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Relative mass distributions of neutron-rich thermally fissile nuclei within a statistical model
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We study the binary mass distribution for the recently predicted thermally fissile neutron-rich uranium and
thorium nuclei using a statistical model. The level density parameters needed for the study are evaluated from
the excitation energies of the temperature-dependent relativistic mean field formalism. The excitation energy and
the level density parameter for a given temperature are employed in the convolution integral method to obtain the
probability of the particular fragmentation. As representative cases, we present the results for the binary yields
of 250U and 254Th. The relative yields are presented for three different temperatures: T = 1, 2, and 3 MeV.
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I. INTRODUCTION

The fission phenomenon is one of the most interesting
subjects in the field of nuclear physics. To study fission
properties, a large number of models have been proposed.
The fissioning of a nucleus is successfully explained by the
liquid drop model, and the semiempirical mass formula is
the best and oldest simple tool to get a rough estimation
of the energy released in a fission process. The pioneering
work of Vautherin and Brink [1], who applied the Skyrme
interaction in a self-consistent method for the calculation
of ground state properties of finite nuclei, opened a new
dimension in the quantitative estimation of nuclear properties.
Subsequently, the Hartree-Fock and time-dependent Hartree-
Fock formalisms [2] were also implemented to study the
properties of fission. Most recently, the microscopic relativistic
mean field approximation, which is another successful theory
in nuclear physics, is also used for the study of nuclear
fission [3].

In the last few decades, the availability of neutron-rich
nuclei in various laboratories across the globe opened up new
research in the field of nuclear physics, because of their exotic
decay properties. The effort toward the synthesis of superheavy
nuclei in laboratories such as Dubna (Russia), GSI (Germany),
RIKEN (Japan) and BNL (USA) is also quite remarkable.
Due to all these, the periodic table has been extended, to
date, up to atomic number Z = 118 [4]. The decay modes
of these superheavy nuclei are very different than the usual
modes. Mostly, we understand that a neutron-rich nucleus
has a larger number of neutron than nuclei in the light or
medium mass region of the periodic table. The study of these
neutron-rich superheavy nuclei is very interesting because
of their ground state structures and various modes of decay,
including multifragment fission (more than two fragments) [3].
Another interesting feature of some neutron-rich uranium and
thorium nuclei is that, similar to 233U, 235U, and 239Pu, the
nuclei 246–264U and 244–262Th are also thermally fissile, which
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is extremely important for energy production in the fission
process. If these neutron-rich uranium and thorium nuclei are
viable sources, then these nuclei will be more effective for
achieving the critical condition in a controlled fission reaction.

Now the question arises, how we can get a reasonable
estimation of the mass yield in the spallation reaction of these
neutron-rich thermally fissile nuclei? As mentioned earlier
in this section, there are many formalisms available in the
literature to study these cases. Here, we adopt the statistical
model developed by Fong [5]. The calculation is further
extended by Rajasekaran and Devanathan [6] to study the
binary mass distributions using the single-particle energies of
the Nilsson model. The obtained results are in good agreement
with the experimental data. In the present study, we would
like to replace the single-particle energies with the excitation
energies of a successful microscopic approach: the relativistic
mean field (RMF) formalism.

For the last few decades, the relativistic mean field (RMF)
formalism [7–11] with various parameter sets has successfully
reproduced the bulk properties, such as binding energies,
root-mean-square radii, quadrupole deformation, etc., not only
for nuclei near the β-stability line but also for nuclei away
from it. Further, the RMF formalism has been successfully
applied to the study of clusterization of known cluster emitting
heavy nuclei [12–14] and the fission of hyper-hyper-deformed
56Ni [15]. Rutz et al. [16] reproduced the double and
triple humped fission barriers of 240Pu and 232Th and the
asymmetric ground states of 226Ra using the RMF formalism.
Moreover, the symmetric and asymmetric fission modes are
also successfully reproduced. Patra et al. [3] studied the neck
configuration in the fission decay of neutron-rich U and Th
isotopes. The main goal of this present paper is to understand
the binary fragmentation yields of such neutron-rich thermally
fissile superheavy nuclei. 250U and 254Th are taken for further
calculations as the representative cases.

The paper is organized as follows: In Sec. II, the statistical
model and relativistic mean field theory are presented briefly.
In subsection II A, the level density parameter and it’s relation
with the relative mass yield are outlined. In subsection II B,
the equation of motion of the nucleon and meson fields
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obtained from the relativistic mean field Lagrangian and
the temperature dependence of the equations are adopted
through the occupation numbers of protons and neutrons. The
results are discussed in Sec. III and compared with the finite
range droplet model (FRDM) predictions. The summary and
concluding remarks are given in Sec. IV.

