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The high-precision cross section data for the reaction γp → K∗+� reported by the CLAS Collaboration
at the Thomas Jefferson National Accelerator Facility have been analyzed based on an effective Lagrangian
approach in the tree-level approximation. Apart from the t-channel K, κ, K∗ exchanges, the s-channel nucleon
(N ) exchange, the u-channel �, �,�∗(1385) exchanges, and the generalized contact term, the contributions
from the near-threshold nucleon resonances in the s channel are also taken into account in constructing
the reaction amplitude. It is found that to achieve a satisfactory description of the differential cross section
data, at least two nucleon resonances should be included. By including the N (2060)5/2− resonance, which is
responsible for the shape of the angular distribution near the K∗� threshold, and one of the N (2000)5/2+,
N (2040)3/2+, N (2100)1/2+, N (2120)3/2− and N (2190)7/2− resonances, one can describe the cross section
data quite well, with the fitted resonance masses and widths compatible with those advocated by the Particle
Data Group. The resulted predictions of the beam, target, and recoil asymmetries are found to be quite different
from various fits, indicating the necessity of the spin observable data for γp → K∗+� to further pin down the
resonance contents and associated parameters in this reaction.
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I. INTRODUCTION

The extraction of nucleon resonances (N∗’s) from ex-
perimental data and understanding their nature are essential
to get insight into the nonperturbative regime of quantum
chromodynamics (QCD). Our current knowledge of most of
the N∗’s is mainly coming from the analyses of πN scattering
and π photoproduction off the nucleon. One of the problems
with this situation is that the quark models [1–3] predict
the existence of many more resonances than found in these
reactions. This is known as the missing resonance problem
[4]. The number of baryon resonances in the lattice QCD
calculations [5,6] is also increasing.

Some of the nucleon resonances are known to couple
weakly to the πN channel, escaping detection in these
reactions. This forces us to search for those missing resonances
in channels other than πN , where they couple more strongly
so that they can be better established. In the present work,
we investigate the K∗� photoproduction reaction in search
for clear evidence of resonances that may be revealed through
their couplings to the K∗� channel. There are many attractive
features in studying this reaction. First of all, resonances with
sizable hidden ss̄ content can have a better chance to be
revealed in this reaction than in π production reactions. Also,
since the threshold of K∗� is much higher than that of πN , the
K∗� photoproduction off nucleons is more suited than the π
production reactions for investigating the nucleon resonances
in a less-explored higher N∗ mass region. Another advantage
of K∗� photoproduction in studying N∗’s is that it acts as an
“isospin filter,” isolating the N∗’s with isospin I = 1/2.

*Corresponding author: huangfei@ucas.ac.cn

Experimentally, so far the available data for the reaction
γp → K∗+� have all been reported by the CLAS Collabora-
tion at the Thomas Jefferson National Accelerator Facility
(JLab). The first preliminary total cross section data for
center-of-mass energy, W , from threshold up to 2.85 GeV were
reported by Guo et al. in 2006 in a conference proceedings
[7]. Later, the preliminary differential cross section data for
this reaction from W = 2.22 to 2.42 GeV were reported
by Hicks et al. in 2011 in another conference proceedings
[8]. It was only in 2013 that the first high-statistics cross
section data for this reaction were published by Tang et al.
in Ref. [9], where the measured differential cross sections and
the extracted total cross sections are presented from threshold
up to W ≈ 2.85 GeV. Also, some preliminary differential cross
section data for the γ n → K∗0� reaction have been reported
by Mattione in a conference proceedings [10].

The CLAS differential cross section data for γp → K∗+�
[9] show some structures near the K∗+� threshold energy
which may indicate some possible contribution from nucleon
resonance(s). In fact, in this energy region, there are six
resonances advocated in the most recent Particle Data Group
(PDG) review [11] that might potentially contribute to this
reaction, namely, N (2000)5/2+, N (2040)3/2+,N (2060)5/
2−, N (2100)1/2+, N(2120)3/2−, and N (2190)7/2−. Among
them, N (2190)7/2− is rated as a four-star resonance but
with rather broad mass (2100–2200 MeV) and width (300–
700 MeV); N (2000)5/2+, N (2060)5/2−, and N (2120)3/2−

are rated as two-star resonances and N (2040)3/2+ and
N (2100)1/2+ as one-star resonances. This means that the
four-star N (2190)7/2− resonance needs further investigation
to improve the accuracy of its parameters, and the other
five two- and one-star resonances need more information,
especially from the reaction channels (other than those cited
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by PDG) to which these resonances couple more strongly,
to improve the evidences of their existences and to extract
their parameters. The high-statistics cross section data for
γp → K∗+� from the CLAS Collaboration [9] promote the
studies along this direction.

Theoretically, several works based on effective Lagrangian
approaches have already been devoted to the study of K∗�
photoproduction reaction [12–14,17–19]. In 2006, Oh and Kim
investigated the nonresonant contributions for γN → K∗�
within an isobar model, and they found that the t-channel K
exchange, which causes a sharp raise of the differential cross
sections at forward-scattering angles, dominates this reaction
process [12]. Further, in late 2006, they examined the contri-
bution of scalar meson κ and concluded that the t-channel κ
exchange in γp → K∗+� is rather small [13]. In 2010, Ozaki
et al. studied the γp → K∗+� reaction in a Regge model
[14]. They obtained the total cross sections compatible with
CLAS’s preliminary data [7] and found that the contributions
from the K∗ trajectory and reggeized contact term are much
bigger than those in the isobar model of Ref. [12]. (However,
we point out here that the Regge model of Ref. [15] used
in Ref. [14] is based on incorrect dynamical assumptions, as
shown in Ref. [16].) In 2011, Kim et al. [17] have included
the contributions from the resonances N (2080)3/2− and
N (2200)5/2− based on the theoretical models of Refs. [12,13]
in order to describe the preliminary differential cross section
data from CLAS [8]. They have found that the nonresonant
contributions dominate the K∗� photoproduction reaction,
while the resonance N (2080)3/2− plays a crucial role in
explaining the enhancement of the near-threshold production
rate; the contribution from N (2200)5/2− is rather small. When
the first high-statistics cross section data from CLAS were pub-
lished in 2013 [9], it was found that all mentioned theoretical
calculations [12–14,17] significantly underestimate the cross
sections in the range of (laboratory) photon energy of 2.1 GeV
< Eγ < 3.1 GeV. Then, in 2014, Kim et al. reinvestigated [18]
the K∗� photoproduction reaction to accommodate the most
recent CLAS data [9]. They considered four nucleon reso-
nances, namely N (2000)5/2+, N (2060)5/2−, N (2120)3/2−,
and N (2190)7/2−, in addition to the nonresonant contribu-
tions as included in Ref. [17], and found that apart from
the significant contributions from the t-channel K and κ
exchanges, the s-channel nucleon resonances N (2120)3/2−

and N (2190)7/2− play very important roles in reproducing
the experimental cross section data. The contribution from the
resonance N (2060)5/2− was found to be small but noticeable,
while that from N (2000)5/2+ was found to be almost negli-
gible. In Ref. [19], the total cross sections and the differential
cross sections at three selected energies for γN → K∗�
are investigated within a Regge approach. (The dynamical
assumptions [15] of this Regge analysis are also marred by
incomplete dynamical assumptions [16].) It is found that the
K and K∗ trajectories dominate the the process of K∗+�
photoproduction. The preliminary differential cross section
data for γ n → K∗0� [10] have been also analyzed recently
by Wang and He [20] in an effective Lagrangian approach.

