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Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model
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The effective chiral model is extended by introducing the contributions from the cross-couplings between
isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density
content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters
at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation
of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from
different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the
radius at the canonical mass of the neutron star is within the empirical bounds.
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I. INTRODUCTION

Over the last decade or so there has been extensive work
and debate dedicated to understanding the behavior of nuclear
symmetry energy theoretically as well as experimentally, both
at low and high densities. This knowledge is helpful in under-
standing both finite nuclei and nuclear matter aspects such as
neutron stars (NSs) and supernovae dynamics, related to the
neutron-rich domain. It also helps in understanding the strong
forces at the fundamental level at higher densities. Currently
available data on nuclear masses and giant dipole polarizability
have constrained the values of symmetry energy and its slope
parameter to J ∼ 32 MeV and L ∼ 50−80 MeV [1–7] at
nuclear saturation density (ρ ∼ 0.16 fm−3). However, little is
known about their behavior at other densities. Motivated by
this, one theoretically tries to modify the basic interactions so
as to match with the experimental data wherever available. The
different variants of the relativistic mean field (RMF) models
could reach out to these values only when the contributions
from the cross-coupling of the ρ meson to the σ or ω mesons
were included [8–10].

Models based on chiral symmetry were introduced by
Gell-Mann and Levy [11]. The importance of chiral symmetry
in the study of nuclear matter was emphasized by Lee and Wick
[12]. However, the linear chiral sigma models fail to describe
properties of finite nuclei. In such models, the normal vacuum
jumps to a chirally restored abnormal vacuum (Lee-Wick
vacuum) [12,13]. This phenomenon is referred to as the chiral
collapse problem [14] and it can be overcome mainly in two
ways. One of the approaches is to incorporate logarithmic
terms of the scalar field in chiral potentials [15–19] which
prevents the normal vacuum from collapsing. This class of
chiral models is phenomenologically successful in describing
finite nuclei [20–23]. However, these models explicitly break
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the chiral symmetry and are divergent when chiral symmetry
is restored [15].

Alternatively, the chiral collapse problem is prevented
by generating the isoscalar-vector meson mass dynamically
via spontaneous symmetry breaking (SSB) by coupling the
isoscalar-vector mesons with the scalar mesons [24,25].
However, initially the main drawback of all these models was
the unrealistic high nuclear incompressibility K . Later on, in
several attempts, the higher order terms of the scalar meson
field [26–28] were introduced to ensure a reasonable K at satu-
ration density. The nonlinear terms in the chiral Lagrangian can
provide the three-body forces [29] which might have important
roles to play at high densities. The effective chiral model has
been used to study nuclear matter aspects such as matter at
low density and finite temperature [27], NS structure and
composition [30], and nuclear matter saturation properties. As
emphasized in Ref. [27], the model parameters are constrained
and related to the vacuum expectation value of the scalar field.
Since the mass of the isoscalar-vector meson is dynamically
generated, there are very few free parameters available to
adjust the saturation properties. However, this type of model
has a couple of drawbacks. It yields the symmetry energy slope
parameter, L ∼ 90 MeV, which is a little too large. Also, the
symmetry energy at 0.1 fm−3 baryon density is ∼22 MeV,
which is lower than the presently estimated value [1,31].

In the present work, we employ the effective chiral model in
which chiral symmetry breaks spontaneously. We extend this
model by including the cross-couplings of σ and ω mesons
with the ρ meson. We would like to see whether these terms
in the interaction help in fixing the values of symmetry energy
and its slope parameter at the saturation density. We study the
effects of the cross-couplings on the equation of state (EOS) for
asymmetric nuclear matter (ANM). The effects of the crustal
EOS on the mass and radius of a NS are evaluated using the
method suggested recently by Zdunik et al. [32].

The paper is organized as follows. We briefly describe the
model in Sec. II. In Sec. III we construct three different models
with no cross-coupling, the σ -ρ cross-coupling, and the
ω-ρ cross-coupling and corresponding results are discussed.
Conclusions are drawn in Sec. IV.