II. FORMALISM

The possible binary fragments of the considered nucleus
are obtained by equating the charge-to-mass ratio of the parent
nucleus to the fission fragments as [17]

ZP

AP

≈ Zi

Ai

, (1)

with AP , ZP and Ai , Zi (i = 1 and 2) corresponding to mass
and charge numbers of the parent nucleus and the fission
fragments [6]. The constraints A1 + A2 = A, Z1 + Z2 = Z,
and A1 � A2 are imposed to satisfy the conservation of charge
and mass number in a nuclear fission process and to avoid the
repetition of fission fragments. Another constraint, i.e., the
binary charge numbers from Z2 � 26 to Z1 � 66, is also
taken into consideration from the experimental yield [18] to
generate the combinations, assuming that the fission fragments
lie within these charge ranges.

A. Statistical theory

The statistical theory [5,19] assumes that the probability
of the particular fragmentation is directly proportional to
the folded level density ρ12 of the fragments with the total
excitation energy E∗, i.e., P (Aj ,Zj ) ∝ ρ12(E∗). Here,

ρ12(E∗) =
∫ E∗

0
ρ1(E∗

1 ) ρ2(E∗ − E∗
1 ) dE∗

1 , (2)

and ρi is the level density of two fragments (i = 1,2). The
nuclear level density [20,21] is expressed as a function of
fragment excitation energy E∗

i and the single particle level
density parameter ai :

ρi(E
∗
i ) = 1

12

(
π2

ai

)1/4

E
∗(−5/4)
i exp(2

√
aiE

∗
i ). (3)

In Refs. [17,22], we calculate the excitation energies of the
fragments using the ground state single-particle energies of
finite range droplet model (FRDM) [23] at a given temperature
T , keeping the total number of protons and neutrons fixed. In
the present study, we apply the self consistent temperature
dependent relativistic mean field theory to calculate the E∗ of
the fragments. The excitation energy is calculated as

E∗
i (T ) = Ei(T ) − Ei(T = 0). (4)

The level density parameter ai is given as

ai = E∗
i

T 2
. (5)

The relative yield is calculated as the ratio of the probability
of a given binary fragmentation to the sum of the probabilities

of all the possible binary fragmentations:

Y (Aj ,Zj ) = P (Aj ,Zj )∑
j P (Aj ,Zj )

, (6)

where Aj and Zj refer to the binary fragmentations involv-
ing two fragments with mass and charge numbers A1, A2

and Z1, Z2 obtained from Eq. (1). The competing basic
decay modes such as neutron/proton emission, α decay, and
ternary fragmentation are not considered. In addition to these
approximations, we have also not included the dynamics
of the fission reaction, which are really important to get a
quantitative comparison with the experimental measurements.
The presented results are the prompt disintegration of a
parent nucleus into two fragments (democratic breakup). The
resulting excitation energy would be liberated as prompt
particle emission or delayed emission, but such secondary
emissions are also ignored.

B. RMF Formalism

The RMF theory assume that the nucleons interact with
each other via meson fields. The nucleon-meson interaction is
given by the Lagrangian density [7–9,11,24,25]

L = ψi{iγ μ∂μ − M}ψi + 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2

− 1

3
g2σ

3 − 1

4
g3σ

4 − gσψiψiσ

− 1

4

μν
μν + 1

2
m2

wV μVμ − gwψiγ
μψiVμ

− 1

4
�Bμν · �Bμν + 1

2
m2

ρ
�Rμ · �Rμ − gρψiγ

μ�τψi · �Rμ

− 1

4
FμνFμν − eψiγ

μ (1 − τ3i)

2
ψiAμ, (7)

where ψi is the single-particle Dirac spinor. The arrows
over the letters in the above equation represent the isovector
quantities. The nucleon and the σ , ω, and ρ meson masses are
denoted by M , mσ , mω, and mρ respectively. The meson and
the photon fields are denoted as σ , Vμ, Rμ, and Aμ for σ , ω, ρ
mesons and photon respectively. The gσ , gω, gρ , and e2

4π
are the

coupling constants for the σ , ω, ρ mesons and photon fields
with nucleons respectively. The strengths of the constants g2

and g3 are responsible for the nonlinear couplings of σ meson
(σ 3 and σ 4). The field tensors of the isovector mesons and the
photon are given by


μν = ∂μV ν − ∂νV μ, (8)

�Bμν = ∂μ �Rν − ∂ν �Rμ − gρ( �Rμ × �Rν), (9)

Fμν = ∂μAν − ∂νAμ. (10)

The classical variational principle gives the Euler-Lagrange
equation and we get the Dirac equation with potential terms
for the nucleons and Klein-Gordan equations with source terms
for the mesons. We assume the no-sea approximation, so we
neglect the antiparticle states. We are dealing with the static
nucleus, so the time reversal symmetry and the conservation
of parity simplifies the calculations. After simplifications, the
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Dirac equation for the nucleon is given by