The work of Ref. [18] presents so far the only detailed
theoretical analysis of the most recent high-statistics dif-
ferential cross section data for γp → K∗+� reported by

the CLAS Collaboration [9]. It describes the total cross
section data quite well in the photon energy region of Eγ <
3.5 GeV, and the differential cross section data have also
been qualitatively described. Nevertheless, there is still some
room for improvement in their results for the differential
cross sections, especially, near the K∗+� threshold, where the
nucleon resonances are relevant. Figure 1 illustrates this issue;
there, a comparison of the differential cross sections from
the theoretical calculation of Ref. [18] (blue dashed lines)
with the most recent CLAS data [9] (scattered symbols) at
some selected energies in the near-threshold region is shown.
The numbers in parentheses denote the photon laboratory
incident energy, Eγ (left number), and the total center-of-mass
energy of the system, W (right number). The black solid lines
represent the results from model I of our present work, which
will be discussed in detail in Sec. III. It is clearly seen from
Fig. 1 that there is still some room for improvement in the
differential cross section results of Ref. [18]. We mention
that in Ref. [18] the resonance parameters of N (2000)5/2+

and N (2060)5/2− are taken from Ref. [21], the parameters of
N (2190)7/2− are taken from Ref. [22], and the parameters of
N (2120)3/2− are determined by a fit to the experimental data.

In this work, we investigate the γp → K∗+� reaction
based on an effective Lagrangian approach in the tree-level
approximation. We expect that a better description of the data
for this reaction will allow for a more reliable extraction of
the resonance content and their associated parameters. One
of the major differences of our theoretical model compared
with that of Refs. [17,18] is that in the latter a common
form factor is introduced in the reaction amplitudes in order
to preserve gauge invariance, while in our work, following
Refs. [23–26], a generalized contact current—that accounts
effectively for the interaction current arising from the unknown
parts of the underlying microscopic model—is introduced in
such a way that the full photoproduction amplitude satisfies
the generalized Ward-Takahashi identity (WTI) and thus it is
fully gauge invariant. As a consequence, our model is free
from such an artificial constraint as the use of a common
form factor. Moreover, and most relevantly, we adopt a rather
different strategy in choosing the nucleon resonances to be
considered in our model. Instead of including all of them,
we introduce the nucleon resonances in the present work
as few as possible with the resonance parameters being
adjusted to reproduce the data. We find that apart from the
t-channel K, κ,K∗ exchanges, the s-channel nucleon (N )
exchange, the u-channel �,�,�∗(1385) exchanges, and the
generalized contact current, at least two nucleon resonances
near the K∗� threshold should be included in the s channel
in order to obtain a satisfactory description of the CLAS
high-statistics differential cross section data. By including the
N (2060)5/2− resonance, which, as we shall show later, is
responsible for the shape of the angular distribution near the
K∗� threshold, and one of the N (2000)5/2+, N(2040)3/2+,
N (2100)1/2+, N(2120)3/2−, and N (2190)7/2− resonances,
we get five fits with roughly similar fit qualities. The resulting
differential and total cross sections are both in very good
agreement overall with the most recent CLAS data [9]. In
particular, the angular dependence of the differential cross
sections near the K∗+� threshold is now, for the first
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FIG. 1. Status of theoretical description of the differential cross sections for γp → K∗+� at selected energies in the near-threshold region.
The numbers in parentheses denote the photon laboratory incident energy (left number) and the total center-of-mass energy of the system (right
number). The blue dashed lines represent the results from Ref. [18], and the black solid lines denote the results from model I of our present
work, which will be discussed later. The scattered symbols are the most recent data from CLAS Collaboration [9].

time, described quite well. The fitted resonance masses and
widths are compatible with those advocated by the PDG
[11]. The nonresonant terms, dominated by the t-channel K
exchange, are found to have very significant contributions. The
predictions for the photon beam asymmetry, target nucleon
asymmetry, and recoil � asymmetry are also given; they are
found to be more sensitive to the details of the model than the
cross sections, indicating the necessity of data on these spin
observables to further constrain the resonance contents and
their parameters in this reaction.

Of course, a more complete analysis and extraction of
nucleon resonances requires a coupled-channels approach
[27–31], so far developed mostly for pseudoscalar meson
production reactions. In this approach, the unitarity and
analyticity of the reaction amplitude can be maintained and
the search of poles (associated with the resonances) in the
complex energy plane can be performed. This is beyond the
scope of the present work, which may be considered as a first
step toward developing such a more complete model.

The present paper is organized as follows. In Sec. II, we
briefly introduce the framework of our theoretical model.
There, the strategy for imposing gauge invariance of the
photoproduction amplitude according to the generalized WTI,
the specific forms of the effective interaction Lagrangians,
the resonance propagators, and the phenomenological form
factors are explicitly presented. In Sec. III, the results of our
model calculations are shown, including a comparison of our
calculated cross sections with the most recent high-statistics

CLAS data, an analysis of the γp → K∗+� reaction dynam-
ics, and a discussion of the resulting resonance contents and
associated parameters. Our predicted beam, target, and recoil
asymmetries in γp → K∗+� are also shown and discussed
in this section. Finally a brief summary and conclusions are
given in Sec. IV.

II. FORMALISM

Following a full field theoretical approach of Refs. [23–26],
the full reaction amplitude for γN → K∗� can be expressed
as

Mνμ = Mνμ
s + M

νμ
t + Mνμ

u + M
νμ
int , (1)

with ν and μ being the Lorentz indices of vector meson K∗
and photon γ , respectively. The first three terms M

νμ
s ,M

νμ
t ,

and M
νμ
u stand for the s-, t-, and u-channel pole diagrams,

respectively, with s, t , and u being the Mandelstam variables
of the internally exchanged particles. They arise from the
photon attaching to the external particles in the underlying
�NK∗ interaction vertex. The last term, M

νμ
int , stands for the

interaction current which arises from the photon attaching to
the internal structure of the �NK∗ interaction vertex. All four
terms in Eq. (1) are diagrammatically depicted in Fig. 2.

In the present work, the following contributions, as shown in
Fig. 2, are considered in constructing the s-, t-, and u-channel
amplitudes: (a) N and N∗’s exchanges in the s channel,
(b) K, κ , and K∗ meson exchanges in the t channel, and
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FIG. 2. Generic structure of the K∗ photoproduction amplitude
for γN → K∗�. Time proceeds from left to right.