2469-9985/2017/96(3)/035803(8) 035803-1 ©2017 American Physical Society

https://doi.org/10.1103/PhysRevC.96.035803


MALIK, BANERJEE, JHA, AND AGRAWAL PHYSICAL REVIEW C 96, 035803 (2017)

II. MODEL

The complete Lagrangian density for the effective chiral
model which includes the various cross-coupling terms is
given by

L = L′ + L×, (1)

where

L′ = ψ̄B
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2
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ρx
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+ η2

(
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2
g2

ρ �ρμ · �ρμωμωμ

)
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Here ψB is the nucleon isospin doublet interacting with
different mesons σ, ω, and ρ, with the respective coupling
strengths gi , with i = σ,ω, and ρ. The b and c are the strengths
for self-couplings of scalar fields. The γ μ are the Dirac
matrices and τ are the Pauli matrices.L′ [Eq. (2)] is the original
Lagrangian given in Ref. [30]. Note that the potentials for the
scalar fields (π,σ ) are written in terms of a chiral invariant
field x given by x2 = π2 + σ 2.

In Eq. (3), L× is the new additional piece we add to the
original Lagrangian given in [30]. It contains cross-coupling
terms between ρ and ω and also between ρ and σ . The
coupling strength for σ -ρ and ω-ρ are given by η1g

2
ρ and

η2g
2
ρ respectively. The interaction of the scalar (σ ) and the

pseudoscalar (π ) mesons with the isoscalar-vector meson (ω)
generates a dynamical mass for the ω meson through SSB
of the chiral symmetry with scalar field attaining the vacuum
expectation value x0. Then the masses of the nucleon (m)
and the scalar (mσ ) and vector (mω) mesons are related to x0

(vacuum expectation of x) through

m = gσx0, mσ =
√

2λx0, mω = gωx0, (4)

where λ = (m2
σ −m2

π )
2f 2

π
and fπ = x0 is the pion decay constant,

which reflects the strength of SSB. In Eq. (3) when η1 �= 0
there is a cross-interaction between ρ and σ . Hence a fraction
of the ρ meson mass will come from SSB. The mass of the ρ
meson (mρ) in this model then will be related to the vacuum
expectation of x through

m2
ρ = m′

ρ
2 + η1g

2
ρx

2
0 . (5)

In the mean field treatment the explicit role of the pion mass is
ignored and hence mπ = 0 and the mesonic field is assumed
to be uniform, i.e., without any quantum fluctuation. Then,
the isoscalar-vector field ω is of the form ωμ = ω0δ

0
μ, where

δ0
μ is the Kronecker delta. Note that ω0 does not depend on

space-time but it depends on baryon density (ρ). The vector
field (ω), scalar field (σ ), and isovector field (ρ0

3 ) equations (in
terms of Y = x/x0 = m∗/m) are, respectively, given by
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The quantities ρ and ρS are the baryon and scalar densities
defined as

ρ = γ

(2π )3

∫ kF

0
d3k, (9)
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(2π )3
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0

m∗
√

m∗2 + k2
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where kF is the baryon fermi momentum and γ [for example,
γ = 4 for symmetric nuclear matter (SNM)] is the spin degen-
eracy factor. Cσ ≡ g2

σ /m2
σ , Cω ≡ g2

ω/m2
ω, and Cρ ≡ g2

ρ/m2
ρ

are the scalar, vector, and isovector coupling parameters. The
energy density (ε) and pressure (p) for a given baryon density
(in terms of Y = m∗/m) in this model are obtained from the
stress-energy tensor, and are given as
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p = 1

3π2

∑
kn,kp

∫ kF

0

k4

√
k2 + m∗2

dk − m2

8Cσ

(1 − Y 2)2

+ b

12Cσ Cω

(1 − Y 2)3 − c

16m2CσC2
ω

(1 − Y 2)4

+ 1

2
m2

ωω2
0Y

2 + 1

2
m2

ρ

[
1 − η1(1 − Y 2)(Cρ/Cω)

+ η2Cρω
2
0

](
ρ0

3

)2
. (12)

For SNM we have to set kn = kp and ρ0
3 = 0. As our present

knowledge of nuclear matter is mainly confined to normal
nuclear matter density (ρ0), coupling constants Cσ ≡ g2

