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Fission characteristics of the excited compound nucleus 210Rn in the framework
of the four-dimensional dynamical model
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The evaporation residue cross section, the anisotropy of the fission fragments angular distribution, the fission
probability, the mass-energy distribution of the fission fragments, and the average prescission neutron multiplicity
have been calculated for the compound nucleus 210Rn by using four-dimensional Langevin equations with
dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape
coordinates plus the projection of the total spin of the compound nucleus to the symmetry axis K were considered
in the four-dimensional dynamical model. In the dynamical calculations dissipation coefficient of K , γk was
considered as a free parameter, and its magnitude was inferred by fitting measured data on the evaporation
residue cross section and the anisotropy of the fission fragments angular distribution for the compound nucleus
210Rn. It was shown that the results of the calculations are in good agreement with the experimental data by
using values of the dissipation coefficient of K , equal to γk = (0.185−0.200) (MeV zs)−1/2. It also was shown
that the influence of the dissipation coefficient of K on the results of the calculations of the fission probability,
the mass-energy distribution of the fission fragments, and the average prescission neutron multiplicity for the
compound nucleus 210Rn is small.
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I. INTRODUCTION

The discovery of nuclear fission opened an important
chapter in the study of nuclear physics, and many studies
about heavy-ion fusion-fission reactions were performed the-
oretically and experimentally over the years. During the past
decades different statistical and dynamical models have been
applied extensively to elucidate many problems of the fission
process of the excited nuclei produced in fusion reactions.
Many authors, for the description of different features of
fusion-fission reactions in statistical or dynamical models,
assumed that compound nuclei have zero spin about the
symmetry axis where this assumption is not correct as first
pointed out by Lestone in Ref. [1]. The authors in Ref. [2]
also stressed that a large volume of heavy-ion-induced fission
data needs to be reanalyzed with considering the effect of the
orientation degree of freedom.

In dynamical models the Langevin equations have been
used extensively to simulate the fission process of the ex-
cited nuclei [3–20]. One-dimensional Langevin calculations
can yield particle multiplicity, fission probability, and the
distributions of the fission events with respect to the fis-
sion lifetime [21,22]. Two-dimensional Langevin calculations
make it possible to calculate energy distribution for symmetric
fission [23–25], and other features of the fission of heavy
excited compound nuclei can be calculated on the basis of
the three-dimensional (3D) Langevin calculations. Recently,
four-dimensional (4D) Langevin equations by considering the
dissipation coefficients for the orientation degree of freedom,
the K coordinate, have been used to calculate different aspects
of fusion-fission reactions [26–28]. It should be mentioned that
accounting dynamically for the fluctuation of the K degree of
freedom was first considered in Ref. [2].
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The main purpose of this paper is to study of the effect of
the nuclear dissipation coefficient of K on different aspects
of fission of the excited compound nucleus 210Rn produced
in the reaction 16O + 194Pt. In the present paper we use
a constant and a nonconstant dissipation coefficient of K
in the four-dimensional dynamical model to calculate the
evaporation residue cross section, the anisotropy of the fission
fragments angular distribution, the fission probability, the
mass-energy distribution of the fission fragments, and the
average prescission neutron multiplicity for the compound
nucleus 210Rn. The present paper has been arranged as follows.
In Sec. II, we describe the models and basic equations. The
results of the calculations are presented in Sec. III. Finally, the
concluding remarks are given in Sec. IV.

II. DETAILS OF THE MODEL AND BASIC EQUATIONS

Nuclear shapes can be described in terms of the well-known
c, h,α parametrization [29]. This parametrization was used
successfully both in static and in dynamical calculations. In
cylindrical coordinates the surface of the nucleus can be given
by

ρ2
s =

{
(c2 − z2) (As + Bz2/c2 + αz/c), B � 0,

(c2 − z2) (As + αz/c) exp(Bcz2), B < 0,
(1)

where z is the coordinate along the symmetry axis and ρs

is the radial coordinate of the nuclear surface. In Eq. (1) the
quantities B and As are defined by

B = 2h + c − 1

2
, (2)

As =
{

c−3 − B
5 , B � 0,

− 4
3

B

exp(Bc3)+
(

1+ 1
2Bc3

)√−πBc3erf
√−Bc3

, B < 0, (3)
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where erf(x) is the error function. In the present investigation,
we use the 4D dynamical model based on Langevin equations
to simulate the fission process of the compound nucleus 210Rn
produced in the reaction 16O + 194Pt. In our calculations, we
use the variables q = (q1,q2,q3) as collective coordinates,
which are connected with the shape parameters c, h, and α as
follows:

q1 = c,

q2 =
(

h + 3

2

)/(
5

2c3
+ 1 − c

4
+ 3

2

)
,

q3 = α/(As + B), if B � 0,

q3 = α/As, if B < 0. (4)