(c) �,�, and �∗(1385) hyperon exchanges in the u channel.
The exchanges of other hyperon resonances with higher
masses in the u channel are tested to have tiny contributions
and thus are omitted in the present work in order to reduce the
model parameters. Using an effective Lagrangian approach,
one can, in principle, obtain explicit expressions for these
amplitudes. However, the exact calculation of the interaction
current Mνμ

int is impractical, as it obeys a highly nonlinear equa-
tion and contains diagrams with very complicated interaction
dynamics. Furthermore, the introduction of phenomenological
form factors makes it impossible to calculate the interaction
current exactly even in principle. Following Refs. [23–25], we
model the interaction current by a generalized contact current,

M
νμ
int = �ν

�NK∗ (q)Cμ + M
νμ
KRft . (2)

Here �ν
�NK∗ (q) is the vertex function of �NK∗ coupling given

by the Lagrangian of Eq. (21),

�ν
�NK∗ (q) = −ig�NK∗

[
γ ν − i

κ�NK∗

2MN

σναqα

]
, (3)

with q being the 4-momentum of the outgoing K∗ meson;
M

νμ
KR is the Kroll-Ruderman term given by the Lagrangian of

Eq. (35),

M
νμ
KR = g�NK∗

κ�NK∗

2MN

σνμQK∗ , (4)

with QK∗ being the electric charge of K∗; ft in Eq. (2) is
the phenomenological form factor attached to the amplitude
of t-channel K∗ exchange, which is given in Eq. (43); and
Cμ is an auxiliary current, which is nonsingular, introduced
to ensure that the full photoproduction amplitude of Eq. (1)
satisfies the generalized WTI and thus is fully gauge invariant.
Following Refs. [24,25], we choose Cμ for γp → K∗+� as

Cμ = −QK∗
ft − F̂

t − q2
(2q − k)μ − QN

fs − F̂

s − p2
(2p + k)μ, (5)

with

F̂ = 1 − ĥ(1 − fs)(1 − ft ). (6)

Here p, q, and k are 4-momenta of the incoming N , outgoing
K∗, and the incoming photon, respectively; QN(K∗) is the

electric charge of N (K∗); fs is the phenomenological form
factor for s-channel N exchange. ĥ is an arbitrary function,
except that it should go to unity in the high-energy limit to
prevent the “violation of scaling behavior” [32]. For the sake
of simplicity, in the present work it is taken to be ĥ = 1.

In the rest of this section, we present the effective
Lagrangians, the resonance propagators, and the phenomeno-
logical form factors employed in the present work.

A. Effective Lagrangians

The effective interaction Lagrangians used in the present
work for the production amplitudes are given below. For
further convenience, we define the operators

�(+) = γ5 and �(−) = 1, (7)

and the field-strength tensors

K∗μν = ∂μK∗ν − ∂νK∗μ
, (8)

Fμν = ∂μAν − ∂νAμ, (9)

with K∗μ and Aμ denoting the K∗ vector-meson field and
electromagnetic field, respectively.

The electromagnetic interaction Lagrangians required to
calculate the nonresonant Feynman diagrams are

LNNγ = − eN̄

[(
êγ μ − κ̂N

2MN

σμν∂ν

)
Aμ

]
N, (10)

LγK∗K∗ = − e(K∗ν × K∗
μν)3A

μ, (11)

Lγ κK∗ = e
gγκK∗

2MK∗
FμνK∗

μνκ, (12)

LγKK∗ = e
gγKK∗

MK

εαμλν(∂αAμ)(∂λK)K∗
ν , (13)

L��γ = e
κ�

2MN

�̄σμν(∂νAμ)�, (14)

L��γ = e
κ��

2MN

�̄σμν(∂νAμ)�0 + H. c., (15)

L�∗�γ = ie
g

(1)
�∗�γ

2MN

�̄γνγ5F
μν�∗0

μ

− e
g

(2)
�∗�γ

(2MN )2
(∂ν�̄)γ5F

μν�∗0
μ + H. c., (16)

where e is the elementary charge unit and ê stands for
the charge operator; κ̂N = κp(1 + τ3)/2 + κn(1 − τ3)/2, with
the anomalous magnetic moments κp = 1.793 and κn =
−1.913; κ� = −0.613 is the � anomalous magnetic mo-
ment and κ�� = −1.61 is the anomalous magnetic moment
for the �0 → �γ transition; MN,MK , and MK∗ stand
for the masses of N,K , and K∗, respectively; and εαμλν is
the totally antisymmetric Levi-Civita tensor with ε0123 =
1. The coupling constant gγκK∗ = 0.214 is taken from
Refs. [17,18], determined by a vector-meson dominance model
proposed by Black et al. [33]. The value of the electromagnetic
coupling gγKK∗ is determined by fitting the radiative decay
width of K∗ → Kγ given by the PDG [11], which leads to
gγK±K∗± = 0.413, with the sign inferred from gγπρ [34] via
the flavor SU(3) symmetry considerations in conjunction with
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the vector-meson dominance assumption. The electromagnetic
couplings g

(1)
�∗�γ and g

(2)
�∗�γ should, in principle, be fixed by

the helicity amplitudes of the transition reaction �∗0 → �γ .
Nevertheless, the latest PDG [11] is still devoid of such infor-
mation, and thus we treat the coupling g

(1)
�∗�γ as a fit parameter

and let the coupling g
(2)
�∗�γ be determined by the PDG value

of the partial decay width, ��∗0→�γ = 0.45 MeV [11].
The resonance-nucleon-photon transition Lagrangians are

L1/2±
RNγ = e

g
(1)
RNγ

2MN

R̄�(∓)σμν(∂νAμ)N + H. c., (17)

L3/2±
RNγ = − ie

g
(1)
RNγ

2MN

R̄μγν�
(±)FμνN

+ e
g

(2)
RNγ

(2MN )2
R̄μ�(±)Fμν∂νN + H. c., (18)

L5/2±
RNγ = e

g
(1)
RNγ

(2MN )2 R̄μαγν�
(∓)(∂αFμν)N

± ie
g

(2)
RNγ

(2MN )3
R̄μα�(∓)(∂αFμν)∂νN + H. c., (19)

L7/2±
RNγ = ie

g
(1)
RNγ

(2MN )3 R̄μαβγν�
(±)(∂α∂βFμν)N

− e
g

(2)
RNγ

(2MN )4
R̄μαβ�(±)(∂α∂βFμν)∂νN + H. c.,

(20)

where R designates the nucleon resonance, and the superscript
of LRNγ denotes the spin and parity of the resonance R. The
coupling constants g

(i)
RNγ (i = 1,2) are fit parameters.