σ /m2
σ

and Cω ≡ g2
ω/m2

ω are not free parameters in Eqs. (11) and (12).
To obtain Cσ and Cω, we solve the field equations (6)–(8) self-
consistently while satisfying the nuclear saturation properties.
Note that for different values of Y = x0/x = m∗/m, we get
different values of Cσ and Cω.
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After inclusion of cross-interactions L× [Eq. (3)] the
modified symmetry energy S(ρ) in this model is

S(ρ) = k2
F

6
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k2
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3
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3
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27π6m2
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, (13)

where m∗2
ρ = m2

ρ[1 − η1(1 − Y 2)(Cρ/Cω) + η2Cρω
2
0] and

kF = (3π2ρ/2)1/3. The coupling parameters Cρ , η1, and η2

can be evaluated numerically by fixing the symmetry energy
S(ρ) and its slope parameter L at saturation density (ρ0).
Without cross-couplings (η1 = η2 = 0) we revert back to the
Lagrangian given in [30].

The symmetry energy can be expanded in a Taylor series
around the saturation density (ρ0) as [33]

S(ρ) = J0 + Lε1 + 1

2
Ksymε2

1 + 1

6
Qsymε3

1 + O
(
ε4

1

)
, (14)

where ε1 = ρ−ρ0

3ρ
. The symmetry energy coefficient at ρ0 is J0

and the other coefficients are defined at ρ0 as [34]
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Similarly, the nuclear incompressibility (K) of ANM can
also be expanded in terms of δ at ρ0 as K(δ) = K + Kτδ

2 +
O(δ4), where δ = (ρn−ρp)

ρ
is the isospin asymmetry and Kτ is

given by [35]

Kτ = Ksym − 6L − Q0L

K
, (18)

where Q0 = 27ρ3 δ3(ε/ρ)
δρ3 |ρ0 in SNM.

III. RESULTS AND DISCUSSION

As can be seen from the preceding section, the EOSs of
SNM are determined by the coupling parameters Cσ ,Cω, b,
and c [Eqs. (11) and (12)]. The values of these coupling
parameters and resulting SNM properties at the saturation
density are listed in Table I. The values of the model parameters
lie in the stable region [36].

The density dependence of symmetry energy S(ρ) is
obtained by using three different variants of the present model.
We consider the case of no cross-coupling (NCC), the σ -ρ
cross-coupling (SR), and the ω-ρ cross-coupling (WR). Since
the NCC model has only one free parameter (i.e., Cρ) there is
not enough freedom to vary J0 and L independently. However,
the SR and WR models can provide some flexibility to adjust
them. Note that in comparison to the earlier models (i.e.,
NCC type), the inclusion of cross-couplings have important
implications on S(ρ). The effects of the cross-couplings grow

TABLE I. Model parameters determined from the properties
of SNM such as energy per nucleon E0 = −16 MeV, nuclear
incompressibility K = 247 MeV, and the nucleon effective mass
Y = m∗/m = 0.864 at the saturation density ρ0 = 0.153 fm−3. The
scalar and vector meson coupling parameters are Cσ = g2

σ /m2
σ

and Cω = g2
ω/m2

ω respectively. B = b/m2 and C = c/m4 are the
parameters for the higher order self-couplings of the scalar field with
m being the nucleon mass. The nucleon, ω meson, and σ meson
masses are 939, 783, and 469 MeV, respectively.

Cσ Cω B C

(fm2) (fm2) (fm2) (fm4)

7.057 1.757 −5.796 0.001

stronger at high densities which are relevant for the study of
NS properties.

In Table II we list the values of coupling constants
(Cρ, η1, and η2) and the resulting nuclear matter properties:
J0, L,Ksym,Qsym, and Kτ at the saturation density ρ0 and
J1, the symmetry energy at ρ1 = 0.1 fm−3. For the NCC,
Cρ is adjusted to yield J0 = 32.5 MeV. For the SR (WR)
model, the value of Cρ and η1 (η2) are adjusted to yield J0 =
32.5 MeV and L = 65 MeV. These values are compatible with
J0 = 31.6 ± 2.66 MeV and L = 58.9 ± 16 MeV obtained by
analyzing various terrestrial experimental information and
astrophysical observations [37]. It may be noted that the
value of J1 obtained for the NCC model shows a significant
deviation from 24.1 ± 0.8 MeV [1] and 23.6 ± 0.3 MeV [31]
obtained by analyzing the experimental data on isovector giant
resonances, whereas J1 is in good agreement in the SR and WR
models. The value of L obtained with the NCC model is also
a little too large. By inclusion of cross-couplings (SR and WR
models) the value of L is reduced by ∼ 25% keeping J0 fixed.

