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Regge phenomenology in π 0 and η photoproduction
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The γN → π 0N and γN → ηN reactions at photon beam energies above 4 GeV are investigated within
Regge models. The models include t-channel exchanges of vector (ρ and ω) and axial-vector (b1 and h1) mesons.
Moreover, Regge cuts of ρP, ρf2, ωP, and ωf2 are investigated. A good description of differential cross sections
and polarization observables at photon beam energies from 4 to 15 GeV can be achieved.
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I. INTRODUCTION

Meson photo- and electroproduction processes are closely
related to the long-range structure and dynamics of hadrons.
The phenomenology of these reactions changes at center
of mass energies of about W ≈ 3 GeV, roughly separating
resonance and continuum regions.

Below W ≈ 3 GeV, which corresponds to photon beam
energies below Eγ ≈ 4 GeV, the reaction dynamics is char-
acterized by the excitation of individual s-channel baryon
resonances with definite quantum numbers on top of a smooth,
nonresonant background. Within the last two decades, new
data on photoinduced meson production has become the major
source of information for baryon spectroscopy. At the electron
accelerator labs ELectron Stretcher Accelerator (ELSA),
Thomas Jefferson National Accelerator Facility (JLab), and
Mainz Microtron extensive developments in beam and target
polarization techniques have been undertaken, and an enor-
mous amount of data with different types of polarization has
been obtained, especially for π, η, and K photoproduction [1].
Above this resonance region, at W � 3 GeV, the reaction
dynamics changes and can be described most effectively by
particle (Reggeon) exchanges in the crossed t channel [2].
Experimental data on π and η photoproduction in this high-
energy region were mainly measured in the 1970s at DESY [3–
5] and Stanford Linear Accelerator Center (SLAC) [6], but
only a limited amount of target and recoil polarization data is
available. Only recently, the new GlueX experiment in Hall D
at JLab started data taking, and first results on differential cross
sections with a linearly polarized photon beam at Eγ = 8.7
GeV were already obtained [7].

The resonance and the continuum regions are, of course,
not independent from each other but analytically connected via
dispersion relations [8–11] or finite energy sum rules [12–14].
The motivation for this study is therefore twofold. First, with a
view to new results on unpolarized cross sections and photon
beam asymmetries expected from GlueX in the next years,
we want to obtain a deeper understanding of the high-energy
Regge phenomenology.

Second, we consider a good description of the high-energy
data as an important prerequisite for a high-quality baryon
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resonance analysis at lower energies. In particular, in η, η′,
and K photoproduction a good knowledge about Regge
contributions to nonresonant background amplitudes is crucial
for a reliable extraction of resonance parameters.

The main features of our models are Regge trajectories
from ω and ρ vector mesons and Regge cuts arising from the
exchange of two Reggeons. We compare different approaches
to available high-energy data for π0 and η photoproduction
at laboratory energies above 4 GeV. We show that particular
polarization observables, such as photon beam and target
asymmetries or recoil polarization, are crucial to distinguish
between the different models.

This paper is organized as follows. In Sec. II we briefly
introduce kinematics, polarization observables, and photopro-
duction amplitudes. In Sec. III we compare different Regge
approaches with Regge poles and Regge cuts and discuss the
various trajectories. In Sec. IV we compare different models to
high-energy data of π0 and η photoproduction for unpolarized
cross sections and polarization observables.

II. KINEMATICS, OBSERVABLES, AND AMPLITUDES

A. Kinematics

Let us first define the kinematics of π and η photoproduc-
tion reactions on a nucleon,

γ (k) + N (pi) → π/η(q) + N ′(pf ), (1)

where the variables in brackets denote the four-momenta of
the participating particles. The familiar Mandelstam variables
are

s = (pi + k)2, t = (q − k)2, u = (pi − q)2, (2)

where the sum of the Mandelstam variables is given by the sum
of the external masses. The crossing symmetrical variable ν is
related to the photon laboratory energy Elab

γ by

ν = (s − u)

4MN

= Elab
γ + t − μ2

4MN

, (3)

where MN and μ are nucleon and meson masses (π or η),
respectively.

B. Observables

In photoproduction of pseudoscalar mesons a total of 16
polarization observables can be measured, which include the
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FIG. 1. Kinematics for π 0 or η photoproduction and frames for
beam and target polarization.

unpolarized cross section, 3 single-polarization and 12 double-
polarization observables. By considering only beam and target
polarization, the cross section depends on 8 observables, which
can be separated by circular, P�, and linear, PT , photon beam
polarization and the three components Px,Py,Pz of the target
polarization vector:

dσ

d	
= σ0{1 − PT 
 cos 2ϕ

+Px(−PT H sin 2ϕ + P�F )

−Py(−T + PT P cos 2ϕ)

−Pz(−PT G sin 2ϕ + P�E)}. (4)

The z axis is pointing into the direction of the incoming photon.
The ŷ direction is perpendicular to the reaction plane, ŷ =
ẑ × q̂, defined by the incoming photon and the direction of
the outgoing meson q̂. The x axis is given by x̂ = ŷ × ẑ. The
orientation of the linear polarization vector of the photon beam
relative to the production plane is given by the angle ϕ; see
Fig. 1. Expressions of the polarization observables in terms of
amplitudes are given in the appendixes.