The advantage of using the collective coordinates q =
(q1,q2,q3) instead of the (c,h,α) parameters was discussed
in Ref. [30]. In our dynamical calculations, we use the 3D
Langevin dynamical model, developed in Refs. [31–33], by
adding the orientation degree of freedom (K coordinate) to
three collective coordinates that describe the shape evolution
of the fissioning nucleus. K is the projection of the total spin I
to the symmetry (elongation) axis of the nucleus. The evolution
of an excited nucleus can be considered within the stochastic
approach as the motion of a Brownian particle placed in a
viscous heat bath [34,35]. In our calculations, we use the
Langevin equations as

q̇i = μijpj ,

ṗi = −1

2
pjpk

∂μjk

∂qi

− ∂F

∂qi

− γijμjkpk + θij ξj . (5)

Here and below, there are summations over the repeated
indices. In Eq. (5) mij (‖μij‖ = ‖mij‖−1) is the tensor of
inertia, q = (q1,q2,q3) are the collective coordinates, p =
(p1,p2,p3) are the momenta conjugate to them, F (q,K) =
V (q,K) − a(q)T 2 is the Helmholtz free energy, V (q) is the
potential energy, γij is the friction tensor, θij ξj is a random
force, and θij is its amplitude. The Markovian random forces
have uncorrelated Gaussian distributions with zero mean
values and the second moments determined by

〈ξi〉 = 0,

〈ξi(t1)ξj (t2)〉 = 2δij δ(t1 − t2). (6)

The random force amplitudes are related to the diffusion
tensor Dij as follows:

Dij = θikθkj , (7)

and the diffusion tensor satisfies the Einstein relation,

Dij = T γij . (8)

The heat bath temperature T can be determined within the
Fermi-gas model as [36]

T =
√

Eint/a(q). (9)

Here a(q) is the level-density parameter, and Eint is the intrinsic
excitation energy of the nucleus. The deformation dependence
of the level-density parameter can be determined as [36]

a(q) = 0.073A + 0.095A2/3Bs(q), (10)

where Bs is the dimensionless functional of the surface energy
in the liquid-drop model and A is the mass number of the fissile
nucleus. As the nucleus moved toward the scission surface, the
conservation of energy is satisfied by

E∗ = Eint(t) + Ecoll(q, p) + V (q,K) + Eevap(t), (11)

where Ecoll = 0.5μij (q)pipj is the kinetic energy of the
collective motion of the nucleus, V (q,K) is the potential
energy of the compound nucleus, Eevap(t) is the energy carried
away by evaporated particles by time t , and E∗ is the total
excitation energy of the nucleus. In the dynamical calculations,
dissipation is generated through the chaos-weighted wall and
window friction formula, which is described in our previous
paper [37]. For small elongation, before neck formation,
the chaos-weighted wall formula is used to calculate the
friction tensor, and after neck formation, the chaos-weighted
wall and window friction formula is used. The inertia tensor
is calculated in the Werner-Wheeler approximation for the
incompressible and irrotational flow [38] as

mij = πρm

∫ zmax

zmin

ρ2
s (z)

(
AiAj + 1

8
ρ2

s (z)A′
iA

′
j

)
dz, (12)

where the primes denote the differentiation with respect to z,ρm

is the mass density of the nucleus, and zmin and zmax are the left
and right ends of the nuclear shape. The expansion coefficients
Aj are determined from the condition incompressibility of a
compound nucleus where the time derivative of its volume
must vanish. Aj (z, q) can be given as

Aj (z,q) = − 1

ρ2
s (z)

∂

∂qj

∫ z

zmin

ρ2
s (z′)dz′. (13)

The potential energy is calculated on the basis of the liquid-
drop model with a finite range of nuclear forces [39] using the
parameters from Ref. [40],

V (q,I,K) = [Bs(q) − 1]E0
s (A,Z)

+ [Bc(q) − 1]E0
c (A,Z) + Erot(q,I,K), (14)

where E0
s and E0

c are the surface and Coulomb energies of a
spherical nucleus, respectively. Bs(q) and Bc(q) are the surface
and Coulomb energy terms, respectively. Bs(q) and Bc(q) can
be calculated as in Ref. [39]. Erot is the rotational energy of
the nucleus. The rotational energy can be calculated by

Erot(q,I,K) = h̄2I (I + 1) − K2

2J⊥(q)
+ h̄2K2

2J||(q)
. (15)