{−iα. � +V (r) + β[M + S(r)]} ψi = εi ψi, (11)

where V (r) represents the vector potential and S(r) is the scalar
potential,

V (r) = gωω0 + gρτ3ρ0(r) + e
(1 − τ3)

2
A0(r),

S(r) = gσσ (r),
(12)

which contributes to the effective mass,

M∗(r) = M + S(r). (13)

The Klein-Gordon equations for the mesons and the
electromagnetic fields with the nucleon densities as sources
are{−� + m2

σ

}
σ (r) = −gσρs(r) − g2σ

2(r) − g3σ
3(r), (14)

{−� + m2
ω

}
ω0(r) = gωρv(r), (15)

{−� + m2
ρ

}
ρ0(r) = gρρ3(r), (16)

−�A0(r) = eρc(r). (17)

The corresponding densities such as scalar, baryon (vector),
isovector, and proton (charge) are given as

ρs(r) =
∑

i

ni ψ
†
i (r) ψi(r), (18)

ρv(r) =
∑

i

ni ψ
†
i (r) γ0 ψi(r), (19)

ρ3(r) =
∑

i

ni ψ
†
i (r) τ3 ψi(r), (20)

ρc(r) =
∑

i

ni ψ
†
i (r)

(
1 − τ3

2

)
ψi(r). (21)

To solve the Dirac and Klein-Gordan equations, we expand
the Boson fields and the Dirac spinor in an axially deformed
harmonic oscillator basis with β0 as the initial deformation
parameter. The nucleon equation along with different meson
equations form a set of coupled equations, which can be
solved by an iterative method. The center-of-mass correction
is calculated with the nonrelativistic approximation. The
quadrupole deformation parameter β2 is calculated from the
resulting quadrupole moments of the proton and neutron.
The total energy is given by [10,26,27],

E(T ) =
∑

i

εini + Eσ + EσNL + Eω + Eρ

+EC + Epair + Ec.m. − AM, (22)

with

Eσ = −1

2
gσ

∫
d3r ρs(r)σ (r), (23)

EσNL = −1

2

∫
d3r

{
2

3
g2 σ 3(r) + 1

2
g3 σ 4(r)

}
, (24)

Eω = −1

2
gω

∫
d3r ρv(r)ω0(r), (25)

Eρ = −1

2
gρ

∫
d3r ρ3(r)ρ0(r), (26)

EC = − e2

8π

∫
d3r ρc(r)A0(r), (27)

Epair = −�
∑
i>0

uivi = −�2

G
, (28)

Ec.m. = −3

4
× 41A−1/3. (29)

Here, εi is the single particle energy, ni is the occupation
probability, and Epair is the pairing energy obtained from the
simple BCS formalism.

C. Pairing and temperature-dependent RMF formalism

The pairing correlation plays a distinct role in open-shell
nuclei. The effect of pairing correlation is markedly seen with
increase in mass number A. Moreover, it helps in understand-
ing the deformation of medium and heavy nuclei. It has a lean
effect on both bulk and single-particles properties of lighter
mass nuclei because of the availability of limited pairs near the
Fermi surface. We take the case of the T = 1 channel of pairing
correlation i.e,, pairing between proton-proton and neutron-
neutron. In this case, a nucleon of quantum states |jmz〉 pairs
with another nucleons having the same Iz value with quantum
states |j − mz〉, since it is the time reversal partner of the other.
In both nuclear and atomic domains the concept of BCS pairing
is the same. The even-odd mass staggering of isotopes was the
first evidence of its kind for the pairing energy. Considering
the mean-field formalism, the violation of the particle number
is seen only due to the pairing correlation. We find terms like
ψ†ψ (density) in the RMF Lagrangian density but we put an
embargo on terms of the form ψ†ψ† or ψψ since they violate
the particle number conservation. We apply externally the BCS
constant pairing gap approximation for our calculation to take
the pairing correlation into account. The pairing interaction
energy in terms of occupation probabilities v2

i and u2
i = 1 − v2

i

is written as [28,29]

Epair = −G

[∑
i>0

uivi

]2

, (30)

with G being the pairing force constant. The variational
approach with respect to the occupation number v2

i gives the
BCS equation [29]

2εiuivi − �(
u2

i − v2
i

) = 0, (31)

with the pairing gap � = G
∑

i>0 uivi . The pairing gap (�) of
proton and neutron is taken from the empirical formula [10,30]:

� = 12 × A−1/2. (32)

The temperature introduced in the partial occupancies in the
BCS approximation is given by

ni = v2
i = 1

2

[
1 − εi − λ

ε̃i

[1 − 2f (ε̃i ,T )]