The effective Lagrangians for meson-baryon interactions
are

L�NK∗ = − g�NK∗�̄

[(
γ μ − κ�NK∗

2MN

σμν∂ν

)
K∗

μ

]
N + H. c.,

(21)

L�Nκ = − g�Nκ�̄κN + H. c., (22)

L�NK = − g�NK�̄�(+)

[(
iλ + 1 − λ

2MN

∂/

)
K

]
N + H. c.,

(23)

L�NK∗ = − g�NK∗�̄

[(
γ μ − κ�NK∗

2MN

σμν∂ν

)
K∗

μ

]
N + H. c.,

(24)

L�∗NK∗ = − i
g

(1)
�∗NK∗

2MN

�̄∗
μγνγ5K

∗μν
N

+ g
(2)
�∗NK∗

(2MN )2 �̄∗
μγ5K

∗μν
∂νN

− g
(3)
�∗NK∗

(2MN )2 �̄∗
μγ5(∂νK

∗μν)N + H. c., (25)

where the parameter λ was introduced in L�NK to interpolate
between the pseudovector (λ = 0) and the pseudoscalar (λ =
1) couplings. Unlike for the pion coupling, where the low-
energy chiral perturbation theory calls for the pseudovector
coupling over the pseudoscalar coupling, for kaons, the
situation is much less clear. In fact, some authors have
employed pseudoscalar coupling [18] and others have allowed
for both types of couplings [35]. On the other hand, it
is a common practice to rely on SU(3) flavor symmetry
for obtaining the effective Lagrangians when studying the
kaon-baryon systems, which implies a pseudovector �NK
coupling, since the pseudovector coupling is used in the
NNπ vertex as demanded by chiral symmetry. For example,
Haidenbauer et al. [36] have obtained an excellent description
of the hyperon-nucleon system in chiral effective field theory,
i.e., with pseudovector �NK coupling. In the present work,
following Refs. [29,36], λ is set to be zero; i.e., we adopt the
pure pseudovector type of coupling. Although we shall not
show any results with the pseudoscalar coupling for the �NK
vertex in the present work, we just mention that we have tested
this coupling type during the trial calculations and found that
it leads to results that are systematically worse by a factor
of ∼1.5 in χ2 than those obtained using the pseudovector
coupling. The coupling constant g�NK = 13.99 is taken from
Ref. [29], determined by the flavor SU(3) symmetry. The
coupling constants g�NK∗ , κ�NK∗ , g�NK∗ , κ�NK∗ , and g

(1)
�∗NK∗

are also fixed by the flavor SU(3) symmetry [29,37],

g�NK∗ = − 1

2
√

3
gNNω −

√
3

2
gNNρ = −6.21, (26)

κ�NK∗ = f�NK∗

g�NK∗
= −

√
3

2

fNNρ

g�NK∗
= 2.76, (27)

g�NK∗ = − 1

2
gNNω + 1

2
gNNρ = −4.26, (28)

κ�NK∗ = f�NK∗

g�NK∗
= 1

2

fNNρ

g�NK∗
= −2.33, (29)

g
(1)
�∗NK∗ = − 1√

6
g�Nρ = 15.96, (30)

where the empirical values gNNρ = 3.25, gNNω =
11.76, κNNρ = gNNρ/fNNρ = 6.1, and g�Nρ = −39.10
from Refs. [25,29] are used. As the g(2) and g(3) terms in
the �Nρ interactions have never been seriously studied
in literature, the corresponding couplings for the �∗NK∗

interactions, i.e., g
(2)
�∗NK∗ and g

(3)
�∗NK∗ , cannot be determined

via flavor SU(3) symmetry, and we ignore these two terms
in the present work, following Refs. [17,18]. The coupling
constant g�Nκ = −8.312 is taken from Nijmegen model
NSC97a [38], determined by a fit to the �N − �N scattering
data.

The effective Lagrangians for hadronic vertices including
nucleon resonances are

L1/2±
R�K∗ = − gR�K∗

2MN

R̄�(∓)

{[(
γμ∂2

MR ∓ MN

± i∂μ

)

− fR�K∗

gR�K∗
σμν∂

ν

]
K∗μ

}
� + H. c., (31)
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L3/2±
R�K∗ = − i

g
(1)
R�K∗

2MN

R̄μγν�
(±)K∗μν

�

+ g
(2)
R�K∗

(2MN )2
R̄μ�(±)K∗μν

∂ν�

∓ g
(3)
R�K∗

(2MN )2
R̄μ�(±)(∂νK

∗μν)� + H. c., (32)

L5/2±
R�K∗ = g

(1)
R�K∗

(2MN )2
R̄μαγν�

(∓)(∂αK∗μν)�

± i
g

(2)
R�K∗

(2MN )3
R̄μα�(∓)(∂αK∗μν)∂ν�

∓ i
g

(3)
R�K∗

(2MN )3
R̄μα�(∓)(∂α∂νK

∗μν)� + H. c., (33)

L7/2±
R�K∗ = i

g
(1)
R�K∗

(2MN )3
R̄μαβγν�

(±)(∂α∂βK∗μν)�

− g
(2)
R�K∗

(2MN )4
R̄μαβ�(±)(∂α∂βK∗μν)∂ν�

± g
(3)
R�K∗

(2MN )4
R̄μαβ�(±)(∂α∂β∂νK

∗μν)�+H. c. (34)

In the present work, the coupling constant fR�K∗ in L1/2±
R�K∗

is set to be zero, and the g
(2)
R�K∗ and g

(3)
R�K∗ terms in

L3/2±
R�K∗ ,L5/2±

R�K∗ and L7/2±
R�K∗ are ignored for the sake of sim-

plicity. The parameters gR�K∗ and g
(1)
R�K∗ are fit parameters.

Actually, only the products of the electromagnetic couplings
and the hadronic couplings of nucleon resonances are relevant
to the reaction amplitudes, and these products are what we
really fit in practice.

The effective Lagrangian for the Kroll-Ruderman term of
γN → �K∗ reads

LγN�K∗ = − ig�NK∗
κ�NK∗

2MN

�̄σμνAνQ̂K∗K∗
μN + H. c., (35)

with Q̂K∗ being the electric charge operator of the outgoing K∗
meson. This interaction Lagrangian is obtained by the minimal
gauge substitution ∂μ → Dμ ≡ ∂μ − iQ̂K∗Aμ in the �NK∗
interaction Lagrangian of Eq. (21). The couplings g�NK∗ and
κ�NK∗ have been given in Eqs. (26) and (27).

B. Resonance propagators

In principle, an energy-dependent width of resonance is
more realistic than a constant value multiplied by a step
function. However, as discussed in Ref. [39], the cross section
data alone are usually insensitive to the energy dependence of
the resonance width. For the reaction of γN → K∗�, so far
we only have the differential cross section data while the data
for spin observables are not available. Hence, it is justified to
treat the resonance width as a constant instead of a complex
energy-dependent function for the sake of simplicity.

For spin-1/2 resonance propagator, we use the ansatz

S1/2(p) = i

p/ − MR + i�/2
, (36)

where MR and � are the mass and width of resonance R with
four-momentum p, respectively.

