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Shadowing in low-energy photonuclear reactions
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The photonuclear reaction in the multi-GeV region occurs because of the electromagnetic and hadronic
interactions. The latter originates due to the hadronic fluctuation, i.e., vector meson, of the photon. The total cross
section of the reaction is shadowed because of the vector meson–nucleus (hadronic) interaction. To estimate it
quantitatively, the cross section of the photonuclear reaction was calculated in the low energy region (∼1–3 GeV)
using the simple vector-meson dominance (SVMD) model, i.e., the low-lying vector mesons (ρ0, ω, and φ

mesons) were considered. The nuclear shadowing is reinvestigated using the generalized vector meson (GVMD)
model, where the higher ρ meson effective state (ρ ′ meson) is taken into account along with the low-lying vector
mesons. Using the GVMD model, the total cross section of the photonuclear reaction are calculated in the above
mentioned energy region. The calculated results are compared with the measured spectra.
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I. INTRODUCTION

The ratio of the total cross section of the nuclear reaction to
A (nuclear mass number) times that of the nucleonic reaction
is called the transparency T of the nuclear reaction. The

transparency of the photonuclear reaction, i.e., T = σ
γA
t

Aσ
γN
t

, in

the GeV region is found to be less than unity. This phenomenon
is called shadowing in the photonuclear reaction. Indeed, it is
a feature of hadron-nucleus reactions. Therefore, shadowing
in the photonuclear reaction indicates the hadronic behavior
of photons [1–3]. Photon can fluctuate into hadronic states,
i.e., vector mesons, which undergo multiple scattering while
traversing through the nucleus. This scattering leads to the
reduction of the cross section of the photonuclear reaction.

The total cross section of the photonuclear reaction can be
evaluated by applying the optical theorem to the amplitude
of the forward Compton scattering, illustrated in Fig. 1.
The forward scattering of a photon from a nucleon, shown
in Fig. 1(a), occurs due to the electromagnetic interaction;
i.e., it does not indicate the hadronic content of the photon.
Therefore, it leads to the unshadowed cross section of the
reaction. Figure 1(b) describes the vector meson mediated
forward Compton scattering on a nucleon in the nucleus,
which gives rise to the nuclear shadowing because of the
hadronic interaction of the vector meson with the nucleus.
Using Glauber model, the amplitude of the forward nuclear
Compton scattering can be expressed in terms of the vector
meson–nucleon interaction [2]. In fact, the shadowing in high
energy (multi-GeV) photonuclear reactions can be understood
quantitatively using Glauber formalism [1,3].

The data of the photonuclear reaction at Eγ = 1–2.6 GeV
[4,5] show early onset of the nuclear shadowing which could
not be explained by newer models [6,7]; i.e., the calculated
results, according to these models, either slightly underesti-
mate or overestimate the data. Falter et al., [4] considered
the simple vector meson dominance (SVMD) model in the

*swapand@barc.gov.in

Glauber approach to describe the nuclear shadowing seen in the
data in the region 1–3 GeV. In the SVMD model, the low-lying
vector mesons, i.e., V = ρ0, ω, and φ mesons, are considered
because a low energy photon beam, as mentioned above, was
used in the measurements. According to them, the nuclear
shadowing can be understood by the proper choice of αρN ,
i.e., the ratio of the real to the imaginary part of the ρ-nucleon
scattering amplitude. The use of αρN evaluated by Kondratyuk
et al., [8] gives a good description of the shadowing in the
considered reaction [4].

As pointed out in Ref. [9], the shadowing in the ρ meson
photoproduction reaction in the multi-GeV region is better
accounted for by using generalized vector meson dominance
(GVMD) model. In this model, the higher vector meson states
V ′ are used along with the low-lying vector mesons V . The
elementary scattering of the vector meson in the SVMD
model is described as V N → V N , where as the additional
processes V ′N → V N , V ′N → V ′N , and V N → V ′N are
incorporated in the GVMD model. In fact, this model has been
extensively used by many authors to study nuclear shadowing
[10]. For example, Frankfurt et al. [11] show the existence of
the hard and soft components of the virtual photon within the
GVMD model and predict nuclear shadowing in deep inelastic
scattering (DIS) similar to that within the parton model. Using
Glauber model, the shadowing in the photonuclear reaction is
calculated at Eγ > 3 GeV, where GVMD model is included
in the parametric form of the scattering amplitude used to
evaluate the profile function of the reaction [12]. This model is
also used to study the scaling behavior of the shadowing effect
in deep inelastic μ-nucleus scattering [13].