In what follows, we shall present our results for the density
dependence of symmetry energy, EOSs for the SNM and PNM,
and the NS properties obtained using the NCC, SR and WR
models. We shall also compare our EOSs and the density
dependence of symmetry energy with those calculated for a
few selected RMF models, namely, NL3 [38], IUFSU [39],
BSP [10], and BKA22 [9]. The NL3 model does not include

TABLE II. Coupling constants Cρ, η1, and η2 determined from
various symmetry energy elements. The mass of the ρ meson is
770 MeV. The values of Cρ are in units of fm2; η1 and η2 are
dimensionless. All symmetry energy elements are in units of MeV.

NCC SR WR

Parameters Cρ 5.14 12.28 6.08
η1 0 −0.79 0
η2 0 0 6.49

Nuclear matter J0 32.5 32.5 32.5
J1 22.30 24.49 23.68
L 87 65 65

Ksym −20.09 −59.16 −204.78
Qsym 58.73 356.11 −88.04
Kτ −434 −368 −513
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FIG. 1. Symmetry energy as a function of scaled density (ρ/ρ0)
is plotted for three different variants of the effective chiral model as
labeled by NCC, SR, and WR obtained in the present work and are
compared with those for a few selected RMF models: NL3, IUFSU,
BSP, and BKA22. The constraints on the symmetry energy from HIC
Sn+Sn [40], IAS [41], and ASY-EOS experimental data [42] are
also displayed. The inset shows the blown-up behavior of symmetry
energy at low densities.

any cross-coupling, the IUFSU and BSP models include the
cross-coupling between ω and ρ mesons, while the BKA22
model is obtained by including the coupling of ρ mesons with
σ mesons.

A lot of progress, both theoretical and experimental, has
been made to constrain symmetry energy at subsaturation
densities. We consider the data from three important sources:
simulations of low-energy heavy ion collisions (HICs) in 112Sn
and 124Sn [40]; nuclear structure studies involving excitation
energies to isobaric analog states (IASs) [41], and ASY-EOS
experiments at GSI [42]. The density dependences of the
symmetry energy for NCC, SR, WR, and selected RMF
models are displayed in Fig. 1. For comparison we have
depicted the HIC Sn+Sn [40], IAS [41], and ASY-EOS [42]
data in the figure. It is evident that in the absence of any
cross-couplings (NCC), the behavior of symmetry energy
as a function of density is not very compatible with those
obtained by analyzing diverse experimental data. Remarkably
the SR model satisfies all the above-mentioned constraints.
None of the considered RMF models satisfy all the symmetry
energy constraints. The effects of various cross-couplings on
the symmetry energy grow stronger at ρ > ρ0. The symmetry
energy is effectively low in the WR model compared to NCC
and SR models. Thus one may expect significant differences
in the properties of NSs obtained for the SR and WR models.
This will be explored later in the paper.

The symmetry energy elements L and Ksym predominantly
determine the value of Kτ [Eq. (18)] which is required to
evaluate the incompressibility of ANM. In Fig. 2 we compare
our values of Kτ with various Skyrme and RMF model
predictions in a K vs Kτ plot [43]. The dashed lines represent
the constraints on Kτ from −840 to − 350 MeV [44–46] and
K from 220 to 260 MeV [47] which have been determined

FIG. 2. K and Kτ from different models as labeled in [43,48] are
compared with our models (NCC, SR, and WR). The vertical and
horizontal dashed lines represent the empirical ranges for K and Kτ

respectively.