Following Refs. [40–42], the prescriptions of the propa-
gators for resonances with spin-3/2, spin-5/2, and spin-7/2
are

S3/2(p) = i

p/ − MR + i�/2

(
g̃μν + 1

3
γ̃μγ̃ν

)
, (37)

S5/2(p) = i

p/ − MR + i�/2

[
1

2
(g̃μαg̃νβ + g̃μβ g̃να)

− 1

5
g̃μνg̃αβ + 1

10
(g̃μαγ̃ν γ̃β + g̃μβ γ̃ν γ̃α

+ g̃ναγ̃μγ̃β + g̃νβ γ̃μγ̃α)

]
, (38)

S7/2(p) = i

p/ − MR + i�/2

1

36

∑
PμPν

(
g̃μ1ν1 g̃μ2ν2 g̃μ3ν3

− 3

7
g̃μ1μ2 g̃ν1ν2 g̃μ3ν3 + 3

7
γ̃μ1 γ̃ν1 g̃μ2ν2 g̃μ3ν3

− 3

35
γ̃μ1 γ̃ν1 g̃μ2μ3 g̃ν2ν3

)
, (39)

where

g̃μν = − gμν + pμpν

M2
R

, (40)

γ̃μ = γ νg̃νμ = −γμ + pμp/

M2
R

, (41)

and the summation over Pμ (Pν) in Eq. (39) goes over the
3! = 6 possible permutations of the indices μ1μ2μ3 (ν1ν2ν3).
These high-spin resonance propagators and their variations
have been applied with success in a number of resonance
studies [17,18,26,43,44].

C. Form factors

Each hadronic vertex obtained from the Lagrangians given
in Sec. II A is accompanied with a phenomenological form
factor to parametrize the structure of the hadrons and to
normalize the behavior of the production amplitude. Following
Refs. [17,18], for intermediate baryon exchange, we take the
form factor as

fB(p2) =
(

�4
B

�4
B + (

p2 − M2
B

)2

)n

, (42)

where p denotes the four-momentum of the intermediate
baryon, the exponent n is taken to be 2 for all baryon
exchanges, and the cutoff �B is taken to be 900 MeV for
all N,�,�, and �∗ exchanges [17,18]. For the s-channel
resonance exchanges, the cutoffs are treated as fit parameters.
For intermediate meson exchange, we take the form factor as

fM (q2) =
(

�2
M − M2

M

�2
M − q2

)m

, (43)

where q represents the four-momentum of the intermediate
meson, the exponent m is taken to be 2 for all meson exchanges,
and MM and �M designate the mass and cutoff mass of
exchanged meson M . We choose Mκ = 800 MeV, and for
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other exchanged mesons, the experimental values are used
for their masses. The cutoffs �K∗ = 900 MeV and �κ =
1100 MeV are adopted in the present work, which are also
taken from Ref. [18]. The cutoff �K is treated as a free
parameter and will be determined by a fit to the experimental
differential cross section data.

Note that the gauge-invariance feature of our photoproduc-
tion amplitude is independent of the specific form of the form
factors.

III. RESULTS AND DISCUSSION

As mentioned in Sec. I, the work of Ref. [18] presents
so far the only detailed theoretical analysis of the most recent
high-statistics differential cross section data from CLAS [9] for
the K∗+� photoproduction reaction. There, four nucleon reso-
nances, namely N (2000)5/2+, N (2060)5/2−, N (2120)3/2−,
and N (2190)7/2−, have been considered with the parameters
of N (2000)5/2+ and N (2060)5/2− taken from Ref. [21], the
parameters of N (2190)7/2− taken from a relativistic quark
model calculation [22], and the parameters of N (2120)3/2−

determined by a fit to the experimental data. It was found
that the N (2120)3/2− and N (2190)7/2− resonances are
essential in describing the measured cross section data. The
N (2060)5/2− resonance was found to have a relative small
but still noticeable contribution, while the N (2000)5/2+ was
found to be negligible in this reaction.

In the present work, we adopt a rather different strategy
than Ref. [18] for investigating the roles of nucleon resonances
in the γp → K∗+� reaction. That is, in addition to the Born
term, which is composed of the t-channel K, κ,K∗ exchanges,
the u-channel �,�,�∗(1385) exchanges, the s-channel N
exchange, and the generalized contact current as illustrated in
Fig. 2, we introduce the s-channel nucleon resonances as few
as possible in constructing the reaction amplitudes in order
to achieve a satisfactory fit to the high-statistics differential
cross section data from CLAS [9]. In practice, we allow in
our model all those six resonances near the K∗� threshold,
namely, N (2000)5/2+, N (2040)3/2+, N (2060)5/2−,
N (2100)1/2+, N (2120)3/2−, and N (2190)7/2−. After
numerous trials with the inclusion of different number of
nucleon resonances and different combinations of them, we
found that, if only one resonance is included, the χ2 per
data point, χ2/N , are all larger than 3. The quality of the
corresponding fit results are then found to be significantly
poor. In particular, in the low-energy region one gets a nearly
isotropic angular distribution in the differential cross sections
and, consequently, failing to reproduce the shape of the
angular distribution near the �K∗ threshold exhibited by
the CLAS data. Thus, they are treated as unacceptable fit
results. If two resonances are included, it is found that there
are five possible sets of resonance combinations which result
in fits with χ2/N � 2.18 and these fits are visually in good
agreement with the data. All these five sets require a common
resonance, N (2060)5/2−. The other resonance is one of the

0.2

0.4

0.6

dσ
/d

co
sθ

 [μ
b]

(1850, 2086) (2050, 2174)

(2150, 2217) (2250, 2259)

-1 -0.5 0 0.5 1
cosθ

0

0.2

0.4

0.6

-0.5 0 0.5 1

FIG. 3. Differential cross sections for γp → K∗+� as a function of cos θ in the center-of-mass frame in the near threshold region. The
black solid lines correspond to the fit result including the N (2000)5/2+ and N (2040)3/2+ resonances with χ 2/N = 2.50. The blue dashed
lines represent the results from model V with χ 2/N = 2.18. The scattered symbols are the most recent data from CLAS Collaboration [9]. The
numbers in parentheses denote the photon laboratory incident energy (left number) and the total center-of-mass energy of the system (right
number), in MeV.
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TABLE I. Model parameters in five different fits. Here β�K∗ is the branching ratio for resonance decay to �K∗, and A1/2, A3/2 are helicity
amplitudes for resonance radiative decay to γp. For the definition of other parameters, see Sec. II. The stars below resonance names denote
the overall status of these resonances evaluated by the most recent PDG [11]. The numbers in brackets below the resonance masses and widths
represent the corresponding values estimated by the most recent PDG [11].

Model I II III IV V
χ 2/N 1.35 1.79 1.85 2.09 2.18

g
(1)
�∗�γ 0.74 ± 0.16 −0.90 ± 0.17 −0.87 ± 0.14 −0.60 ± 0.18 −0.22 ± 0.16

�K [MeV] 1000 ± 6 1019 ± 4 993 ± 7 1030 ± 3 1018 ± 4

N∗ Name N (2060)5/2− N (2060)5/2− N (2060)5/2− N (2060)5/2− N (2060)5/2−

∗∗ ∗∗ ∗∗ ∗∗ ∗∗
MR [MeV] 2033 ± 2 2009 ± 5 2032 ± 3 2043 ± 4 2038 ± 3
�R [MeV] 65 ± 4 213 ± 20 81 ± 8 202 ± 16 77 ± 8
�R [MeV] 1188 ± 20 965 ± 16 1126 ± 12 889 ± 13 981 ± 22√

β�K∗A1/2 [10−3 GeV−1/2] 0.69 ± 0.06 0.03 ± 0.01 0.33 ± 0.03 0.60 ± 0.06 −0.21 ± 0.02√
β�K∗A3/2 [10−3 GeV−1/2] −1.39 ± 0.13 −0.10 ± 0.01 −1.10 ± 0.10 −1.94 ± 0.19 −1.56 ± 0.15