]
, (33)
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with

f (ε̃i ,T ) = 1

(1 + exp[ε̃i/T ])
and

ε̃i =
√

(εi − λ)2 + �2. (34)

The function f (ε̃i ,T ) represents the Fermi Dirac distribution
for quasiparticle energy ε̃i . The chemical potential λp (λn) for
protons (neutrons) is obtained from the constraints of particle
number equations,∑

i

nZ
i = Z,

∑
i

nN
i = N. (35)

The sum is taken over all proton and neutron states. The
entropy is obtained by

S = −
∑

i

[ni ln(ni) + (1 − ni) ln(1 − ni)]. (36)

The total energy and the gap parameter are obtained by
minimizing the free energy,

F = E − T S. (37)

In constant pairing gap calculations, for a particular value of
pairing gap � and force constant G, the pairing energy Epair

diverges, if it is extended to an infinite configuration space. In
fact, in all realistic calculations with finite range forces, � is
not constant, but decreases with large angular momenta states
above the Fermi surface. Therefore, a pairing window in all the
equations is extended up to the level |εi − λ| � 2(41A−1/3) as
a function of the single-particle energy. The factor 2 has been
determined so as to reproduce the pairing correlation energy
for neutrons in 118Sn using the Gogny force [10,28,31].

III. RESULTS AND DISCUSSIONS

In our very recent work [32], we calculated the ternary
mass distributions for 252Cf, 242Pu, and 236U with the fixed
third fragments A3 = 48Ca, 20O, and 16O respectively for the
three different temperatures T = 1, 2, and 3 MeV within the
TRMF formalism. The structure effects of binary fragments
are also reported in Ref. [33]. In this article, we study the mass
distribution of 250U and 254Th as representative cases from
the range of neutron-rich thermally fissile nuclei 246–264U and
244–262Th. Because of the neutron-rich nature of these nuclei, a
large number of neutrons are emitted during the fission process.
These nucleons help to achieve the critical condition much
sooner than in normal fissile nuclei.

To assure the predictability of the statistical model, we also
study the binary fragmentation of naturally occurring 236U
and 232Th nuclei. The possible binary fragments are obtained
using the Eq. (1). To calculate the total binding energy at a
given temperature, we use the axially symmetric harmonic
oscillator basis expansions NF and NB for the Fermion
and Boson wave functions to solve the Dirac equation (11)
and the Klein-Gordon equations (14)–(17) iteratively. It is
reported [34] that the effect of the basis space on the calculated

binding energy, quadrupole deformation parameter (β2), and
the rms radii of the nucleus are almost equal for the basis set
NF = NB = 12 to 20 in the mass region A ∼ 200. Thus, we
use the basis space NF = 12 and NB = 20 to study the binary
fragments up to mass number A ∼ 182. The binding energy is
obtained by minimizing the free energy, which gives the most
probable quadrupole deformation parameter β2 and the proton
(neutron) pairing gaps �p (�n) for the given temperature.
At finite temperature, the continuum corrections due to the
excitation of nucleons need to be considered. The level density
in the continuum depends on the basis space NF and NB [35]. It
is shown that the continuum corrections need not be included
in the calculations of level densities up to the temperature
T ∼ 3 MeV [36,37].

A. Level density parameter and level density
within TRMF and FRDM formalisms

In TRMF, the excitation energies E∗ and the level density
parameters ai of the fragments are obtained self-consistently
from Eqs. (4) and (5). The FRDM calculations are also done
for comparison. In this case, level densities of the fragments
are evaluated from the ground state single-particle energies of
the finite range droplet model (FRDM) of Möller et al. [38]
which are retrieved from the Reference Input Parameter
Library (RIPL-3) [39]. The total energy at a given temperature
is calculated as E(T ) = ∑

niεi ; εi are the ground state
single-particle energies and ni are the Fermi-Dirac distribution
functions. The T -dependent energies are obtained by varying
the occupation numbers at a fixed particle number for a given
temperature and given fragment. The level density parameter
a is a crucial quantity in the statistical theory for the estimation
of yields. These values of a for the binary fragments of 236U,
250U, 232Th, and 254Th obtained from TRMF and FRDM are
depicted in Fig. 1. The empirical estimations a = A/K are
also given for comparison, with K being the inverse level
density parameter. In general, the K value varies from 8 to
13 with the increasing temperature. However, the level density
parameter is considered to be constant up to T ≈ 4 MeV.
Hence, we take the practical value of K = 10 as mentioned in
Ref. [40]. The a values of TRMF are close to the empirical
level density parameter. The FRDM level density parameters
are appreciably lower than the referenced a. Further, in both
models at T = 1 MeV, there are more fluctuations in the level
density parameter due to the shell effects of the fragments.
At T = 2 and 3 MeV, the variations are small. This may be
due to the fact that the shell becomes degenerate at the higher
temperatures. All fragments becomes spherical at temperature
T ≈ 3 MeV as shown in Ref. [33].

