can be explained by characteristic neck evolution dynamics in
tip collisions. Only in such a nuclear orientation does a thick
and long neck develop in the course of the collision, and its
subsequent rupture gives rise to the transfer of both neutrons
and protons from 238U to 124Sn. Because of the dissipative char-
acter of the reaction, the reaction products are highly excited
and secondary deexcitation processes affect significantly the
production cross sections. It is shown that after the secondary
particle evaporation, the neutron number of the lighter frag-
ments tends to be close to the magic number, N = 82, explain-
ing the experimental observation. To gain deeper insight into
the reaction mechanism, collision energy dependence is also
investigated for tip and side collisions, revealing a qualitative
difference. In this paper, the importance of neck evolution
dynamics in low-energy heavy ion reactions is highlighted.

Method. In this work, the TDHF theory is employed to
unveil the mechanism of multinucleon transfer processes in the
238U+124Sn reaction. The theory is able to describe important
dynamics during the collision, such as shape deformation of
the composite system, nucleon exchanges, energy dissipation,
shell effects, and so forth, without adjustable parameters. With
the aid of the particle-number projection method [70], one
can compute production cross sections for primary (excited)
reaction products from the TDHF wave functions after
collision [71]. Very recently, a method called TDHF+GEMINI
was proposed [72], which combines the TDHF theory
with a statistical compound-nucleus deexcitation model,
GEMINI++ [73], that allows the evaluation of production
cross sections for secondary reaction products after possible
particle evaporation and/or fission. Those methods are used to
make a comparison with the experimental data. (See, e.g., Refs.
[74–78], for reviews, and Refs. [4–6,9–15,55,70,79–130],
for recent applications of the TDHF theory.)

The TDHF calculations were performed using a parallel
computational code [131], which has been successfully applied
for various systems [71,72,131–136]. For the energy density
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FIG. 1. Comparison of production cross sections for the lighter fragments in the 238U+124Sn reaction at Ec.m. � 465 MeV. (a)–(c):
Cross sections for primary reaction products from TDHF. (d)–(f): Cross sections for secondary reaction products from TDHF+GEMINI.
(g): Experimental data (for reaction products with energy losses � 25 MeV) reported in Ref. [69]. The magic numbers, Z = 50 and N = 82,
are indicated by solid lines. The contour lines for the theoretical results in (a)–(f) correspond to 0.001, 0.01, 0.1, 1, 10, and 100 mb. At the top
of the figure, the collision geometries examined are depicted, showing the x-direction case [for (a), (d)], the y-direction case [for (b), (e)], and
the z-direction case [for (c), (f)]. The figure shown in (g) was taken from Ref. [69] with permission.

functional, the Skyrme SLy5 parameter set [137] was used.
Static calculations were performed with a box of (24 fm)3

with an 0.8-fm mesh. The Hartree-Fock ground state of
124Sn is of oblate shape with β � 0.11 [71], while that of
238U is of prolate shape with β � 0.27 [134]. The TDHF
calculations were performed with a three-dimensional box
of 56×56×24 fm3 for noncentral collisions (b � 10 fm),
while that was 72×32×24 fm3 for head-on collisions. Since
238U exhibits a large prolate deformation, the calculations
were performed taking three initial orientations of 238U: the
symmetry axis of 238U is set parallel to the collision axis
(x axis), parallel to the impact parameter vector (y axis),
and perpendicular to the reaction plane (xy plane); while the
symmetry axis of 124Sn is always set perpendicular to the
reaction plane. Those orientations will be called x-, y-, and
z-direction cases, respectively, and are illustrated in the top
part of Fig. 1. The same orientations were investigated for
the 64Ni+238U reaction in Ref. [134]. The initial separation
distance was set to 24 fm along the collision axis. Because
of the excessively large total number of protons (Z = 142),
fusion is no longer possible and binary reaction products were
always observed. The time evolution was continued until the
relative distance between the two fragments exceeded 28 fm.