using various experimental data on isoscalar giant monopole
resonances. All three models NCC, SR, and WR satisfy these
bounds of K and Kτ . Note that the models with a larger
nuclear incompressibility (K) tend to have lower Kτ values.
As can be seen from Fig. 2, several Skryme models but only
three RMF models (NLC, DDME1, and DDME2) satisfy the
bounds for K and Kτ simultaneously. The values of L for the
nonlinear model NLC with constant coupling is 107.97 MeV
[49] and that for the DDME models with density-dependent
coupling constants are 51–55 MeV [49]. The value of L for the
NLC model is very large compared to the presently accepted
range. We have also looked into the values of Kτ and K
for several nonlinear RMF models [50]. Among them a few
models (BSR type) have L between 60 and 70 MeV and satisfy
the constraints on K and Kτ . These models include both σ -ρ
and ω-ρ cross-couplings.

In Fig. 3 we plot the low-density EOS for PNMs for all three
of our models (NCC, SR, and WR). The low-density behavior
of energy per neutron for the SR model is in good agreement
with the results obtained by microscopic calculations [51,52]
as shown by the shaded region. The PNM EOS for the NCC
and WR models do not have much overlap with the shaded
region. The results for the few selected RMF models are
also displayed in the figure. Only the BSP model shows
marginal overlap with the shaded region. In Ref. [53] two
different families of systematically varied models with σ -ρ
and ω-ρ cross-couplings have been employed to study the
low-density behavior of asymmetric nuclear matter. It was
found that none of the models with σ -ρ cross-coupling satisfy
the low-density behavior of the PNM as predicted by Hebeler
et al. [52]. However, this constraint on the PNM EOS at
low densities is satisfied by a couple of RMF models with
ω-ρ cross-coupling having L ∼ 45−65 MeV. The EOS with
the current parametrization is compared in Fig. 4 with the
experimental flow data obtained from the HIC [54] for SNM
and PNM EOSs. The latter one is constructed theoretically
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FIG. 3. Energy per neutron as a function of scaled neutron density
(ρn/ρ0) for three different variants of the effective chiral model as
labeled by NCC, SR, and WR obtained in the present work and for a
few RMF models NL3, IUFSU, BSP, and BKA22 are compared with
microscopic calculations [51,52] as shown by the shaded region.

with two extreme parametrizations, the weakest (Asy soft)
and strongest (Asy stiff) of symmetry energy as proposed in
[55] and as reported in [54]. The SNM EOS is identical for
all three of our models, since the SNM properties are same.
It is passing well through the experimental HIC data. In the
case of the PNM, the resulting EOSs for NCC and SR models
pass through the upper end of HIC-Asy soft and lower end
of HIC-Asy stiff, whereas the PNM EOS for the WR model
passes through the HIC-Asy soft only. As can be seen from
Fig. 4, the influence of cross-couplings in the effective chiral

FIG. 4. Pressure as a function of scaled density (ρ/ρ0) for the
SNM (left) and the PNM (right). The SNM EOSs for the NCC, SR,
and WR models are exactly the same and labeled as “this work.”
For comparison, the SNM and PNM EOSs for a few RMF models
NL3, IUFSU, BSP and BKA22 are displayed. The SNM and PNM
EOSs shown by shaded regions are taken from Ref. [54] (see text for
details).

model at high density is quite strong in comparison to RMF
models with similar type of cross-couplings. The PNM EOS
for the WR model is quite softer than BSP and IUFSU at high
densities. Similar differences can also be seen in the case of
SR and BKA22 models.

We extend our analysis to study the mass-radius relationship
for a static NS composed of β equilibrated charge neutral
matter. The EOS for the core is obtained from the effective
chiral model. The effects of crustal EOS at low densities on
the mass and radius of the NS are considered in two different
ways. We model the crust EOS using the BPS EOS [56] in the
density range ρ ∼ 4.8 × 10−9 to 2.6 × 10−4 fm−3. The crust
and core are joined using the polytropic form [57] p(ε) = a1 +
a2ε