The rigid body moments of inertia about and perpendicular
to the symmetry axis can be calculated as follows [40]:

J⊥(‖)(q) = J
(sharp)
⊥(‖) (q) + 4M0a

2
M, (16)

where M0 is the compound nucleus mass, aM = 0.704 fm
is the diffuseness parameter of the nuclear surface, and
J

(sharp)
⊥(‖) are the moments of inertia for a sharp-edged nuclear
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FIG. 1. The Helmholtz free energy for the compound nucleus
210Rn as a function of the collective coordinates q1 and K at T =
0.0, T = 2.0 MeV, and I = 50h̄. The numbers on the contour lines
represent the free energy values in MeV. The dashed curve shows the
dependence of saddle-point deformations on K .

density distribution. The moments of inertia for a sharp-
edged nuclear density distribution can be calculated as in
Ref. [41]. Figures 1(a) and 1(b) show the Helmholtz free
energy calculated for the compound nucleus 210Rn as the
function of the collective coordinate q1 and for T = 0.0 and
T = 2.0 MeV. It can be seen from Figs. 1(a) and 1(b) that
the inclusion of the K coordinate changes not only the fission
barrier height, but also it affects the saddle-point configuration.
It also is clear from Figs. 1(a) and 1(b) that for a given value of
spin the height of the fission barrier increases with increasing
the value of K . Such an increase in the fission barrier will
increase the fission time and consequently increase the number
of evaporated prescission particles. Furthermore, it is clear
from Figs. 1(a) and 1(b) that the height of the fission barrier
decreases with increasing temperature of the nucleus.

It should be mentioned that many authors in their calcula-
tions for the description of different features of fusion-fission
reactions assumed that the compound nuclei have zero spin
about the symmetry axis. But, this assumption is not consistent
with the statistical model and with the dynamical treatment of
the orientation degree of freedom. The authors in Ref. [2]
showed that the evolution of the K collective coordinate can
be given as

dK = −γ 2
KI 2

2

∂V

∂K
dt + γKIξ (t)

√
T dt, (17)

where γK is a parameter controlling the coupling between
the orientation degree of freedom K and the heat bath, I
is the spin of a compound nucleus, K is the projection of
I on the symmetry axis of the nucleus, and ξ (t) has the same
meaning as in Eq. (5). The authors in Refs. [2,42] have shown
that, in the case of a dinucleus, γK can be given as

γK = 1

RRN

√
2π3n0

√
JR|Jeff|J||

J 3
⊥

, (18)

where JR = M0R
2/4 for a reflection symmetric shape and

n0 = 0.0263 MeV zs fm−4 is the bulk flux in the standard
nuclear matter [43]. RN is the neck radius, R is the distance
between the centers of mass of the nascent fragments. J||
and J⊥ are the rigid body moments of inertia about and
perpendicular to the symmetry axis. Jeff is the effective
moment of inertia. The effective moment of inertia can be
calculated as

Jeff = J‖J⊥
J⊥ − J‖

. (19)

By averaging Eq. (17), it can be shown that

d〈K〉
dt

= −γ 2
KI 2

2

〈
∂V

∂K

〉
. (20)

From the expression for the rotational energy, it follows
that:

d〈K〉
dt

= −γ 2
KI 2h̄2

2Jeff
〈K〉. (21)

By assuming a constant γK , the solution of this equation
has the form

〈K(t)〉K0 = K0 exp

[
−γ 2

KI 2h̄2

2Jeff
(t − t0)

]
, (22)

which gives the following expression for the relaxation time
as

τK = 2Jeff

γ 2
KI 2h̄2 . (23)

In the simulation of the fission process of an excited
compound nucleus the Langevin trajectories are simulated
starting from the ground-state deformation with the excitation
energy E∗ of the compound nucleus. The initial conditions
can be chosen by the Neumann method with the generating
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function,

�(q0, p0,I,t = 0) ∝ exp

[
−V (q0) + Ecoll(q0, p0)

T

]
× δ(q − q0)δ(I − I0). (24)

In our calculations, we start modeling fission dynamics
from the ground state with the excitation energy E∗ of the
compound nucleus. Evaporation of prescission light particles
along the Langevin trajectory is taken into account using
a Monte Carlo simulation technique. The decay widths for
emission n,p,α,γ are calculated at each Langevin time step
�t as in Refs. [44,45]. The probabilities of decay via different
channels can be calculated by using a standard Monte Carlo
cascade procedure. In the simulation of the evolution of a
fissile nucleus, a Langevin trajectory either reaches the scission
surface and counts as a fission event or the intrinsic excitation
energy becomes lower than the binding energy of a neutron
or the height of the fission barrier counts as an evaporation
residue event.