N∗ Name N (2000)5/2+ N (2040)3/2+ N (2120)3/2− N (2190)7/2− N (2100)1/2+

∗∗ ∗ ∗∗ ∗∗∗∗ ∗
MR [MeV] 2115 ± 22 2200 ± 62 2203 ± 9 2243 ± 6 2100 ± 15

[≈2120] [2100 ∼ 2200] [≈2100]
�R [MeV] 450 ± 10 540 ± 7 433 ± 33 450 ± 33 450 ± 9

[300 ∼ 700]
�R [MeV] 1644 ± 21 1564 ± 36 1726 ± 58 936 ± 13 1431 ± 31√

β�K∗A1/2 [10−3 GeV−1/2] −2.87 ± 0.81 3.12 ± 0.85 4.53 ± 0.38 5.21 ± 0.33 −7.22 ± 1.40√
β�K∗A3/2 [10−3 GeV−1/2] −1.04 ± 0.29 7.87 ± 2.13 7.84 ± 0.65 3.71 ± 0.24

N (2000)5/2+, N(2040)3/2+, N(2100)1/2+, N(2120)3/2−,
and N (2190)7/2− resonances. The other combinations of two
resonances all ended up in χ2/N � 2.50, noticeably of inferior
quality even with the naked eye as they fail to reproduce the
shape of the measured angular distribution near threshold.
Hence, they are not considered as acceptable fit results. A com-
parison of the fit results with two resonances, one with χ2/N =
2.18 (accepted result corresponding to model V as it will be
discussed later) and another with χ2/N = 2.50 (unaccepted
result with the resonances N (2000)5/2+ and N (2040)3/2+), is
shown in Fig. 3. The difference in the fit quality is clearly seen
even with the naked eye. Now, if three resonances are consid-
ered, the χ2/N improves only slightly by less than 12% com-
pared with that with two resonances. Therefore, in the present
work we do not pursue the analysis with three or more reso-
nances further. This will be postponed until the data for spin
observables become also available. These will impose more
stringent constraints on the resonance contents which, in turn,
will restricts the number of possible resonance combinations
with three or more resonances. With this in mind, we conclude
that one needs at least two resonances to obtain a reasonable
fit of the cross section data for γp → K∗+� in the present
approach.

We now turn to the discussion of the details of our
analysis of the data with two nucleon resonances included.
As mentioned above, in this case there are five different sets of
the resonance combination which result in fits describing the
differential cross section data of K∗+ photoproduction reaction
satisfactorily according to our criterium of χ2/N < 2.5. The
fitted values of all the adjustable parameters in those five
models are listed in Table I. There, the stars below the
resonance names denote the overall status of these resonances

evaluated by the most recent review by the PDG [11], and the
numbers in brackets below the resonance masses and widths
represent the corresponding estimates given by the PDG.
The uncertainties in the resulting parameters are estimates
arising from the uncertainties (error bars) associated with
the fitted experimental differential cross section data points.
For each resonance, apart from its mass, total width, and
cutoff parameter in the form factor, the table also shows the
corresponding reduced helicity amplitudes

√
β�K∗Aj , where

β�K∗ denotes the branching ratio to the decay channel �K∗
and Aj stands for the helicity amplitude with spin j . We
mention that only the product of these two quantities can
be well constrained in the present work as the s-channel
(resonance) amplitudes are sensitive only to the product
of the hadronic and electromagnetic coupling constants, a
feature common to single-channel calculations. Following
Ref. [26], here we have assumed a radiative branching
ratio of βpγ = 0.2% for all the resonances to calculate the
corresponding helicity amplitudes from the associated product
of the hadronic and electromagnetic coupling constants. It is
seen from Table I that the coupling g

(1)
�∗�γ varies much from

one model to another. This is simply because the u-channel
�∗(1385) exchange has negligible contribution to the reaction
γp → K∗+� (cf. Figs. 5 and 6 discussed later in this section).
The fitted values of �K , the cutoff parameter in the K-meson
exchange contribution, are very close to each other in models
I–V—they are all around 1.0 GeV. This value is determined
mainly by the data in the high-energy region, where the
K meson exchange dominates the whole amplitude of this
reaction (cf. Figs. 5 and 6). The fitted values of the mass
of N (2060)5/2− from various models are also very close
to each other, while those of its decay width are not. In
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FIG. 4. Differential cross sections for γp → K∗+� as a function of cos θ in the center-of-mass from models I (black solid lines), II (green
dash-double-dotted lines), III (black solid lines), IV (red dash-dotted lines), and V (cyan dotted lines). The scattered symbols denote the CLAS
data [9]. The photon incident energy binning is 100 MeV. The numbers in parentheses denote the centroid value of the photon laboratory
incident energy (left number) and the corresponding total center-of-mass energy of the system (right number), in MeV.

each of the models I–V, the value of the fitted mass of the
other resonance is compatible with that quoted in PDG [11].
The fit result for the width of the four-star N (2190)7/2− is
compatible with the PDG estimate which has a large range. The
widths of the N (2000)5/2+, N (2040)3/2+, N (2120)3/2−,
and N (2100)1/2+ resonances obtained in the present work
are somewhat larger than those obtained in the other analyses
listed in the PDG. We note that the reduced helicity amplitudes
for N (2060)5/2− corresponding to model II are much smaller

than those corresponding to the other models. This is caused
by the smaller value of the resulting resonance mass of 2009 ±
5 MeV for model II, leading to a much smaller branching ratio
β�K∗ . Note that the R → �K∗ decay threshold is 2007 MeV;
thus, for model II, the N (2060)5/2− resonance is only 2 MeV
above the threshold. We will discuss further details below in
connection with the differential cross section results shown
in Figs. 4 and 5 and the total cross section results shown in
Fig. 6.
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FIG. 5. Differential cross sections for γp → K∗+� as a function of cos θ in the center of mass from model I (black solid lines). The
scattered symbols denote the CLAS data [9]. The blue dashed, green dash-double-dotted, and magenta dash-dotted lines represent the
individual contributions from K, N (2060)5/2−, and N (2000)5/2+ exchanges, respectively. The photon incident energy binning is 100 MeV.
The numbers in parentheses denote the centroid value of the photon laboratory incident energy (left number) and the corresponding total
center-of-mass energy of the system (right number), in MeV.