The level density parameter a is evaluated in two different
ways using excitation energy and the entropy of the system as

aE = E∗

T 2
, aS = S

2T
. (38)

For instance, the inverse level density parameters KE and KS

of 236U, 250U, 232Th, and 254Th within the TRMF formalism
are depicted in Fig. 2. Both KS and KE have maximum
fluctuation up to 30 MeV at T = 1 MeV. These values reduce
to 10–13 MeV at temperature T = 2 MeV or above. It is
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FIG. 1. The level density parameter a for the binary fragmenta-
tion of 236U, 250U, 232Th, and 254Th at temperatures T = 1, 2, and
3 MeV within the TRMF (solid lines) and FRDM (dashed lines)
formalisms.

to be noted that, at T = 3 MeV, the inverse level density
parameter is substantially lower around the mass number A ∼
130 in all cases. This may be due to the neutron closed shell
(N = 82) in the fission fragments of 236U and 232Th and the
neutron-rich nuclei 250U and 254Th. The level densities for the
fission fragments of 236U, 250U, 232Th, and 254Th are plotted
as a function of mass number in Fig. 3 within the TRMF and
FRDM formalisms at three different temperatures, T = 1, 2,
and 3 MeV.

The level density ρ has maximum fluctuations at T =
1 MeV for all considered nuclei in the TRMF model, similar
to the level density parameter a. The ρ values are substantially
lower at mass number A ∼ 130 for all nuclei. In Fig. 3, one can

FIG. 2. The inverse level density parameters KE (solid lines) and
KS (dashed lines) are obtained for 236U, 250U, 232Th, and 254Th at
temperatures T = 1, 2, and 3 MeV.

notice that the level density has small kinks in the mass regions
A ∼ 71–81 of 236U and A ∼ 77–91 of 250U, compared with the
neighboring nuclei at temperature T = 2 MeV. Consequently,
the corresponding partner fragments have also higher ρ values.
A further inspection reveals that the level density of the closed
shell nucleus around A ∼ 130 has higher value than the
neighboring nuclei for both 236,250U, but it has lower yield
due to the smaller level density of the corresponding partners.
At T = 3 MeV, the level density of the fragments around mass
numbers A ∼ 72 and 130 have larger values compared to other
fragments of 236U. On the other hand, the level density in the
vicinity of neutron number N = 82 and proton number Z = 50
for the fragments of the neutron-rich 250U nucleus is quite high,
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FIG. 3. The level densities of the binary fragmentations of 236U,
250U, 232Th, and 254Th at temperatures T = 1, 2, and 3 MeV within
the TRMF (solid lines) and FRDM (dashed lines) formalisms.

because of the closed shell of the fragments. This is evident
from the small kink in the level density of 130Cd (N = 82),
132In(N ∼ 82), and 135Sn (Z = 50). Again, for 232Th, the level
densities are found to be maximum at around mass number
A ∼ 81 and 100 for T = 2 MeV. In case of 254Th, the ρ values
are found to be large for the fragments around A ∼ 78 and 97
at T = 2 MeV. Their corresponding partners have also similar
behavior. For higher temperature T = 3 MeV, the higher ρ
values of 232Th fragments are notable around mass number
A ∼ 130. Similarly, for 254Th, the fission fragments around
A ∼ 78 have higher level density at T = 3 MeV. In general,
the level density increases towards the neutron closed shell
(N = 82) nucleus.

FIG. 4. Mass distributions of 236U and 250U at temperatures T =
1, 2, and 3 MeV. The total yield values are normalized to the scale 2.

B. Relative fragmentation distribution in binary systems

In this section, the mass distributions of 236U, 232Th,
and the neutron-rich nuclei 250U and 254Th are calculated at
temperatures T = 1, 2, and 3 MeV using TRMF and FRDM
excitation energies and the level density parameters a as
explained in Sec. II. The binary mass distributions of 236,250U
and 232,254Th are plotted in Figs. 4 and 5. The total energy
at finite temperature and ground state energy are calculated
using the TRMF formalism as discussed in Sec. III A. From the
excitation energy E∗ and the temperature T , the level density
parameter a and the level density ρ of the fragments are calcu-
lated using Eq. (3). From the fragment level densities ρi , the
folding density ρ12 is calculated using the convolution integral
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FIG. 5. Mass distributions of 232Th and 254Th at temperatures
T = 1, 2, and 3 MeV. The total yield values are normalized to the
scale 2.

as in Eq. (2) and the relative yields are calculated using Eq. (6).
The total yields are normalized to the scale 2.