C. Invariant amplitudes and fixed-t dispersion relations

The electromagnetic current for pseudoscalar meson pho-
toproduction can be expressed in terms of four invariant
amplitudes Ai(ν,t) [15],

Jμ =
4∑

i=1

Ai(ν,t)Mμ
i , (5)

with the gauge-invariant four-vectors M
μ
i given by

M
μ
1 = − 1

2 iγ5(γ μk − kγ μ),

M
μ
2 = 2iγ5

[
P μk

(
q − 1

2k
) − (

q − 1
2k

)μ
kP

]
,

M
μ
3 = −iγ5(γ μkq − kqμ),

M
μ
4 = −2iγ5(γ μkP − kP μ) − 2MNM

μ
1 , (6)

where P μ = (pμ
i + p

μ
f )/2.

The invariant amplitudes Ai(ν,t) have definite crossing
symmetry and satisfy dispersion relations at fixed t ,

ReAi(ν,t) = A
pole
i (ν,t) + 2

π
P

∫ ∞

νthr

dν ′ ν ′ ImAi(ν ′,t)
ν ′2 − ν2

, (7)

N NN NN N

(a) (b) (c)

FIG. 2. t-channel contributions to η photoproduction from single
poles (a), Regge poles (b), and Regge cuts (c). An example for ρ

and ω meson exchange and P and f2 mesons for rescattering of two
Reggeons.

for the crossing-even amplitudes, A1,2,4, and

ReA3(ν,t) = A
pole
3 (ν,t) + 2ν

π
P

∫ ∞

νthr

dν ′ ImA3(ν ′,t)
ν ′2 − ν2

(8)

for the crossing-odd amplitude A3 [10].

III. t-CHANNEL EXCHANGES

A. Vector and axial-vector poles in the t channel

The amplitudes of pseudoscalar meson photoproduction
typically contain contributions from nucleon resonance ex-
citations and a nonresonant background from Born terms
and t-channel meson exchanges. In the current approach we
want to consider only amplitudes at high energies beyond
the nucleon resonance region. Furthermore, we neglect Born
terms, which are practically zero for η photoproduction [16].
Also in π0 photoproduction they only play a minor role at
forward angles.

We concentrate on t-channel contributions and will first
consider the exchange of vector and axial-vector mesons in
terms of single-pole Feynman diagrams; see Fig. 2(a) as an
example for ρ and ω meson exchange.

Expressed in terms of invariant amplitudes Ai , these t-
channel Feynman diagrams obtain the simple form

A1(t) = e λV gt
V

2μMN

t

t − M2
V

, (9)

A′
2(t) = −e λA gt

A

2μMN

t

t − M2
A

, (10)

A3(t) = e λA gv
A

μ

1

t − M2
A

, (11)

A4(t) = −e λV gv
V

μ

1

t − M2
V

, (12)

where λV (A) denotes the electromagnetic coupling of the vector
(V ) or axial (A) vector mesons with masses MV (A). The
constants g

v(t)
V (A) denote their vector (v) or tensor (t) couplings

to the nucleon. To separate the vector and tensor contributions
from individual mesons, we followed Ref. [14] and introduced
the amplitude

A′
2(t) = A1(t) + t A2(t), (13)

which has only contributions from the tensor coupling of an
axial-vector exchange.
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TABLE I. Isospin I, G-parity, spin J , parity P , and charge conjugation C quantum numbers for pseudoscalar, vector, and axial-vector
mesons.

γ π 0 η ρ(770) ω(782) φ(1020) b1(1235) h1(1170) a1(1260) f1(1285)

IG 0,1 1− 0+ 1+ 0− 0− 1+ 0− 1− 0+

J PC 1−− 0−+ 0−+ 1−− 1−− 1−− 1+− 1+− 1++ 1++

There are three vector mesons ρ, ω, φ and four axial vector
mesons b1, h1, a1, f1 that could be used in our approach. The
details on the quantum numbers are listed in Table I. For the
nucleon vertex, the axial-vector coupling γ μγ5 is C-even and
the pseudotensor coupling σμνγ5 is C-odd [17]. Therefore,
owing to charge conjugation conservation, the C-odd b1 and
h1 mesons couple to the nucleon via the tensor coupling only
and can contribute to the A2 (A′

2) amplitude [see Eqs. (10)
and (13)], whereas C-even a1 and f1 mesons couple to the
nucleon via the vector coupling only and, in principal, can
contribute to the A3 amplitude. However, the quantum numbers
IG should be equal to 0− or 1+ for π0 and η photoproduction on
the nucleon. Consequently, a1(IG = 1−) and f1(IG = 0+) are
excluded in our case. The a1 is a good candidate for charged-
pion photoproduction and f1 for the γp → ρ0p channel [10].
Therefore, there is no candidate left among vector and axial-
vector mesons which could contribute to A3.