The results for differential cross sections corresponding to
the model parameters listed in Table I are shown in Fig. 4,
where the black solid lines, green dash-double-dotted lines,
black solid lines, red dash-dotted lines, and cyan dotted lines

represent the results from models I–V, respectively. One sees
that the overall description of the CLAS high-statistics angular
distribution data is fairly satisfactory in all of the five models.
In particular, the angular dependence of the differential cross
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FIG. 6. Total cross sections with individual (resonance, Born
term, K) contributions for γp → K∗+�. The panels from top to
bottom correspond to the results of modes I–V, as indicated. The data
are from CLAS [9] but not included in the fit.

sections near the �K∗ threshold is qualitatively in good
agreement with the data, much better than the description
of Ref. [18] (cf. Fig. 1). This is because in all our models
I–V, there is a significant contribution from the N (2060)5/2−

resonance in the low-energy region that is responsible for

reproducing the observed shape of the angular distribution
through an interference with the large K-meson exchange
contribution near the �K∗ threshold (cf. Fig. 5). In contrast,
Ref. [18] has a rather small contribution of N (2060)5/2−

and clear discrepancies are seen in its description of the
near-threshold differential cross section data (cf. Fig. 1). This
consideration explains why the mass of N (2060)5/2− is fairly
well constrained, as can be seen from the resulting values
in Table I for models I–V. Figure 5 shows the individual
contributions in model I, where the black solid lines correspond
to the total contribution (coherent sum of all the individual
contributions), the blue dashed lines represent the contribution
from the t-channel K-meson exchange, the green dash-double-
dotted lines indicate the s-channel N (2060)5/2− exchange,
and the magenta dash-dotted lines denote the contribution
from the s-channel N (2000)5/2+ resonance exchange. The
contributions from the other terms are too small to be clearly
seen with the scale used, and thus they are not plotted.
We note that the contributions other than the N (2060)5/2−

resonance and K-meson exchange are practically negligible
in the low-energy region. The contributions from individual
terms in models I–V as a function of energy can be better
seen in the total cross section (cf. Fig. 6). In Fig. 5, one sees
that the K-meson exchange is very important in the whole
energy region considered. In particular, it plays a crucial role in
reproducing the observed forward-peaked angular distribution
at higher energies. This is a general feature observed in many
reactions at high energies, where the t-channel mechanism
accounts for the behavior of the cross section at small t . This
explains why the cutoff parameter values (�K ), which is the
only adjustable parameter for K-meson exchange, are close
to each other in all of our models I–V. In other words, our
K-meson exchange contribution—which practically exhausts
the calculated non-resonant background in the entire energy
region—is largely constrained by the data at high energies.
This leads to a much more unambiguous determination of the
resonance contributions in the present model. On the other
hand, it is also very interesting to see how the Regge trajectory
description of the present reaction would affect the strong
angular dependence at very forward angles at high energies
exhibited by the K-meson exchange mechanism where no data
exist due to the limitations in the forward-angle acceptance of
the CLAS detector [9]. The gauge-invariant dynamical Regge
approach put forward in Ref. [16] seems well suited for this
purpose; however, this is left for a future investigation.

Before we leave the discussion of the differential cross
section results, we mention that although the present calcu-
lation describes the differential cross section data quite well
overall and much better than any of the earlier calculations,
the agreement with the data is not perfect. Indeed, the details
of the observed angular behavior at W = 2.217 GeV is not
quite described by any of our models I–V. Also, our models
show a slight tendency to miss the data at the neighboring
energies of W = 2.174 and 2.259 GeV. As mentioned before,
the inclusion of one more resonance did not help improve the
fit quality much. Further investigation is required here.

Figure 6 shows the predicted total cross sections (black
solid line) together with the individual contributions from
the K exchange (orange dash-dotted line), Born term (blue
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double-dash-dotted line), and the resonances (green dash-
double-dotted line and cyan dashed line) obtained by integrat-
ing the corresponding results for differential cross sections
from our models I–V. We recall that the Born term consists
of the coherent sum of all the contributions other than
the s-channel resonance exchanges, i.e., the coherent sum
of the s-channel N exchange; the t-channel K,K∗, and κ
exchanges; the u-channel �,�, and �∗(1385) exchanges;
and the generalized contact current. Note that the total cross
section data are not included in our fits. In this regard, it should
be emphasized that the CLAS total cross section data have
been obtained by integrating the measured differential cross
sections and suffer from the limited forward-angle acceptance
of the CLAS detector [9], especially at high energies where
the cross section exhibits a strong angular dependence at very
forward angles (cf. Figs. 4 and 5). The lack of differential
cross section data at very forward angles and high energies
reflects in less accurate CLAS total cross section data at these
energies. Hence, caution must be exercised when confronting
these data with theoretical predictions. One sees from Fig. 6
that in all of our models I–V, the predicted total cross sections
are in fairly good agreement with the data over the entire
energy region considered, with one exception that, in model
IV, the predicted total cross sections exhibit a small valley
structure around W ∼ 2.2 GeV; we come back to this point
later. The K meson exchange is seen to play an important
role in the whole energy region, especially at high energies.
Its contribution in all of the models I–V is more or less
similar to each other, as the only adjustable parameter for
K meson exchange, the cutoff mass �K in the form factor,
is constrained by the differential cross section data at high
energies, where this contribution practically dominates this
observable. We observe that our total cross section predictions
exhibit a slight tendency to overestimate the data at very high
energies, although the data are much less accurate and may
suffer from the limitations in the CLAS detector acceptance
as mentioned above. Nevertheless, as mentioned previously in
connection to the discussion of the differential cross sections,
it would be interesting to see how the Regge trajectory
description of the present reaction along the lines suggested in
Ref. [16] would affect the cross section at these high energies.
The contributions from the nonresonant terms other than the
K-meson exchange are negligible, as can be seen by comparing
the Born term (red dash-double-dotted line) with the K
exchange (blue short dashed line) contribution. The negligible
contribution of the u-channel �∗(1385) exchange—which is
a part of the nonresonant term—explains why the coupling
g

(1)
�∗�γ varies so much from one model to another in Table I

with roughly similar fit qualities.
The broad bump exhibited by the total cross section is

caused by the coherent sum of the considered two resonances
and K-meson exchange contributions. In all of the models
I–V, the sharp rise of the cross section from the threshold
up to W ∼ 2.15 GeV is caused by the K-meson exchange
and N (2060)5/2− resonance. The other resonance contributes
mostly at higher energies. These are better seen in Fig. 7,
where the effects of the N (2060)5/2− and N (2000)5/2+

on the total cross section are shown by switching off these
resonances one at a time. One clearly sees that the K-meson

2 2.2 2.4 2.6 2.8
W [GeV]

0

0.1

0.2

0.3

0.4

0.5

σ 
[μ

b]

total
N(2060)5/2- off
N(2000)5/2+ off

I

FIG. 7. Same as in Fig. 6 for model I. The blue dash-dotted line
corresponds to the results with resonance N (2060)5/2− switched off,
while the green dashed line to those with N (2000)5/2+ switched off.
The black solid line is the results of model I shown in Fig. 6.

exchange is responsible for the sharp raise of the total cross
section right from the threshold followed by the buildup due
to N (2060)5/2− as the energy increases up to W ∼ 2.1 GeV.
In Ref. [18], the differential cross section near the �K∗
threshold is not well described (cf. Fig. 1), and consequently,
the total cross section in this energy region is, to some extent,
underestimated. There, the broad bump is mainly described by
the sum of the contributions of N (2120)3/2−, N(2060)5/2−,
and N (2190)7/2−, and the sharp rise of the total cross section
from the threshold is dominantly caused by the combination
of the contributions from the N (2120)3/2− resonance and the
Born term. We mention that the contribution of the K meson
exchange in our models is a little bit different from that in
Ref. [18], not only because the cutoff mass �K is fitted to be
around 1.0 GeV in our model while it is fixed to be 1.1 GeV
in Ref. [18], but also due to the pseudovector coupling chosen
in our models for the �NK vertex [see Eq. (23)] in contrast
to the pseudoscalar coupling adopted in Ref. [18].