The spin distribution of the compound nucleus can be
described by the formula,

dσFus(I )

dI
= 2π

k2

2I + 1

1 + exp
(

I−Ic

δI

) , (25)

where Ic is the critical spin and δI is the diffuseness. The
parameters Ic and δI can be approximated as in Ref. [46].

In our calculations, it is assumed that the total kinetic-
energy Ek of the fission fragments is the sum of the nuclear
attractive energy Vn of the nascent fragments, the Coulomb
repulsion energy Vc of the fragments, and the kinetic energy
of their relative motion Eps . Therefore, the mean value of the
total kinetic energy of the fission fragments can be defined as
follows:

〈Ek〉 = 〈Vc〉 + 〈Vn〉 + 〈Eps〉. (26)

The fission fragment angular distributions can also be
obtained by the following relation [47,48]:

W (θ,I,K) = (I + 1/2)|DI
M=0,K (θ )|2, (27)

where θ is the angle with respect to the space fixed axis
and DI

M,K (θ ) is the symmetric-top-wave function [47]. In
the dynamical calculations, the fission fragment angular
distributions can be obtained by averaging the expression
Eq. (27) over the ensemble of the Langevin trajectories as
follows:

W (θ ) = 1

Nf

Nf∑
i=1

(I i + 1/2)
∣∣DIi

0,Ki (θ )
∣∣2

, (28)

where upper index i determines the value of the corresponding
quantity at the scission point for the i Langevin trajectory and
Nf is the number of trajectories reaching the scission surface.
The anisotropy of the fission fragment angular distributions
can be defined as

A = 〈W (180◦)〉
〈W (90◦)〉 . (29)

In the Langevin calculations, the fission rate is obtained by
the formula,

r(t) = 1

N − Nf (t)

�Nf (t)

�t
, (30)

here Nf (t) is the number of trajectories that underwent
separation before the instant t , N is the total number of
trajectories, and �Nf (t) is the number of trajectories that
underwent separation within the time-interval t → t + �t .

III. RESULTS AND DISCUSSIONS

In the present investigation, we used a stochastic approach
based on 4D Langevin equations to calculate the evaporation
residue cross section, the anisotropy of the fission frag-
ments angular distribution, the fission probability, the mass-
energy distribution of the fission fragments, and the average
prescission neutron multiplicity for the compound nucleus
210Rn produced in the reaction 16O + 194Pt. In the Langevin
equations, dissipation is generated through the chaos-weighted
wall and window friction formula. Furthermore, we used a
constant dissipation coefficient of K , γk , and a nonconstant
dissipation coefficient according to Eq. (18) to simulate the
dynamics of nucleus fission of the compound nucleus 210Rn.
In the dynamical calculations with a constant dissipation
coefficient of K, the magnitude of this parameter has been
considered as a free parameter, and its magnitude inferred by
fitting measured data on the evaporation residue cross section
and anisotropy of the fission fragments angular distribution for
the compound nucleus 210Rn. Figures 2 and 3 show the results
of the evaporation residue cross section and the anisotropy of
the fission fragments angular distribution as a function of exci-
tation energy for the compound nucleus 210Rn calculated with
the 4D-dynamical model and by using values of the dissipation
coefficient of K equal to γk = (0.185–0.200)(MeV zs)−1/2 and
with a nonconstant dissipation coefficient. It is clear from
Figs. 2 and 3 that the results of the 4D-dynamical model by

FIG. 2. The results of the evaporation residue cross section
as a function of excitation energy for 210Rn calculated with the
4D-dynamical model and by using different values of γK . The
experimental data (filled circles) are taken from Ref. [49].
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FIG. 3. The same as in Fig. 2 but for anisotropy of the fission
fragment angular distribution as a function of excitation energy for
210Rn. The filled circles are the experimental data [50].

using γk = (0.185–0.200)(MeV zs)−1/2 are in good agreement
with the experimental data. It can also be seen from Figs. 2
and 3 that the dissipation coefficient for the orientation degree
of freedom has an important influence on the results of the
calculations. Furthermore, it is clear from Figs. 2 and 3
that the results of 4D Langevin equations together with a

FIG. 4. The anisotropy of the fission fragment angular distribu-
tions for the compound nucleus 210Rn as a function of scattering angle
at different values of bombarding energies. The filled circles are the
experimental data [50]. The dashed and dotted curves correspond to
fitted values calculated with the 4D-dynamical model and by using
different values of γK .