The φ meson could, in principle, contribute to A1 and A4.
However, being practically a pure strange quark-antiquark
state, a very small coupling to the nucleon is expected and
it is commonly neglected in π0 and η photoproduction.

The invariant amplitudes (9)–(12) contain only the product
of electromagnetic and hadronic coupling constants. We have
fixed one of them and determined the second one by the fit.
In general, the values for the strong coupling constants gv

and gt are not well known, especially for the axial-vector
mesons. Results for these constants from different analyses
and models are summarized in Ref. [18], Table IV. Therefore,
in our present work, we fix the electromagnetic couplings
λV (A). For π0 and η photoproduction they can be determined
from the radiative widths �V (A) of the decays V (A) → π0γ
and V (A) → ηγ , respectively,

�V (A) = α
(
M2

V (A) − μ2
)3

24 M3
V (A) μ

2
λ2

V (A), (14)

where α is the fine-structure constant. For λV π0γ we used the
decay widths �ρ→π0γ = 91.0 keV and �ω→π0γ = 703.0 keV.
In case of the η meson, we determined λV ηγ from
�ρ→ηγ = 50.6 keV and �ω→ηγ = 3.9 keV [19]. For the b1

meson only the electromagnetic width for the charged decay
�b1→π±γ = 227 keV is known [19]. We use this value to
calculate λb1 for the neutral decay as well, because chiral
unitary models predict practically the same electromagnetic
couplings of the b1 meson for both charged and neutral
pion decays [20]. Unfortunately, there are no data for the
decay b1 → ηγ . In this case, we arbitrarily fixed ληγ = 0.1,
which is close to the value obtained for the πγ decay. All
electromagnetic coupling constants for the ρ, ω, and b1

mesons used in the present work are listed in Table IV. For

the contribution of the h1 meson we follow Ref. [14], which
suggests a fraction of 2/3 of the b1 contribution.

B. Regge trajectories and t-channel Regge amplitudes

Mesons fall into linear trajectories when their spin is plotted
against the squared meson masses (Chew-Frautschi plot).
These Regge trajectories are usually parametrized as

α(t) = α0 + α′t ; (15)

see, e.g., Ref. [21]. Examples of such trajectories are shown in
Fig. 3(a).

It can be assumed that in photoproduction reactions not only
single mesons but whole Regge trajectories are exchanged in
the t channel, as illustrated in Fig. 2(b). In our models we
include the ρ, ω, φ, and b1 trajectories shown in Fig. 3(a).
The trajectory for the h1 is assumed to be the same as for
the b1 furthermore, trajectories for tensor mesons ρ2 and
ω2 are shown in the same plot. These mesons, assuming
the same masses for both, were predicted in a relativized
quark model [24] for two states: JPC = 2−− with mass of
1.7 GeV and JPC = 4−− with mass of 2.34 GeV. The trajectory
drawn through these two points is shown by the magenta
line. According to their quantum numbers, the ρ2 and ω2

could be good candidates for the A3 amplitude in π0 and
η photoproduction. However, there is no clear experimental
evidence for the existence of these states. They were found
in a partial wave analysis of Refs. [22,23] and result in much
steeper trajectories, which are shown in Fig. 3(a) by the dashed
magenta line for the ρ2 and dash-dotted magenta line for the ω2.

Technically, the t-channel exchange of Regge trajectories
is done by replacing the single meson propagator by the
expression

1

t − M2
⇒

(
s

s0

)α(t)−1
π α′

sin[πα(t)]

S + e−iπα(t)

2

1

�[α(t)]
,

(16)

where M is the mass of the Reggeon, S is the signature of the
Regge trajectory, and s0 is a mass scale factor, commonly
set to 1 GeV2. The � function �[α(t)] is introduced to
suppress additional poles of the propagator. The signature S is
determined as S = (−1)J for bosons and S = (−1)J+1/2 for
fermions. So S = −1 for the vector and axial-vector mesons,
and S = +1 for tensor mesons. If S = −1 and α(t) = 0,
then both real and imaginary parts vanish. This results in a
characteristic dip of differential cross sections of γp → π0p
and γp → ηp reactions at t ≈ −0.5 GeV2, which is not
observed in experimental data; see Fig. 4.

To avoid problems with the dip at α(t) = 0, differ-
ent approaches have been developed; see, for example,
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FIG. 3. Regge trajectories: (a) ρ, black; ω, red; φ, blue; b1 and h1, green; ρ2 and ω2, magenta (dashed and dash-dotted magenta lines are
ρ2 and ω2 of Refs. [22,23]); (b) f2, red; P, magenta; ρf2, black solid; ωf2, blue dashed; ρP, black solid; ωP, black dashed.

Refs. [14,16,25–29]. Here we focus on two of them, which
are described in the following sections.