The mass yields of normal nuclei 236U and 232Th are
briefly explained first, followed by a detailed description of the
neutron-rich nuclei. The results of the most favorable fragment
yields of 236,250U and 232,254Th are listed in Table I at three
different temperatures, T = 1, 2, and 3 MeV, for both TRMF
and FRDM formalisms. From Figs. 4 and 5, it is shown that
the mass distributions for 236U and 232Th are quite different
from those of the neutron-rich 250U and 254Th isotopes.

The symmetric binary fragmentation 118Pd + 118Pd for
236U is the most favorable combination. In TRMF, the frag-
ments with closed shell (N = 100 and Z = 28) combinations
are more probable at the temperature T = 2 MeV. The blend

region of neutron and proton closed shells (N ≈ 82 and Z ≈
50) has considerable yield values at T = 3 MeV. The frag-
mentations 151Pr + 85As, 142Cs + 94Rb, and 144Ba + 92Kr are
the favorable combinations at temperature T = 1 MeV in the
FRDM formalism. For higher temperatures T = 2 and 3 MeV,
the closed shell or nearly closed shell fragments (N = 82,50
and Z = 28) have larger yields. From Fig. 5, the in TRMF
formalism, the combinations 118Pd + 114Ru and 140Xe + 92Kr
are the possible fragments at T = 1 MeV for the nucleus 232Th.
At T = 2 MeV, we find maximum yields for the fragments
with the closed shell or nearly closed shell combinations
(N = 82,50). For higher temperature T = 3 MeV, near the
neutron closed shell (N ∼ 82), 132Sb + 100Y is the most
favorable fragmentation pair compared with all other yields.
Similar fragmentations are found in the FRDM formalism at
T = 2 and 3 MeV. In addition, the probability of the evaluation
of 129Sn + 103Zr is also quite substantial in the fission process.
For T = 1 MeV, the yield is more or less similar to the TRMF
model.

From Fig. 4, for 250U the fragment combinations
140,141Te + 110,109Zr have the maximum yields at T = 1 MeV
in TRMF. This is also consistent with the evolution of the
subclosed proton shell Z = 40 in Zr isotopes [41]. Contrary
to this almost symmetric binary yield, the mass distribution of
this nucleus in the FRDM formalism has an asymmetric evo-
lution of fragment combinations such as 160,159Pr + 90,91As,
163,162Nd + 87,88Ge, and 150Cs + 100Rb. Interestingly, at
T = 2 and 3 MeV, the more favorable fragment combinations
have one of the closed shell nuclei. At T = 2 MeV, 159Pr +
91As, 162Nd + 88Ge, and 173Gd + 77Ni are the more probable
fragmentations [see Fig. 4(c)]. It is reported by Satpathy
et al. [42] and experimentally verified by Patel et al. [43]
that N = 100 is a neutron close shell for the deformed region,
where Z = 62 acts like a magic number. In FRDM, 128Ag +
122Rh, 132In + 118Tc, 140Te + 110Zr, and 173Gd + 77Ni have
larger yields at temperature T = 2 MeV. With the TRMF
method, the most favorable fragments are confined in the
single region (A ≈ 114–136) which is a blend of vicinities
of neutron (N = 82) and proton (Z = 50) closed shell nuclei
at T = 3 MeV. The fragment combinations 130Cd + 120Ru,
132In + 118Tc, and 135Sn + 115Mo are the major yields for
250U at T = 3 MeV in TRMF calculations. With the FRDM
method, at T = 3 MeV, more probable fragments are similar to
those at T = 2 MeV. A comparison between Figs. 4(c) and 4(d)
clarifies that, although the predictions of FRDM and TRMF
at T = 3 MeV are qualitatively similar, they are quantitatively
very different at T = 2 MeV in both the predictions. Also, from
Fig. 4, it is inferred that the yields of the fragment combinations
in the blend region increase and in other region decrease at
T = 2 MeV.

In the present study, the total energy of the parent nucleus
A is more than the sum of the energies of the daughters A1

and A2. Here, the dynamics of the entire process starting from
the initial stage up to the scission are ignored. As a result, the
energy conservation in the spallation reaction is not taken into
account. The fragment yield can be regarded as the relative
fragmentation probability, which is obtained from Eq. (6).
Now we analyze the fragmentation yields for Th isotopes, and
the results are depicted in Fig. 5 and Table I. In this case, one
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TABLE I. The relative fragmentation yield (R.Y.) = Y (Aj ,Zj ) = P (Aj ,Zj )∑
P (Aj ,Zj ) for 236U, 250U, 232Th, and 254Th, obtained with TRMF at

temperatures T = 1, 2, and 3 MeV are compared with the FRDM prediction (the yield values are normalized to 2).