The shadowing in the photonuclear reaction in the low
energy region (∼1–3 GeV) is reexamined using both SVMD
and GVMD models in the Glauber formalism (modified for the
correlated system) for the reaction. The photoproduction of the
vector meson and its interaction with the nucleus are described
by the measured vector meson–nucleon scattering parameters.
The calculated results for the nuclear shadowing due to SVMD
and GVMD models are compared with the measured spectra
in the considered energy region.
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FIG. 1. The pictorial presentation of Compton scattering on the
nucleus.

II. FORMALISM

The total scattering cross section of the photonuclear
reaction, σ

γA
t , as discussed earlier, is composed of the

unshadowed and shadowed parts, i.e.,

σ
γA
t = Aσ

γN
t + σ

γA
t,V , (1)

where σ
γN
t is the total cross section of the photonucleon

reaction. The first part of the equation, i.e., Aσ
γN
t , is the

unshadowed total cross section of the photonuclear reaction,
addressed in Fig. 1(a). The cross section σ

γA
t,V originates due to

the vector meson scattering on the nucleus [shown in Fig. 1(b)],
which leads to the shadowing in the photonuclear reaction.
Using the fixed scatterer (or frozen nucleon) approximation,
σ

γA
t,V in the SVMD model is given by [2]

σ
γA
t,V =

∑
V =ρ,ω,φ

8π2

kγ kV

Im

{
ifV N→γNfγN→V N

×
∫

db
∫ +∞

−∞
dz

∫ +∞

z

dz′ × 	2(b,z′,z)e−iqV (z′−z)

× exp

[
− 1

2
σV N

t (1 − iαV N )
∫ z′

z

dzι	(b,zι)

]}
, (2)

where kγ and kV are the momenta of the incoming γ boson and
vector meson respectively. qV (= kγ − kV ) is the momentum
transfer to the nucleus. All other quantities appearing in
the above equation are described below. The widths of the
vector mesons are neglected in this equation [4,9]. It is shown
later that the distinctly dominant contribution to the nuclear
shadowing arises due to the ρ meson. The intrinsic width of
this meson is so large (�ρ ∼ 150 MeV [14]) that it dominantly
decays (ρ0 → π+π−) inside the nucleus [15]. The effect of the
ρ meson width is largely canceled by the corrections arising
from the pions scattering in the nucleus [9]. The widths of the
ω and φ mesons (i.e., �ω ∼ 8.5 MeV and �φ ∼ 4.3 MeV
[14,16]) are much smaller than that of the ρ meson, and
therefore they decay outside the nucleus. The contributions
of the ω and φ mesons to the nuclear shadowing, as discussed
later, are insignificant. It should be mentioned that Eq. (2) can
be interpreted in terms of the vector meson properties in the
nucleus; see the details in Ref. [4].

The terms 	(b,zι) and 	2(b,z′,z) in Eq. (2) represent
one-body and correlated two-body density distributions of
the nucleus. For the uncorrelated system (i.e., independent
particle approximation), 	2(b,z′,z) is expressed in terms of
one-body nuclear densities, i.e., 	2(b,z′,z) = 	(b,z′)	(b,z),

and the cross section in Eq. (2) represents the optical model
approximation in the Glauber multiple scattering approach
in the photonuclear reaction [1,7]. The two-body correlated
nuclear density distribution 	2(b,z′,z), given in Refs. [4,7], is

	2(b,z′,z) = 	(b,z′)	(b,z) + �(b,|z′ − z|), (3)

where 	(r) denotes single-particle nuclear density distri-
bution. The form of it is discussed later. �(b,|z′ − z|)
denotes two-body correlation function. Considering Bessel
function parametrization, it can be written as �(b|z′ − z|) =
−j0(qc|z′ − z|)	(b,z′)	(b,z), with qc = 0.78 GeV [4,7]. Since
	2(b,z′,z) is equal to zero for z′ = z, there cannot be overlap
of nucleons in the nuclear density distribution. Therefore, the
inclusion of �(b|z′ − z|) in the nuclear density distribution
avoids the unphysical results.