The origin of many-proton transfer. Let us begin with
clarifying the origin of the experimentally observed many-
proton transfer in the 238U+124Sn reaction at Ec.m. � 465 MeV.
Figure 1 exhibits the production cross sections for the lighter
fragments in the A-Z plane. In the upper row, the cross sections
for primary reaction products obtained from the TDHF calcu-
lations are shown; while, in the lower row, the cross sections

for secondary reaction products from TDHF+GEMINI are
shown. For TDHF+GEMINI, a simplified treatment that
utilizes average excitation energy and angular momentum [72]
was used, assuming that all the excitation energy evaluated
from the TDHF wave function after collision gets thermalized
forming a compound nucleus. Since a proper orientation
average requires much computational effort, it has not been
achieved and, instead, the contributions from the x-, y-, and
z-direction cases are separately shown in Figs. 1(a) and 1(d),
Figs. 1(b) and 1(e), and Figs. 1(c) and 1(f), respectively. The
magic numbers, Z = 50 and N = 82, are indicated by solid
lines. In Fig. 1(g), the measured cross sections reported in
Ref. [69] are presented.

Let us first look at the experimental data shown in Fig. 1(g).
The cross sections take the maximum value at around the initial
mass and charge numbers of the target, A = 124 and Z = 50,
as expected. As can be seen from the figure, the measured
cross sections extend toward the right-top part in the A-Z
plane, the direction increasing the mass and charge of the
lighter fragments, meaning that many nucleons are transferred
from 238U to 124Sn. One can also find that the neutron number
of the lighter fragments tends to be around the magic number,
N = 82. The authors of Ref. [69] therefore conjectured that
this is a multiproton transfer process from 238U to 124Sn, under
strong influence of the N = 82 shell closure.

Let us now turn to the theoretical results shown in Fig. 1
for primary and secondary products. From the figure, one can
clearly see dramatic orientation dependence. Namely, when
the symmetry axis of 238U is set parallel to the collision
axis [the x-direction case shown in Figs. 1(a) and 1(d)], the
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production cross sections extend widely in the A-Z plane. In
contrast, when the symmetry axis of 238U is set perpendicular
to the collision axis [the y- and z-direction cases shown in
Figs. 1(b) and 1(e) and Figs. 1(c) and 1(f), respectively],
the cross sections distribute only narrowly around A = 124
and Z = 50. The important fact is that the cross sections
for the many-nucleon transfer from 238U to 124Sn remain
substantially large even after the secondary deexcitation pro-
cesses, as shown in Fig. 1(d). Moreover, after the deexcitation
processes, the cross sections look aligned along the neutron
magic number, N = 82, consistent with the experimental
observation.

Why does the amount of nucleon transfer depend so
much on the orientation of 238U? The answer lies in the
remarkable difference of the neck evolution dynamics. In
Fig. 2(a), snapshots of the density of the colliding nuclei
at various times in head-on collisions of 238U+124Sn at
Ec.m. � 465 MeV are displayed, as an illustrative example.
Time evolves from top to bottom rows, as indicated in each
panel in zeptoseconds (1 zs = 10−21 s). In the left column,
the result for the y-direction case (side collision) is shown;
while the x-direction case (tip collision) is shown in the right
column. From Fig. 2(a), one can clearly see that when 238U
collides from its tip on 124Sn (right panels), two nuclei collide
deeply (t = 1.07 zs) and then an elongated dinuclear system
is formed, evolving a thick neck structure (t = 1.6–2.67 zs).
Since the neck ruptures at a position closer to the heavier
subsystem (incident 238U in the right side), a number of
nucleons inside the neck are subsequently absorbed by the
smaller fragment (t = 3.09–3.26 zs). Similar dynamics have
been observed also for noncentral collisions (b � 3 fm). On
the other hand, when 238U collides from its tip on 124Sn (left
panels), such a long neck is not developed (t = 1.6–2.29 zs)
and only few nucleons are transferred on average. I must
mention that the frozen Hartree-Fock treatment [138,139]
offers an estimate of the Coulomb barrier height, which is
V

tip
B � 410 MeV (i.e., Ec.m./V

tip
B � 1.13) and V side

B � 448 MeV
(i.e., Ec.m./V side

B � 1.04) for the tip and side collisions,
respectively, for the present system.

Summarizing, the present TDHF calculations and the
analysis by TDHF+GEMINI indicate that what was observed
experimentally is the tip-collision-induced many-nucleon
transfer, which is induced by dynamics of a thick and long neck
forming and breaking, followed by secondary evaporation
processes.