Parent T (MeV) TRMF FRDM Parent T (MeV) TRMF FRDM

Fragment R.Y. Fragment R.Y. Fragment R.Y. Fragment R.Y.

236U 1 118Pd + 118Pd 0.949 151Pr + 85As 0.210 250U 1 141Te + 109Zr 1.454 160Pr + 90As 0.248
119Pd + 117Pd 0.910 142Cs + 94Rb 0.178 140Te + 110Zr 0.491 161Pr + 89As 0.247
143Ba + 93Kr 0.032 144Ba + 92Kr 0.134 148Xe + 102Sr 0.014 159Pr + 91As 0.166

2 165Gd + 71Ni 0.323 132Sb + 104Nb 0.216 2 159Pr + 91As 0.348 128Ag + 122Rh 0.193
164Gd + 72Ni 0.264 133Te + 103Zr 0.213 162Nd + 88Ge 0.197 132In + 118Tc 0.168
163Gd + 73Ni 0.221 151Pr + 85As 0.210 160Pr + 90As 0.176 140Te + 110Zn 0.140
154Nd + 82Ge 0.240 159Sb + 77Zn 0.087 173Gd + 77Ni 0.175 141Te + 109Zn 0.100

3 163Gd + 73Ni 0.249 132Sb + 104Nb 0.283 3 130Cd + 120Ru 0.565 128Ag + 122Rh 0.414
164Gd + 72Ni 0.214 133Te + 103Zr 0.242 132In + 118Tc 0.255 132In + 118Tc 0.278

136I + 100Y 0.143 134Te + 102Zr 0.102 127Ag + 123Rh 0.236 129Ag + 121Rh 0.149
131Sb + 105Nb 0.114 129Sn + 107Mo 0.092 135Sn + 115Mo 0.161 130Cd + 120Ru 0.083

232Th 1 118Pd + 114Ru 0.773 142Cs + 90Br 0.190 254Th 1 142Sn + 112Zr 0.439 145Sb + 109Y 0.183
140Xe + 92Kr 0.515 144Ba + 88Se 0.124 145Sb + 109Y 0.291 163Ce + 91Ge 0.118
141Cs + 91Br 0.174 120Ag + 112Tc 0.123 155Cs + 99Br 0.176 144Sb + 110Y 0.115

120Ag + 112Tc 0.129 158Pm + 74Cu 0.092 157Ba + 97Se 0.139 168Nd + 86Zn 0.077
2 151Pr + 81Ga 0.505 132Sb + 100Y 0.213 2 176Sm + 78Ni 0.370 144Sb + 110Y 0.161

132Sb + 100Y 0.334 134Te + 98Sr 0.202 175Sm + 79Ni 0.290 178Eu + 76Co 0.141
166Gd + 66Fe 0.134 129Sn + 103Zr 0.146 157Ba + 97Se 0.172 144Sb + 110Y 0.132

3 132Sb + 100Y 0.886 132Sb + 100Y 0.252 3 127Rh + 127Rh 0.803 127Rh + 127Rh 0.325
134Te + 98Sr 0.148 129Sn + 103Zr 0.207 129Pd + 125Ru 0.350 127Rh + 127Rh 0.210

155Nd + 77Zn 0.063 134Te + 98Sr 0.153 128Rh + 126Rh 0.307 132Ag + 122Tc 0.120

can see that the mass distribution broadly spreads throughout
the region Ai = 66–166. Again, the most concentrated yields
can be divided into two regions, I (A1 = 141–148 and A2 =
106–113) and II (A1 = 152–158 and A2 = 102–96), for 254Th
in the TRMF formalism at the temperature T = 1 MeV.
The most favorable fragmentation 142Sn + 112Zr is obtained
from region I. The other combinations in that region have
also considerable yields. In region II, the isotopes of Ba
and Cs appear, curiously, along with their corresponding
partners. Categorically, in FRDM predictions, region I has
larger yields at T = 1 MeV. The other possible fragmentations
are 163Ce + 91Ge, 168Nd + 86Zn, and 181Gd + 73Fe [see
Figs. 5(b) and 5(d)]. The mass distribution is different with
different temperature, and the maximum yields at T = 2 MeV
in the TRMF formalism are 174,175,176Sm + 80,79,78Ni. Apart
from these combinations, there are other considerable yields as
can be seen in Fig. 5 for region II. The prediction of maximum
probability of the fragment productions with the FRDM
method are 144Sb + 110Y, 178Eu + 76Co, and 127Rh + 127Rh
at T = 2 MeV. Besides these yields, one can find other
notable evolutions of masses in region I due to the vicinity
of the proton closed shell. Interestingly, at T = 3 MeV, the
symmetric binary combination 127Rh + 127Rh has the largest
yield due to the neutron closed shell (N = 82) of the fragment
127Rh. The other yield fragments have an exactly or nearly
a magic nucleon combination, mostly neutron (N = 82), as
one of the fragments. A considerable yield is also seen
for the proton close shell (Z = 28) Ni and/or (Z = 62) Sm
isotopes, supporting our earlier prediction [33]. This confirms
the prediction of Sm as a deformed magic nucleus [42,43].