In Eq. (2), σV N
t is the vector meson–nucleon total scattering

cross section and αV N denotes the ratio of the real to the imag-
inary part of the vector meson–nucleon scattering amplitude
fV N→V N . According to the simple vector meson dominance
(SVMD) model, fV N→V N is related to the photoproduction
amplitude fγN→V N [9,15] as

fγN→V N = fV N→γN =
√

παem

γγV

fV N→V N, (4)

where αem (= 1/137.036) is the fine structure constant. γγV is
the photon γ to vector meson V coupling constant, which is
determined from the measured V → e+e− decay widths [14]:
γγρ0 = 2.48, γγω = 8.53, and γγφ = 6.72 [17].

III. RESULT AND DISCUSSIONS

The transparency T , i.e., σ
γA
t

Aσ
γN
t

, is calculated using Eq. (1) to

study the shadowing in the photonuclear reaction in the energy
region of 1–3 GeV. Data for the transparency T exist for 12C,
27Al, 63Cu, 112Sn, and 208Pb nuclei. The total cross section σ

γN
t

of the photonucleon reaction is defined as σ
γN
t = Z

A
σ

γp
t +

A−Z
A

σ
γn
t , where σ

γp
t and σ

γn
t are the total cross sections of

the gamma-proton (γp) and gamma-neutron (γ n) scattering
respectively. The energy dependent measured values for them
are taken from Refs. [14,18].

The form of the single-particle density distribution of
the nucleus 	(r), as extracted from an electron scattering
experiment, is given in Ref. [19]. 	(r) for 12C is described
by the harmonic oscillator Gaussian form [19], i.e.,

	(r) = 	(0)[1 + w(r/c)2]e−(r/c)2
, (5)

with w = 1.247 and c = 1.649 fm. For other nuclei mentioned
above, 	(r) is described by the two-parameter Fermi (2pF)
distribution function [19]:

	(r) = 	(0)
1

1 + e−(r−c)/z
. (6)

The parameters c (half-density radius) and z (diffuseness) for
nuclei appearing in the equation are taken from Ref. [19]. The
density is normalized to the mass number of the nucleus.

The ρN scattering amplitude fρN→ρN is taken from
the analysis by Kondratyuk et al. [8]. The experimentally
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determined imaginary part of the ωN scattering ampli-
tude fωN→ωN is given in [20,21]. For the real part of
fωN→ωN , the ratio αωN (=RefωN→ωN

ImfωN→ωN
) has been calculated

using the additive quark model and Regge theory [20]:
αωN = 0.173(s/s0)ε−2.726(s/s0)η

1.359(s/s0)ε+3.164(s/s0)η , with s0 = 1 GeV2, ε = 0.08,
and η = −0.45. s is the ωN center-of-mass (c.m.) energy.
According to vector meson dominance (VMD) model [15,17],
the forward cross section of the γp → φp reaction, i.e.,
dσ
dq2 (γp → φp)|q2=0, is given by

dσ

dq2
(γp → φp)|q2=0 = αem

16γ 2
γφ

(
k̃φ

k̃γ

)2[
1 + α2

φN

](
σ

φN
t

)2
,

(7)

where k̃φ and k̃γ are the c.m. momenta in the φN and γN
systems respectively, evaluated at the c.m. energy of the γN
system. Using αφN = −0.3 [1] and the parametrized form of
dσ
dq2 (γp → φp) given in Eq. (3.85a) in Ref. [1], the imaginary
part of the φN scattering amplitude fφN→φN is extracted from
the above equation.