γ , where the parameters a1 and a2 are determined in such
a way that the EOS for the inner crust for a given γ matches
with that for the inner edge of the outer crust at one end and
with the edge of the core at the other end. The polytropic index
γ is taken to be equal to 4/3. For γ = 4/3, the values of radius
R1.4 corresponding to the canonical mass of the NS for the
NL3 [57] and IUFSU [58] RMF models are within ∼2% in
comparison to those obtained by treating the inner crust in the
Thomas Fermi approach [59]. Alternatively, we estimate the
contributions of the crust EOS to the NS radius and mass using
the core-crust approximation approach given in [32] referred
to hereafter as the ZFH method. This method enables one to
estimate total mass and radius of a NS including the crust
contributions very accurately for NS masses larger than 1M	.
In the ZFH method the radius and mass of the NS are given by

R = Rcore

1 − (α − 1)(Rcorec2/2GM − 1)
, (19)

M = Mcrust + Mcore, (20)

with

Mcrust = 4πPccR
4
core

GMcore

(
1 − 2GMcore

Rcorec2

)
. (21)

In the above equations α = (μcc/μ0)2, μcc, and μ0 are the
chemical potential at transition density (ρcc) and at the neutron
star surface, respectively. Rcore and Mcore are the radius and
mass of the NS core. Pcc is pressure at transition density. The
transition density (ρcc) is mostly in the range 0.4ρ0 to 0.6ρ0 for
L typically ranging from 30 to 120 MeV [60]. In the present
work we have taken ρcc/ρ0 = 0.3, 0.4, and 0.5.

Comparison of the results of the two approaches is given in
Table III. The maximum mass of the NS is sensitive to neither
the methods used to estimate the crust effects nor the choice
of transition density. The WR model, which includes the ω-ρ
cross-coupling, does not satisfy the maximum mass constraint
as imposed by PSR J0348 + 0432 (M = 2.01 ± 0.04M	)
[61]. This disfavors the WR model. The values of R1.4 obtained
using the BPS EOS for the outer crust and polytropic EOS for
the inner crust are a little too large compared to those for the
ZFH method. We find that by including the σ -ρ coupling (SR)
R1.4 are smaller compare to the NCC model which does not
include any cross-coupling term. The NS radius is sensitive
to transition density. Using the strong correlation between
transition density (ρcc) and L, we found the values of ρcc to
be 0.061 fm−3 (∼ 0.4ρ0) for NCC and 0.077 fm−3 (∼ 0.5ρ0)
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TABLE III. Maximum mass and radius of a NS composed of
β-equilibrated matter. The total mass and radii following the ZFH
method are obtained by using Eqs. (19)–(21). These are compared
with the ones calculated from the BPS and polytropic EOSs for the
outer and inner crusts, respectively. ρcc/ρ0 is the scaled transition
density. Mmax, Rmax, and R1.4 are the NS maximum mass, radius at
maximum mass, and the radius at 1.4M	, respectively.

ρcc
ρ0

Model BPS+polytropic EOS ZFH method
Mmax Rmax R1.4 Mmax Rmax R1.4

(M	) (km) (km) (M	) (km) (km)

NCC 1.97 11.55 13.31 1.97 11.48 13.12
0.3 SR 1.97 11.24 12.75 1.97 11.20 12.71

WR 1.84 10.74 12.22 1.84 10.67 12.03

NCC 1.97 11.64 13.57 1.97 11.48 13.12
0.4 SR 1.97 11.28 12.87 1.97 11.21 12.72

WR 1.84 10.83 12.41 1.84 10.67 12.03

NCC 1.97 11.77 13.90 1.97 11.50 13.13
0.5 SR 1.97 11.35 13.04 1.97 11.24 12.72

WR 1.84 10.92 12.62 1.84 10.67 12.03

for SR and WR models, respectively [59]. The mass-radius
relationships for the NS obtained by all of our models using
the respective values of the transition densities are plotted in
Fig. 5. The dashed lines are obtained using the ZFH method in
which the effects of the crust EOS were approximated and
the solid lines are obtained using BPS and the polytropic
EOSs for the outer and inner crusts, respectively. It is found
that the value of R1.4 is decreased by ∼0.5 km in the SR
model compared to the NCC model. The R1.4 of SR is
consistent with 11.9 ± 1.22 km (90% confidence) obtained
by constraining symmetry energy at saturation density from
various experimental information and theories [34]. The NS
maximum masses Mmax = 2.79M	, 1.94M	, 2.02M	, and
2.04M	 and the radii R1.4 = 14.66, 12.49, 12.64, 13.28 km