C. Regge cuts

Regge cuts were first considered in the early work of
Refs. [25,26,30], where their important role was shown to
fill in the dip in the differential cross sections of π0 and
η photoproduction. A full discussion of Regge cuts can be
found in Ref. [31]. In 2016 Donnachie and Kalashnikova [28]
revisited the Regge cuts and developed a new approach, where
in addition to Regge trajectories of ρ, ω, and b1 exchange,
Regge cuts from rescattering ρP,ρf2 and ωP,ωf2 also were
added, where P is the Pomeron with quantum numbers of
the vacuum 0+(0++) and f2 is a tensor meson with quantum
numbers 0+(2++). These Regge cuts can be considered as
contracted box diagrams, where two particles are exchanged;
see Fig. 3(c).

The exchange of two Reggeons with linear trajectories

αi(t) = αi(0) + α′
i t, i = 1,2, (17)

10
-2

10
-1

1

0 0.5 1

)a( )a(

dσ
/d

t [
μb

/G
eV

2 ]

-t [GeV2]

)b( )b(

-t [GeV2]

10
-2

10
-1

0 0.5 1

FIG. 4. The differential cross sections of γp → π 0p (a) and
γp → ηp (b) reactions at Eγ = 6 GeV. Experimental data are from
Ref. [6] (a) and Ref. [3] (b). The solid line is a calculation with ρ and
ω exchange in the t channel.

yields a cut with a linear trajectory αc(t) [30],

αc(t) = αc(0) + α′
c t, (18)

where

αc(0) = α1(0) + α2(0) − 1,

α′
c = α′

1α
′
2

α′
1 + α′

2

. (19)

The trajectories for f2 and P are shown in Fig. 3(b) together
with four cut trajectories ρP, ωP (black solid and dashed
lines) and ρf2, ωf2 (blue solid and dashed lines) calculated by
Eqs. (17)–(19). Parameters of the Reggeon and cut trajectories
used in the present work are collected in Table II.

All four Regge cuts can contribute to vector and axial-vector
exchanges and can be written in the following form:

Dcut =
(

s

s0

)αc(t)−1

e−iπαc(t)/2 edct . (20)

In total, the vector meson propagators are replaced with

DV = DV + cV PDV P + cVf2DVf2 , V = ρ,ω, (21)

TABLE II. The Reggeon and cut trajectories used in the present
work.

Reggeon or cut α(t)

ρ 0.477 + 0.885t

ω 0.434 + 0.923t

b1, h1, −0.013 + 0.664t

ρ2, ω2 −0.235 + 0.774t

f2, 0.671 + 0.817t

P 1.08 + 0.25t

ρf2 0.148 + 0.425t

ωf2 0.106 + 0.436t

ρP 0.557 + 0.195t

ωP 0.514 + 0.197t
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TABLE III. Vector and axial-vector contributions to invariant
amplitudes.

Dirac Invariant Reggeons
η J P coupling amplitudes and cuts

Natural 1−,3−, . . . gv
V γ μ A4 ρ,ω,ρP,ωP,ρf2,ωf2

Natural 1−,3−, . . . gt
V σμν A1 ρ,ω,ρP,ωP,ρf2,ωf2

Unnatural 2−,4−, . . . gv
Aγ μγ5 A3 ρ2,ω2,ρf2,ωf2

Unnatural 1+,3+, . . . gt
Aσμνγ5 A′

2 b1,h1,ρf2,ωf2

and the axial-vector meson propagators are replaced with

DA = DA +
∑

V =ρ,ω

(c̃V PDV P + c̃Vf2DVf2 ), A = b1,h1,

(22)
where the coefficients cV P,cVf2 are for natural parity cuts and
c̃V P,c̃Vf2 for unnatural parity cuts and are obtained by a fit to
the data.

In detail, the invariant amplitudes will be changed in the
following way:

λρg
v,t
ρ

1

t − M2
ρ

→ λρg
v,t
ρ [Dρ(s,t) + cρPDρP(s,t)

+ cρf Dρf (s,t)],

λωgv,t
ω

1

t − M2
ω

→ λωgv,t
ω [Dω(s,t) + cωP DωP(s,t)

+ cωf Dωf (s,t)],

λb1g
t
b1

1

t − M2
b1

→ λb1g
t
b1

Db1 (s,t) + λρg
t
ρ [c̃ρPDρP(s,t)

+ c̃ρf2Dρf2 (s,t)] + λωgt
ω [c̃ωPDωP(s,t)

+ c̃ωf2Dωf2 (s,t)]. (23)

In practical calculations, it turns out that the axial-vector
Regge pole contributions, proportional to DA, can be ne-
glected, but the axial vector Regge cuts arising from ρ and
ω together with P and f2 are very important, in particular for
polarization observables, as the photon beam asymmetry 
.

The Regge cuts also allow us to describe a long standing
problem of suitable candidates for an A3 amplitude: ρf2 and
ωf2 satisfy all conservation law requirements. In Table III
details of the invariant amplitude structure of the t-channel
exchanges are given. Here, η is a naturality, determined as
η = P (−1)J . For the ρP and ωP cuts, η = +1, and these cuts
do not contribute to the A3 amplitude. Therefore, we set the
coefficients c̃ρP and c̃ωP in Eq. (23) equal to zero.