FIG. 5. The same as in Fig. 4 but for the fission probability as
a function of excitation energy for 210Rn. The filled circles are the
experimental data [50].

nonconstant dissipation coefficient of K cannot accurately
reproduce experimental data at higher excitation energies.

We also reproduced experimental data on the fission
probability, average prescission neutron multiplicity, and
the anisotropy of fission fragment angular distribution as a
function of scattering angle at bombarding energies Ecm =
78.80, 80.80, 82.80, 85.80, 87.80, and 89.80 MeV to check
the extracted values of the dissipation coefficient of K for
the compound nucleus 210Rn. Figures 4–6 show the results of
the anisotropy of the fission fragment angular distribution, the
fission probability, and the average prescission neutron multi-
plicity for the compound nucleus 210Rn. It can be seen from
Figs. 4–6 that the results of the calculations calculated with the
4D-dynamical model and by using the values of the dissipation
coefficient of K equal to γk = (0.185–0.200)(MeV zs)−1/2 can
reproduce the experimental data. It also is clear from Figs. 5

FIG. 6. The same as in Fig. 4 but for the average prescission
neutron multiplicity as a function of excitation energy for 210Rn. The
filled circles are the experimental data [51].
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FIG. 7. A contour diagram of the mass-energy distribution of the
fission fragments for the compound nucleus 210Rn calculated with
the 4D Langevin equations and by using γk = 0.185(MeV zs)−1/2 at
E∗ = 80 MeV. The numbers on the contour lines are the yield of the
fission fragments in percentages. The total yield is normalized for
200%.

and 6 that the influence of the dissipation coefficient of K on
the results of the calculations of the fission probability and the
average prescission neutron multiplicity for 210Rn is small.

In the present investigation, we also calculated the
mass-energy distribution of fission fragments Y (EK,M),
based on 4D Langevin equations and by considering dif-
ferent values of the dissipation coefficient equal to γk =
(0.185–0.200)(MeV zs)−1/2. Although, the difference between
the results of the calculations of the mass-energy distribution of
the fission fragments calculated by using different values of the
dissipation coefficients of γK for 210Rn is small. Figure 7 shows
the contour plot of isolines for the mass-energy distribution
of the fission fragments for the compound nucleus 210Rn
calculated by using γk = 0.185(MeV zs)−1/2 at E∗ = 80 MeV.

It can be seen from Fig. 7 that the shapes of the contour
plots are close to being ellipsoidal in the region of the large
values of Y (EK,M) and are similar to triangles in the region
of small values of Y (EK,M).

Finally, we investigated the influence of the K coordinate
on the fission rate of the compound nucleus 210Rn at fixed
spin I = 30h̄ and at E∗ = 80 MeV. Figure 8 shows the
fission rate of the compound nucleus 210Rn as a function of
time and by using different values of γK . It is clear from
Fig. 8 that the fission rate increases with increasing the
value of the dissipation coefficient of K. Such an increase
in the fission rate decreases the fission time and increases the
fission probability and consequently decreases the number of
evaporated prescission particles.

It should be mentioned that, in our calculations in order
to distinguish only the effect of the K coordinate on the
fission rate, we performed the calculations with fixed spin

FIG. 8. The fission rate calculated for 210Rn at fixed spin I = 30h̄

and at E∗ = 80 MeV. The open squares and open circles are the
calculated results calculated with the 4D Langevin equations and by
using different values of the dissipation coefficient of K .

I = 30h̄ and without taking into account the evaporation of
the prescission particles.

IV. CONCLUSIONS

The evaporation residue cross section, the anisotropy of the
fission fragments angular distribution, the fission probability,
the average prescission neutron multiplicity, the mass-energy
distribution of the fission fragments, and the fission rate
have been calculated for the compound nucleus 210Rn in the
framework of the 4D-dynamical model and the results of
the calculations compared with the experimental data. In our
calculations, we used the chaos-weighted wall and window
friction formula in the Langevin equations. Furthermore, in
our calculations we used a constant dissipation coefficient
of K and a nonconstant dissipation coefficient of K to re-
produce the above-mentioned experimental data. Comparison
of the calculated results with the experimental data showed
that the results of the calculations are in good agreement with
the experimental data by using values of the dissipation coef-
ficient of K equal to γk = (0.185–0.200)(MeV zs)−1/2. It also
was shown that the dissipation coefficient for the orientation
degree of freedom has an important influence on the results
of calculations. Although, the influence of the dissipation
coefficient of K on the results of the calculations of the fission
probability, the average prescission neutron multiplicity, and
the mass-energy distribution of the fission fragments for 210Rn
is small.
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