FIG. 5. Mass-radius relationships for the NCC, SR, and WR
models. The effects of the crustal EOSs are incorporated by using
explicitly the BPS and polytropic EOSs (solid lines) at low densities
and alternatively using the ZFH method (dashed lines).

for the selected RMF models NL3, IUFSU, BSP, and BKA22,
respectively. The RMF models such as IUFSU and BSP with
the ω-ρ cross-coupling included readily yield Mmax ∼ 2M	,
since the softening of the EOS due to the inclusion of this
cross-coupling is not as strong as in the case of the effective
chiral model.

Results obtained for the SR model can be summarized in
the following way. It yields symmetry energy J0 = 32.5 MeV,
symmetry energy slope parameter L = 65 MeV, nuclear
incompressibility K = 247 MeV, and the asymmetry term
of nuclear incompressibility Kτ = −368 MeV at saturation
density ρ0 = 0.153 fm−3. It also yields symmetry energy J1 =
24.49 MeV at density 0.1 fm−3, NS maximum mass 1.97M	,
and radius R1.4 = 12.72 km. All these values are within
the presently accepted range. The SR model also satisfies
all the discussed constraints from microscopic calculations
for low-density PNM EOS, density dependence of symmetry
energy, HIC data for SNM EOS, and HIC-Asy stiff data for
PNM EOS.

The contributions of the exotic degrees of freedom, such as
hyperons and kaons, to the properties of NSs are not considered
in the present work. In general, the presence of strange particles
softens the EOS and reduces the NS maximum mass. In
particular, the inclusion of hyperons in the effective chiral
model (i.e., NCC type) tends to reduce the NS maximum
mass by ∼ 0.3M	 [30]. The influence of hyperons on the
NS properties, however, are very sensitive to the choice of the
meson-hyperon couplings. It has been shown that a sizable
fraction of hyperons may exist in the NS with a mass of 2M	,
provided a strong, repulsive, hyperon-hyperon interaction is
introduced through strange φ mesons [62–64].

IV. CONCLUSION

We have extended the effective chiral model by including
the contributions from σ -ρ and ω-ρ cross-couplings. The
inclusion of cross-couplings involving the ρ meson has helped
to improve the overall behavior of the density dependence of
the symmetry energy.

We have discussed three different variants of the effective
chiral model in this paper. The models include no cross-
coupling (NCC), σ -ρ cross-coupling (SR), and ω-ρ cross-
coupling (WR). The NCC model yields the value of symmetry
energy slope parameter (L = 87 MeV) which is a little too
large and symmetry energy at crossing density 0.1 fm−3 (J1 =
22.3 MeV) which is low compared to presently estimated
values. The low-density behavior of PNM EOS for both
NCC and WR models does not match well with the range
of values proposed by microscopic calculations [51,52]. The
WR model gives the NS maximum mass to be 1.86M	
which is much less than the mass observed for the PSR
J0348 + 0432 (M = 2.01 ± 0.04M	) [61].

For the SR model, the overall behavior of the density
dependence of the symmetry energy agrees better with IAS,
HIC Sn+Sn, and ASY-EOS data than those for the NCC and
WR models. The symmetry energy at the saturation density and
at the crossing density (ρ1 = 0.1 fm−3) are in harmony with
the available empirical data. The value of the symmetry energy
slope and the curvature parameters are in accordance with
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those deduced from the diverse set of experimental data for
the finite nuclei. The pure neutron matter EOS at subsaturation
densities passes well through the range of values suggested by
the microscopic models [51,52]. The NS maximum mass is
1.97M	 which is consistent with the observational constraint.
The value of R1.4 is within the empirical bounds. The SR model
satisfies all the discussed constraints, which suggests that the
inclusion of σ -ρ cross-coupling in the effective chiral model is
indispensable. We have also compared our results with a few
selected RMF models. In general, it is found that the effects

of various cross-couplings within the RMF models are weaker
than those in the effective chiral model. These effects are more
prominent for the models with the ω-ρ cross-coupling.
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