Energy dependence of the reaction dynamics. One may ask
about the energy dependence of the neck evolution dynamics.
Namely, one may naively expect that, even in the side collision,
similar multinucleon transfer processes via the elongated
dinuclear system formation and its subsequent rupture may
emerge at higher collision energies. In what follows, it is shown
that it is not the case.

Figure 3 shows average numbers of nucleons of the heavier
fragments [Figs. 3(a) and 3(b)] and the lighter fragments
[Figs. 3(c) and 3(d)] as a function of the center-of-mass
energy. Here only head-on collisions are investigated, taking
two initial orientations of 238U, the x- and y-direction cases,
which, respectively, correspond to the tip and side collisions.
From the figure, one can see that in the side collisions (blue

FIG. 2. Snapshots of the density in 238U+124Sn head-on collisions
at Ec.m. � 465 MeV (a) and 736 MeV (b).

crosses), the average number of nucleons of the fragments
does not depend much on the collision energy. The only
visible trend is a gradual decrease (increase) of the average
number of nucleons in the heavier (lighter) fragment. The
larger decrease seen in Fig. 3(a) as compared to the increase
seen in Fig. 3(c) indicates that substantial prompt neutron
emissions from 238U took place during the collision at higher
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FIG. 3. TDHF results for head-on collisions of 238U+124Sn at
various center-of-mass energies Ec.m.. Average numbers of neutrons
and protons of the heavier fragments (NH and ZH) are shown in (a)
and (b), respectively, while those of the lighter fragments (NL and
ZL) are shown in (c) and (d), respectively. The results associated with
tip (side) collisions are shown by read open circles (blue crosses).
The neutron and proton numbers of the projectile and the target
are indicated by horizontal dotted lines. The frozen Hartree-Fock
treatment provides the Coulomb barrier height of V

tip
B � 410 MeV

and V side
B � 448 MeV for the tip and side collisions, respectively, for

this system.

energies. In the left column of Fig. 2(b), an example of the
reaction dynamics in the side collision at Ec.m. � 736 MeV
is shown. Nevertheless two nuclei collide so deeply and
once form a compact shape without clear dinuclear structure
(t = 0.53–2.13 zs), the system undergoes similar scission
dynamics (2.67–5.58 zs), as was observed for lower energies
[cf. the left column of Fig. 2(a)]. The results clearly indicate
that the elongated neck structure is difficult to develop on the
equatorial side of 238U, even at higher energies substantially
above the Coulomb barrier.

In stark contrast, in the tip collisions (red open circles),
dramatic collision energy dependence is observed. Namely, at
energy slightly above the Coulomb barrier (Ec.m. � 442 MeV),
the average number of nucleons shows a sudden jump, which
corresponds to transfer of about 10 neutrons and 6 protons
from 238U to 124Sn on average. Then it exhibits a prominent
plateau pattern in the figure around (NH � 136, ZH � 86)
and (NL � 84, ZL � 56) over a wide energy range of 442 �
Ec.m. � 552 MeV. The collision energy of Ec.m. � 465 MeV
that was investigated in the previous section actually belongs
to this energy range. The latter process may be deemed as
neck evolution dynamics under the influence of the quantum
shells around N = 82 for the lighter fragment [cf. Fig. 3(c)]
and Z = 82 for the heavier fragment [cf. Fig. 3(b)], although
the values do not coincide exactly with those magic numbers.
Note that in the plateau region the dynamics look similar to
those shown in the right column of Fig. 2(a).

This is not the end of the story: i.e., as the collision energy
increases further (Ec.m. � 552 MeV), the plateau actually
vanishes and even the direction of nucleon transfer reverses,

resulting in many-nucleon transfer from light to heavy nuclei,
which may be regarded as an inverse (antisymmetrizing) quasi-
fission process [16,28–30,32–34,36,86]. At maximum, trans-
fer of 16 neutrons and 11 protons from 124Sn to 238U is observed
at around Ec.m. � 736 MeV. The average primary reaction
products correspond roughly to 93