D. Regge amplitudes and fixed-t dispersion relations

The formulation of Regge amplitudes as given in the
Sec. III.B does not satisfy fixed-t dispersion relations. The
reason is mainly given by the ansatz in Eq. (16), where
the energy dependence is proportional to s[α(t)−1], violating
crossing symmetry. As an alternative ansatz we also used the
parametrization of Ref. [14] [Joint Physics Analysis Center

TABLE IV. Coupling constants for π 0 and η photoproduction
used in Fit I as fixed values.

Reggeon λπ0γ ληγ gv gt

ρ 0.115 0.910 2.7 4.2
ω 0.310 0.246 14.2 0
b1 0.091 0.1 0 −7.6

(JPAC) model]:

DV,A = −βi(t)
π α′

V,A(e−iπαV,A(t) − 1)

2 sin[παV,A(t)]

(
ri

V,Aν
)αV,A(t)−1

.

(24)
Here the Mandelstam variable s is replaced with the

crossing variable ν, and the � function in the denominator of
Eq. (16) is replaced with a more general residue βi(t), where
i = 1,2,3,4 is the index of the invariant amplitudes. ri

V,A are
scale parameters of dimension GeV−1. Each exchange, V or
A, has its own scale parameter.

In Ref. [14] residues for V = ρ,ω and A = b,h are given,

βV
1 (t) = gV

1 t
−πα′V

2

1

�[αV (t) + 1]
, (25)

βV
4 (t) = gV

4
−πα′V

2

1

�[αV (t)]
, (26)

β ′A
2 (t) = gA

2 t
−πα′A

2

1

�[αA(t) + 1]
, (27)

where the prime in β ′
2 denotes the fact that this is the A′

2 residue,
which explains the factor of t . The factor −πα′/2 ensures
the correct on-shell couplings. The functions 1/�(α + 1) and
1/�(α) are both equal to 1 at the pole α = 1; however, they
differ in the physical region.

As possible candidates for the A3 amplitude, tensor mesons
ρ2 and ω2 were suggested in Ref. [14]. The signature for the
tensor mesons is equal to +1, so we use a parametrization for
the propagator,

DT = −β3(t)
π α′

T (e−iπαT (t) + 1)

2 sin[παT (t)]

(
ri

V,Aν
)αT (t)−1

, (28)

with the residue

βT
3 (t) = gT

3
−πα′T

2

1

�[αT (t)]
, (29)

where a symbol T denotes the tensor meson, ρ2 or ω2.
Parameters of the trajectories of these mesons are shown in
Table II. Furthermore, we also assume the same contributions
to A3 from both mesons.

IV. RESULTS

We have used the Regge cut and JPAC models for a fit to the
available data for γp → π0p and γp → ηp at Eγ � 4 GeV.
The electromagnetic coupling constants for the ρ, ω, and b1

mesons were fixed according to Table IV. The best fit using
Regge cuts is called Solution I.

As the first step in fits with the JPAC approach, we repro-
duced exactly the results from Ref. [14] for the differential
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FIG. 5. Differential cross sections for γp → π 0p. The solid red, dashed black, dash-dotted blue (coincide mostly with red curves), and
dotted green lines are our Solutions I, II, III, and IV, respectively. Data are from SLAC [6] (black circles) and from DESY, [5] (red triangles)
and [4] (blue squares).

cross section of the γp → ηp reaction. We then added the
tensor mesons ρ2 and ω2 with electromagnetic couplings fixed
to 1 and fitted the model to all available data in π0 and η
production. This result is called Solution II.

A. Results on π 0 photoproduction

In the fits we have used the experimental data for the differ-
ential cross sections dσ/dt from DESY at Eγ = 4 GeV [4] and
Eγ = 4,5, and 5.8 GeV [5], and SLAC [6] at Eγ = 6,9,12,
and 15 GeV; the polarized-beam asymmetry 
 from SLAC [6]
at Eγ = 4,6, and 10 GeV and GlueX [7] at Eγ = 8.7 GeV;
the target asymmetry T from Daresbury [32] and DESY [33],
both at Eγ = 4 GeV; the recoil polarization observable P from
Cambridge Electron Accelerator (CEA) [34] at Eγ = 4.1–6.3
GeV; the differential cross-section ratio of neutrons and
protons, Rnp for π0 photoproduction at Eγ = 4 GeV [35,36]
and Eγ = 4.7 and 8.2 GeV [37].