Another observation of the present calculations show that the
yields of the neutron-rich nuclei agree with the symmetric mass
distribution of Chaudhuri et al. [44] at large excitation energy,
which contradicts the recent prediction of a large asymmetric
mass distribution of neutron-deficient Th isotopes [45]. These
two results [44,45] along with our present calculations confirm
that the symmetric or asymmetric mass distribution at different
temperature depends on the proton and neutron combination of
the parent nucleus. In general, both TRMF and FRDM predict
maximum yields for both symmetric and asymmetric binary
fragmentations followed by other secondary fragmentation
emissions, depending on the temperature as well as the mass
number of the parent nucleus. Thus, the binary fragments
have larger level density ρ comparing with other nuclei
because of neutron/proton close shell fragment combinations
at T = 2 and 3 MeV. This result is consistent with the fact
that most favorable fragments have larger phase space than the
neighboring nuclei, as reported earlier [32,33].

To this end, it may be mentioned that the differences
in the mass distributions or the relative yields calculated
using TRMF and FRDM approaches mainly arise due to
the differences in the level densities associated with these
approaches. The mean values and the fluctuations in the level
density parameter and the corresponding level density are even
qualitatively different in the two approaches considered. This
possibly stems from the fact that the single-particle energies
in the FRDM are temperature independent. The temperature
dependence of the excitation energy, required to calculate the
level density parameter, comes only from the modification of
the single-particle occupancy due to the Fermi distribution. In
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the TRMF approach, the excitation energy for each fragment at
a given temperature is calculated self-consistently. Therefore,
the deformation and the single-particle energies changes with
temperature.

For the neutron-rich nuclei, the fragments having neu-
tron/proton close shells N = 50, 82, and 100 have maximum
possibility of emission at T = 2 and 3 MeV (for both nuclei
250U and 254Th). This is a general trend we could expect for
all neutron-rich nuclei. It is worthwhile to mention some of
the recent reports and predictions of multifragment fission
for neutron-rich uranium and thorium nuclei. When such a
neutron-rich nucleus breaks into two fragments, the products
exceed the drip-line, leaving few nucleons (or light nuclei) free.
As a result, these free particles along with the scission neutrons
enhance the chain reaction in a thermonuclear device. These
additional particles (nucleons or light nuclei) are responsible
for reaching the critical condition much faster than in the
usual fission for a normal thermally fissile nucleus. Thus,
neutron-rich thermally fissile nuclei, such as 246–264U and
244–262Th, will be very useful for energy production.

IV. SUMMARY AND CONCLUSIONS

The fission mass distributions of β-stable nuclei 236U and
232Th and the neutron-rich thermally fissile nuclei 250U and
254Th are studied within a statistical model. The possible
combinations are obtained by equating the charge-to-mass
ratio of the parents to that of the fragments. The excitation
energies of fragments are evaluated from the temperature-
dependent self-consistent binding energies at the given T and
the ground state binding energies which are calculated from the
relativistic mean field model. The level densities and the yield

combinations are manipulated using the convolution integral
approach. The fission mass distributions of the aforementioned
nuclei are also evaluated using the FRDM formalism for
comparison. The level density parameter a and inverse level
density parameter K are also studied to see the difference
between results with these two methods. Besides fission
fragments, the level densities are also discussed in the present
paper. For 236U and 232Th, the symmetric and nearly symmetric
fragmentations are more favorable at temperature T = 1 MeV.
Interestingly, in most of the cases we find that one of the
favorable fragments has a closed shell or nearly closed shell
configuration (N = 82, 50 and Z = 28) at temperatures T = 2
and 3 MeV. This result agrees with our earlier predictions.
Further, Zr isotopes have larger yield values for 250U and 254Th
with their accompanying possible fragments at T = 1 MeV.
The Ba and Cs isotopes with their partners are also more
possible for 254Th. This could be due to the deformed close
shell in the region Z = 52–66 of the periodic table [46]. The
Ni isotopes and the neutron closed shell (N ∼ 100) nuclei
are some of the prominent yields for both 250U and 254Th
at temperature T = 2 MeV. At T = 3 MeV, the neutron
closed shell (N = 82) is one of the largest yield fragments.
The symmetric fragmentation 127Rh + 127Rh is possible for
254Th due to the N = 82 closed shell occurring in binary
fragmentation. For 250U, the larger yield values are confined
to the junction of neutron and proton closed shell nuclei.
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