38Sr55 and 265
103Lr162 . The typical

reaction dynamics of the latter process are displayed in the
right column of Fig. 2(b). Since two nuclei collide so deeply,
complex surface vibration modes are induced (t = 1.07 zs).
As time evolves (t = 1.6–2.67 zs), a neck starts developing at
a position closer to the smaller subsystem (incident 124Sn in
the left side), and eventually ruptures (t = 3.15 zs), producing
a compact lighter fragment and a strongly deformed heaver
fragment. It seems that there is complex interplay between
density fluctuations, surface vibrations, and structural effects,
e.g., probable shell effects around Z = 40, in the observed
inverse quasifission process. It might also be related to dynamic
clustering phenomena which were recently investigated in
light systems within the TDHF approach [130]. To provide
a conclusive explanation, however, further investigations are
necessary, e.g., systematic calculations for other projectile-
target combinations at a range of collision energies, along
with investigations of structural properties of the composite
system.

It should be noted that the observed inverse quasifission
dynamics are different from those reported in, e.g., Ref. [34],
where strong shell effects of 208Pb induce nucleon transfer
from 238U to 248Cm, and Ref. [86], where a “tip-on-side”
configuration allows nucleon transfer from the tip of 232Th
to the side of 250Cf. It would be interesting to explore similar
inverse quasifission processes in, e.g., the 160

64 Gd96+248
96 Cm152

reaction, where shell effects of Z = 50 (and possibly
N = 82) or even Z = 40, as was observed in the present
system, may induce production of superheavy nuclei; e.g.,
64Gd + 96Cm → 40Zr + 120Ubn. If one could take advantage
of shell effects around (Z = 114 and N = 184) for heavier
fragments and (Z = 50 and N = 82) for lighter fragments,
the system may be able to access the island of stability: e.g.,
186
74 W112+248

96 Cm152 →136
56 Ba80+298

114Fl184. Of course, one has
to carefully investigate the survival probability of the primary
reaction products. One should also note that possible effects of
two-body dissipations may be present in collisions well above
the Coulomb barrier, which need to be addressed by, e.g.,
time-dependent density matrix (TDDM) [140] or molecular
dynamics approaches (see, e.g., [54–56,58,59,141–145], and
references therein). Nevertheless, the inverse quasifission
process, assisted by the expected large (co)variances of
fragment mass and charge distributions in such damped
collisions [13,15,75], may be a possible way to produce
yet-unknown superheavy nuclei.

Conclusions. Production of new neutron-rich heavy and
superheavy isotopes is one of the hot topics in the nuclear
physics community. In this paper, the reaction mechanism of
the 238U+124Sn reaction has been investigated based on the
microscopic framework of the time-dependent Hartree-Fock
(TDHF) theory. From the systematic TDHF calculations for
the reaction at various initial conditions, it has been demon-
strated that the dynamics of neck formation and breaking,
which in turn govern the amount and the direction of nucleon
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transfer, depend strongly on collision energy, quantum shells,
and nuclear orientations. When 238U collides from its tip on
124Sn, a thick and long neck is developed and a number of
nucleons inside the neck are transferred when it ruptures;
whereas the neck formation is substantially hindered when
238U collides from its side. The results have clearly shown
that the experimentally observed many-proton transfer from
238U to 124Sn, whose mechanism was a mystery for over
30 years, may most likely be associated with the neck
evolution dynamics in the tip collisions, followed by secondary
evaporation processes. Moreover, at energies substantially
above the Coulomb barrier, the emergence of novel reaction
dynamics has been observed, where transuranium nuclei are
produced as a result of many-nucleon transfer from 124Sn to
238U. The latter dynamics may be useful to create unknown
superheavy nuclei. Both results strongly suggest that the
neck evolution dynamics are vital degrees of freedom that
should be appropriately taken into account in the reaction
models for multinucleon transfer and quasifission processes
at low energies around the Coulomb barrier. Furthermore,
some symptom of proton-pair transfer in the 238U+110Pd

and 238U+124Sn reactions was reported in Ref. [146], which
can be addressed by extending the theoretical framework to
include the pairing correlations [147–156]. Lastly, it should
be emphasized that the TDHF approach can predict novel
reaction dynamics in a nonempirical way, as demonstrated in
this work. Therefore, further systematic TDHF calculations for
various projectile-target combinations and collision energies
have the potential to open new ways to reach neutron-rich
heavy and superheavy nuclei that have never been produced
to date.
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