The fit results, together with the experimental data, are
presented in Fig. 5 for the differential cross sections, in Fig. 6
for the polarization observables, and in Fig. 7 for the ratio
Rnp. The data for the recoil polarization observable P are
divided in two groups and are shown on panel Eγ = 5 GeV
for Eγ = 4.5–5.5 GeV and on panel Eγ = 6 GeV for Eγ =
5.5–6.3 GeV. The best fit with reduced χ2

red = 1.46 using the
Regge cut model is shown by the red lines (Solution I). This
solution describes practically all experimental data except the
beam asymmetry 
 at Eγ = 8.7 GeV [7] very well. The old
data from SLAC [6] for 
 at Eγ = 6 and 10 GeV show a
clear dip at t = −0.5 GeV2. Surprisingly, such a structure is
missing for the intermediate energy of 8.7 GeV in the new
GlueX data [7]. Therefore, we also performed an alternative
fit using the Regge cut model without the old polarization data
and obtained Solution III with χ2

red = 0.92, which is shown in
Figs. 5, 6, and 7 by the dash-dotted blue line. This solution
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FIG. 6. Polarization observables 
, T , and P for γp → π0p. The notation of the lines is the same as in Fig. 5. Data: SLAC [6] (black
disks), GlueX-17 [7] (black open circles), Daresbury [32] (red triangles), DESY [33] (blue solid squares), CEA [34] (blue open squares).
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can describe the GlueX data quite well, but it is absolutely
wrong for T and P and also underestimates the old data for

. Therefore, we conclude that a strong energy dependence of
the beam asymmetry between 6 and 10 GeV, as suggested by
the GlueX data, cannot be described within our model without
adding additional dynamics. There is also some disagreement
between the data and Solution I for the differential cross
sections at Eγ = 4 GeV; see Figs. 5 and 7. This energy
corresponds to the center-of-mass energy W = 2.9 GeV, which
is close to the resonance region. Probably, tails from the
resonance contributions still show up in this energy region
for π0 photoproduction and should be taken into account.

The central values of the fit parameters for Solutions I and
III are shown in Table V together with associated uncertainties.
Parameters without errors were fixed in the fits. The coeffi-
cients c̃ρP and c̃ωP are zero because the corresponding terms
for the ρP and ωP cuts do not contribute to the A3 amplitude;
see Table III. There are also two parameters for the γp → ηp
reaction that were fixed by empirical constraints: dωP = dρP

and dωf2 = dρf2 .
The best fit with the JPAC model has χ2

red = 5.59 (Solution
II); see black dashed lines in Figs. 5 and 6. It describes well the
shape of the differential cross sections but has the wrong energy
dependence after the dip location, −t > 0.4 GeV2. Similar to
the Regge cut solution, it does not describe the new GlueX
data for 
. Furthermore, the existing data on the polarization
observables T and P cannot be described. The inclusion of the
exotic tensor mesons ρ2 and ω2 did not improve our fits, and
we did not consider them in our four solutions.

We then investigated the possibility of improving the fit
by including the φ meson in the JPAC model even though
small couplings to the nucleon can be expected as discussed
above. The electromagnetic coupling constants λφπ0γ = 0.018
and λφηγ = 0.38 are obtained from the corresponding widths
�φ→π0γ = 5.4 keV and �φ→ηγ = 55.84 keV [19] using
Eq. (14). This Solution IV is shown in Figs. 5, 6, and 7 by
the green dotted lines. We did not use ρ2 and ω2 for this fit
because of their negligible contributions. Indeed, Solution IV
describes the polarization observables T and P significantly
better than Solution II. The hadronic vector gv = −4.3 and
tensor gt = −0.08 coupling constants for φ meson were
obtained from this fit, which we consider as reasonable. A
comparison of χ2

red for the different solutions is shown in
Table VI.

Table VII gives partial χ2 divided by the number of the data
points for each observable and each laboratory, for Solutions
I and III.

B. Results on η photoproduction

The data set for the γp → ηp reaction at high energies
is more limited than for π0 photoproduction. For the fit,
we have used the experimental data of the differential cross
sections dσ/dt from DESY [3] at Eγ = 4 and 6 GeV and
Wilson Laboratory Synchrotron (WLS) [38] at Eγ = 4 and 8
GeV; for the polarized-beam asymmetry 
 from GlueX [7]
at Eγ = 8.7 GeV; and for the target asymmetry T from
Daresbury [39].

TABLE V. Parameter values obtained from Fit I and Fit III for π0 and η photoproduction.

Solution Reaction cρP cωP cρf2 cωf2 c̃ρP c̃ωP c̃ρf2 c̃ωf2 dρP dωP dρf2 dωf2

I γp → π 0p 0.52 −0.06 0.72 2.98 0 0 −0.65 0.007 1.07 0.37 0.62 5.02
±0.08 ±0.01 ±0.64 ±0.49 — — ±0.26 ±0.1 ±0.71 ±0.14 ±0.43 ±0.77

I γp → ηp −2.27 0.016 5.89 −5.96 0 0 −0.18 0.25 5.5 5.5 2.36 2.36
±0.92 ±0.09 ±0.81 ±0.83 — — ±0.28 ±0.37 ±2.1 — ±0.19 —

III γp → π 0p −0.49 0.23 1.08 2.25 0 0 0.24 0.08 0.66 9.9 0.001 4.16
±0.09 ±0.01 ±0.84 ±0.32 — — ±0.31 ±0.1 ±0.16 ±0.61 ±0.87 ±0.51

III γp → ηp −2.59 −0.25 6.51 −5.77 0 0 −0.17 −0.13 5.5 5.5 2.49 2.49
±0.83 ±0.31 ±0.79 ±0.85 — — ±0.33 ±0.39 ±4.4 — ±0.18 —
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TABLE VI. Four solutions using different models and data sets
shown in our analysis.