We now come back to the issue of the dip structure exhibited
by the total cross section result of model IV, which is caused
by the interference of the N (2060)5/2+ and N (2190)7/2−

2 2.2 2.4 2.6 2.8
W [GeV]

0

0.1

0.2

0.3

0.4

0.5

σ 
[μ

b]

original (Fig. 9)
new fit

IV

FIG. 8. Same as in Fig. 6 for model IV, except that it has been
artificially forced to better reproduce the measured differential cross
section at W = 2.217 GeV (red solid line). The black dashed line is
the results of model IV shown in Fig. 6.
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FIG. 9. Photon beam asymmetries as functions of cosine of the K∗ emission angle θ in the center-of-mass system at two energies for the
γp → K∗+� reaction. The numbers in parentheses denote the photon laboratory incident energy (left number) and the total center-of-mass
energy of the system (right number), in MeV. The blue double-dash-dotted curve, green dashed curve, black solid curve, cyan dash-dotted
curve, and orange dash-double-dotted curve represent the predictions corresponding to the models I–V, respectively.

resonances as can be seen from Fig. 6. Clearly, the data do not
show such a structure. A careful inspection of the differential
cross section fit results of model IV reveals that this structure
is due to the model not being able to quite describe the
measured differential cross section data at one energy, namely,
at W = 2.217 GeV. We note that, actually, not only model
IV, but all the other models are unable to quite reproduce
the angular behavior exhibited by the data at this energy. The
relevant difference between the results of model IV and the
other models that causes the valley structure in model IV is
that model IV underpredicts the data in the angular region
of 0 � cos θ � 0.5, while the other models also underpredict
in this angular region but overpredict for other angles. As
a result, the total cross section predictions for other models
agree with the data but it is underpredicted by model IV at this
energy. In fact, if one is forced to describe the differential cross
section better at W = 2.217 GeV (at the expenses of a slightly
deteriorating description for the neighboring energies), the dip

structure in the prediction of model IV disappears completely,
as illustrated in Fig. 8.

As can be seen in Figs. 4 and 5 and as has been discussed
above, the models I–V describe the most recent CLAS data
on the differential cross sections for K∗+ photoproduction
fairly well overall and with similar fit qualities in the full
energy-range considered. However, they exhibit quite different
resonance contents, as indicated in Table I and clearly seen in
the total cross section predictions shown in Fig. 6. By now, it is
a well-known fact that the cross section data alone (even with
high statistics) do not impose enough stringent constraints
on the fits to pin down the model parameters, especially on
the resonance contents and associated resonance parameters.
Such a feature has also been found and discussed in Ref. [39]
in a study of η′ photoproduction. One expects that the spin
observables may be more sensitive to the dynamical contents of
different models. In Figs. 9–11, we show the predictions of the
photon beam asymmetry (�), target nucleon asymmetry (T ),

-1 -0.5 0 0.5 1
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-0.5
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(2150, 2217) (2650, 2419)

FIG. 10. Same as in Fig. 9 for target nucleon asymmetries.
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FIG. 11. Same as in Fig. 9 for recoil � asymmetries.

and recoil � asymmetry (P ) corresponding to our models I–V.
As we can see, unlike the cross sections, the predictions for spin
observables vary considerably among different models. For
energies where the photon beam asymmetry is less sensitive
to the models, the target nucleon asymmetry and the recoil
� asymmetry are quite sensitive, and vice versa. Therefore,
overall, a combined analysis of the data of these spin observ-
ables is expected to impose much more stringent constraints
on the resonance contents and help better determine the
model parameters for γp → K∗+�. We hope that these spin
observables can be measured in experiments in the near future.

IV. SUMMARY AND CONCLUSION

In the present work, we have analyzed the most recent high-
statistic cross section data reported by the CLAS Collaboration
for the γp → K∗+� reaction [9]. The analysis has been based
on an effective Lagrangian approach in the tree-level approx-
imation. Apart from the t-channel K, κ,K∗ exchanges, the s-
channel nucleon (N ) exchange, the u-channel �,�,�∗(1385)
exchanges, and the generalized contact current, the contri-
butions from the near-threshold nucleon resonances in the s
channel have been also taken into account in constructing the
reaction amplitude. The generalized contact current introduced
in the present work ensures that the reaction amplitude in
our model is fully gauge invariant as it obeys the generalized
Ward-Takahashi identity [23–26].

It is found that to obtain a satisfactory description of the
high-statistics differential cross section data from CLAS,
at least two nucleon resonances should be included
in the s-channel interaction diagrams. Furthermore,
we have found five distinct sets of resonances that
describe these data with similar accuracies in the whole
energy range of 1.75 GeV � Eγ � 3.85 GeV. One of
these two resonances, common to all five sets, is the
N (2060)5/2−; the other resonance in each of the five sets is
N (2000)5/2+, N(2040)3/2+, N(2100)1/2+, N(2120)3/2−,
and N (2190)7/2−, respectively. The differential cross section
data near the �K∗ threshold is for the first time described quite

satisfactorily. The resulting resonance masses are compatible
with those advocated by the Particle Data Group (PDG)
[11]. Although the CLAS total cross section data—which
are obtained by integrating the measured differential cross
sections—may suffer from the limited angular acceptance
of the CLAS detector for forward angles, the predicted total
cross sections are in good agreement with these data.

It is shown that, together with the K-meson exchange, the
N (2060)5/2− resonance practically determine the dynamics
of the γp → K∗+� reaction in the low-energy region in
the present model. In particular, they are responsible for
the observed shape of the angular distribution and for the
sharp raise of the total cross section from the threshold up
to W ∼ 2.1 GeV. The other resonance, in each of the five
sets, contribute significantly at higher energies. The K-meson
exchange provides a very significant contribution to the cross
sections in the entire energy range considered, especially at
high energies where it dominates the cross section to a large
extent, while the contributions from the other nonresonant
terms are found to be negligible.

The predicted photon beam asymmetry, target nucleon
asymmetry, and recoil � asymmetry are found to vary
considerably from one model to another, indicating their
sensitivity to the details of the models, in particular, to the
different resonance contents that cannot be distinguished by
the cross section alone. It is expected that the data for these
spin observables would impose more stringent constraints on
the models than the cross sections and help understand better
the reaction mechanism and determine better the resonance
contents and associated resonance parameters in the γp →
K∗+� reaction. We hope that these data can be measured in
experiments in the near future.

We should also mention that although the present calcu-
lation describes the differential cross section data quite well
overall and much better than any of the earlier calculations,
the agreement with the data is not perfect. In particular, the
details of the observed angular behavior at W = 2.217 GeV is
not quite described by any of our models I–V. As mentioned
in Sec. III, the inclusion of one more resonance does not help
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improve much the fit quality. Further investigation is required
here.
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