Solution Line in figures Model Data set χ 2
red(π ) χ 2

red(η)

I Solid red Regge cut All 1.46 1.25
II Dashed black JPAC All 5.59 2.73
III Dashed-dotted Regge cut dσ /dt + 0.92 1.07

blue GlueX 


IV Dotted green JPAC+φ All 4.17 1.86

Our fit results for the differential cross sections are
presented in Fig. 8 and for the polarization observables 
 and
T in Fig. 9. The data for dσ/dt and 
 at Eγ = 3 GeV were not
included in the fit because these are very close to the resonance
region. However, the predictions of all our solutions can
reproduce also these data quite well. Presumably, the influence
of the resonances for η photoproduction is already negligible
at these energies. Our extrapolation of the differential cross
section to Eγ = 3 GeV is in good agreement with Ref. [43].

The best fit with χ2
red = 1.25 using the Regge cut model

is shown by the solid red line (Solution I). This solution well
describes all experimental data including the beam asymmetry

 at Eγ = 8.7 GeV [7]. The alternative fit without data for T ,
Solution III, also gives a good prediction for this observable.

Table VIII gives partial χ2 divided by the number of the
data points for each observable and each laboratory, similar to
Table VII, but for η photoproduction.

The fit with the JPAC model has a χ2
red = 2.73 (Solution

II); see dashed black lines in Figs. 8 and 9. Similar as for
π0 photoproduction, it well describes the differential cross
section and 
, but contradicts the data for T . As in case of
π0 production, the inclusion of the φ meson (Solution IV),
improves the description significantly at low t . However, a
main drawback of Solution IV is a large overestimation of
the total cross section at energies Eγ > 2 GeV. Therefore,
this solution cannot be used as a nonresonant background for
partial wave analyses in the resonance region.

C. Further results for high energies

From high-energy approximations of the observables the
following relation between the target and recoil polarization
to the photon beam asymmetry can be derived in a model-
independent way (see appendixes):

|P − T | � 1 − 
. (30)

As the beam asymmetry 
 is almost unity, except in the
neighborhood of the dip near t = −0.5 GeV2, the polarization
observables T and P should be almost equal. Any difference
between T and P should be attributable to an interference

between the A′
2 and A3 amplitudes at high energies; see Eqs.

(C3) and (C4) in Appendix C. A comparison between T and
P for Solutions I and II is shown in Fig. 10. Solution I for π0

photoproduction verifies well this prediction. There is some
visible difference between T and P for η photoproduction,
but in this case no P data were included in the fit.

V. SUMMARY AND CONCLUSIONS

Photoproduction π0 and η mesons on the nucleon at
photon beam energies above 4 GeV was investigated within
two different Regge model approaches. The models include
t-channel exchange of vector (ρ and ω) and axial-vector (b1

and h1) mesons. Moreover, Regge cuts of ρP, ρf2, ωP, and
ωf2 are used. Both models can describe differential cross
sections and photon beam asymmetries 
 very well, except
for a possible strong energy dependence of 
 in γp → π0p
between 6 and 10 GeV, as suggested by recent GlueX data.
Within our approach we cannot find a solution that can
simultaneously describe both the old polarization data and
the new GlueX data.

The crossing-odd amplitude A3 gets no contributions from
dominant t-channel vector meson exchange terms. We found
possible contributions from tensor meson exchanges and also
from Regge cuts. All of them turn out to be rather small.
The effect could be worked out in the difference between
target and recoil polarizations, but from existing data in π0

photoproduction no evidence can be seen.
Finally, with the present database only the Regge cut model

(Solution I) is able to describe all other available polarization
observables as well. However, because most data go back to
the late 1960s and early 1970s, and, however, new data are in
progress, a reliable conclusion cannot yet be drawn. For our
applications in forthcoming baryon resonance analyses from
pseudoscalar meson photoproduction data, we currently favor
an extrapolation of Solution I to lower energies as a good
description for the nonresonant background.

ACKNOWLEDGMENTS

We would like to thank V. Mathieu, J. Nys, and M.
Vanderhaeghen for very fruitful discussions. This work was
supported by the Deutsche Forschungsgemeinschaft (Grant
No. SFB 1044).

APPENDIX A: OBSERVABLES IN TERMS OF
CGLN AMPLITUDES

Here the polarization observables involving beam and
target polarization are expressed by helicity amplitudes in
the notation of Barker et al. [44] and Walker [45]. A phase-

TABLE VII. Partial χ 2 per data points of π 0 photoproduction for each observable and each laboratory for Solutions I and III.

dσ/dt dσ/dt dσ/dt 
 
 T T P Rnp Rnp Rnp

Solution SLAC [6] DESY [5] DESY [4] SLAC [6] GlueX [7] Dares [32] DESY [33] CEA [34] DESY [35] CEA [36] Cornell [37]

I 0.27 1.56 14.5 1.05 4.27 1.69 1.26 2.94 3.85 1.71 1.19
III 0.27 1.36 9.30 4.50 1.05 25.8 4.57 46.2 7.82 3.65 2.82
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FIG. 8. Differential cross sections for γp → ηp. The notation of the lines is the same as in Fig. 5. Data: DESY [3] (black disks), WLS [38]
(red triangles), Daresbury [40] (blue solid squares), CEBAF Large Acceptnce Spectrometer (CLAS) [41] (black open circles), and CEA [42]
(blue open squares).

space factor |q|/|k| has been omitted in all expressions.
The differential cross section is given by σ0 and the spin
observables Ǒi are obtained from the spin asymmetries Ai

by Ôi = Aiσ0:

σ0 = Re[F ∗
1 F1 + F ∗

2 F2 + sin2 θ (F ∗
3 F3/2 + F ∗

4 F4/2

+F ∗
2 F3 + F ∗

1 F4 + cos θF ∗
3 F4) − 2 cos θF ∗

1 F2],


̌ = − sin2 θRe[(F ∗
3 F3 + F ∗

4 F4)/2 + F ∗
2 F3 + F ∗

1 F4

+ cos θF ∗
3 F4],

Ť = sin θ Im[F ∗
1 F3 − F ∗

2 F4 + cos θ (F ∗
1 F4 − F ∗

2 F3)

− sin2 θF ∗
3 F4],

P̌ = − sin θ Im[2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4

− cos θ (F ∗
2 F3 − F ∗

1 F4) − sin2 θF ∗
3 F4],

Ě = Re[F ∗
1 F1 + F ∗

2 F2 − 2 cos θF ∗
1 F2

+ sin2 θ (F ∗
2 F3 + F ∗

1 F4)],

F̌ = sin θRe[F ∗
1 F3 − F ∗

2 F4 − cos θ (F ∗
2 F3 − F ∗

1 F4)],

Ǧ = sin2 θ Im[F ∗
2 F3 + F ∗

1 F4],

Ȟ = sin θ Im[2F ∗
1 F2 + F ∗

1 F3 − F ∗
2 F4

+ cos θ (F ∗
1 F4 − F ∗

2 F3)].

APPENDIX B: CGLN AMPLITUDES IN TERMS OF
INVARIANT AMPLITUDES

The CGLN amplitudes are obtained from the invariant
amplitudes Ai by the following equations [46,47]:

F1 = W − MN

8πW

√
(Ei + MN )(Ef + MN )

×
[
A1 + (W − MN )A4 − 2MNνB

W − MN

(A3 − A4)

]
,

F2 = W + MN

8πW
|q|

√
Ei − MN

Ef + MN

×
[
−A1 + (W + MN )A4 − 2MNνB

W + MN

(A3 − A4)

]
,

F3 = W + MN

8πW
|q|√(Ei − MN )(Ef + MN )

× [(W − MN )A2 + A3 − A4],

F4 = W − MN

8πW
q2

√
Ei + MN

Ef + MN

× [−(W + MN )A2 + A3 − A4],

with νB = (t − μ2)/(4MN ).
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FIG. 9. Polarization observables 
 and T for γp → ηp. The notation of the lines is the same as in Fig. 5. Data: GlueX [7] (black open
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TABLE VIII. Partial χ 2 per data points of η photoproduction for
each observable and each laboratory, for Solutions I and III.

dσ/dt dσ/dt 
 T

Solution DESY [3] WLS [38] GlueX [7] Daresbury [39]

I 1.05 0.94 0.44 2.94
III 0.98 0.98 0.26 3.80

APPENDIX C: OBSERVABLES IN TERMS OF
INVARIANT AMPLITUDES

For high energies, the polarization observables can conve-
niently be described in terms of invariant amplitudes. Here we
follow Ref. [29] and derive the expressions at leading order in
the energy squared:

dσ

dt
≈ 1

32π
[|A1|2 + |A′

2|2 − t |A3|2 − t |A4|2], (C1)



dσ

dt
≈ 1

32π
[|A1|2 − |A′

2|2 + t |A3|2 − t |A4|2], (C2)

T
dσ

dt
≈ 1

16π

√−tIm [A1 A∗
4 − A′

2 A∗
3], (C3)

P
dσ

dt
≈ 1

16π

√−tIm [A1 A∗
4 + A′

2 A∗
3]. (C4)
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FIG. 10. Comparison of the polarization observables T and P

at different photon beam energies for γp → π 0p (top panels) and
for γp → ηp (bottom panels). The solid red and black lines are our
Solutions I and II for the target polarization T , and the dashed red
and black lines are for the recoil polarization P , respectively.

From these relations, a restriction for the difference between
target and recoil polarization can be found:

|P − T | � 1 − 
. (C5)
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