The shadowing in the photonuclear reaction was defined

earlier by the transparency T = σ
γA
t

Aσ
γN
t

< 1. Among the ρ,

ω, and φ mesons in SVMD model, the shadowing in the
photonuclear reaction, as shown by the dot-dashed curve
in Fig. 2, distinctly originates due to the ρ meson. The
momentum transfer to the nucleus is large for the massive
vector meson production [see Eq. (2)], which leads to less cross
section or shadowing in the reaction. Although the mass mρ

(= 775.26 MeV) ∼mω (=782.65 MeV) and the elementary
cross section σωN

t ∼ σ
ρN
t , the ω meson weakly contributes

to the nuclear shadowing; see the dot-dot-dashed curve in

FIG. 2. The shadowing (T < 1) in the γ 12C reaction due to ρ0,
ω, and φ mesons used in the SVMD model. The figure shows that the
nuclear shadowing distinctly occurs due to the ρ meson.

the figure. This occurs because the ω meson photoproduction
amplitude, according to Eq. (4), is the least, i.e., γγω = 8.53.
The small φ meson photoproduction amplitude (γγφ = 6.72)
and relatively large mass (mφ ∼ 1020 MeV) lead to negligible
contribution of the φ meson (shown by the short-dashed curve)
to the nuclear shadowing.

Since the distinctly dominant contribution to the nuclear
shadowing (as illustrated in Fig. 2) arises because of the ρ
meson, the higher states of this meson (discussed in GVMD
model) should be considered, as the shadowing due to the
ρ meson can be modified because of those states. There
exist a few higher ρ meson states [14] but, unfortunately,
the dielectron decay widths �V →e+e− of these mesons are not
known. The measured �V →e+e− , as mentioned below Eq. (4), is
used to extract the photon to vector meson coupling constant
γγV . Unless those (i.e., γγV ’s) are known for the higher ρ
meson states, they cannot be incorporated in the GVMD model
to describe photon induced reactions. As done by Pautz and
Shaw [9], the contributions of all higher ρ meson states are
approximated with that of an effective state (called the ρ ′
meson) whose mass and coupling (to photon) constant can
be expressed by those of the ρ meson. The calculated results
with those values account very well for the measured ρ meson
photoproduction data in the multi-GeV region. Therefore, the
effective ρ meson state, i.e., the ρ ′ meson, is considered in the
GVMD model, and the scattering amplitude of the ρ meson,
predicted by the SVMD model in Eq. (4), is replaced by those
of the ρ and ρ ′ mesons in the GVMD model [22] as

fγN→ρN =
√

παem

γγρ

fρN→ρN +
√

παem

γγρ ′
fρ ′N→ρN ,

fγN→ρ ′N =
√

παem

γγρ ′
fρ ′N→ρ ′N +

√
παem

γγρ

fρN→ρ ′N,

(8)

where γγρ ′ denotes the photon to ρ ′ meson coupling con-
stant. The properties of the ρ ′ meson (i.e., mass mρ ′ and
γγρ ′) are given by mρ ′ = √

3mρ, γγρ ′ = mρ′
mρ

γγρ [9,22]. The
scattering amplitudes are related to each other as fρ ′N→ρ ′N =
fρN→ρN , fρ ′N→ρN = fρN→ρ ′N = −εfρN→ρN , with ε = 0.18
[9,22]. The above equations illustrate the reduction of fγN→ρN

due to the inclusion of the ρ ′ meson (GVMD model) which
leads to less shadowing in the photonuclear reaction. As
explained earlier, the nuclear shadowing due to the vector
meson decreases with the increase in its mass mV and coupling
constant to photon γγV . Due to these reasons, the contribution
of the higher states of the vector mesons (i.e., ρ ′, ω′, and φ′
mesons) to the shadowing is much less. The ω′ and φ′ mesons
are not included in the respective photoproduction amplitudes
fγN→ωN and fγN→φN , since the contribution of the ω and φ
mesons (SVMD model) to the shadowing in the considered
reaction (as shown in Fig. 2) is insignificant. The inclusion
of the ω′ and φ′ mesons would further reduce the nuclear
shadowing due to the ω and φ mesons respectively, which are
already negligibly small.

To compare the nuclear shadowing in SVMD and GVMD
models, the transparencies T are calculated using those
models, and the calculated results along with the data [4,5] are
presented in Fig. 3. The dot-dashed curves describe the nuclear
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FIG. 3. The shadowing in the photonuclear reactions compared
with data. The dot-dashed curves describe the nuclear transparencies
due to SVMD model, whereas the solid curves represent those due to
the GVMD model (see text).

shadowing due to SVMD model; i.e., the ρ, ω, and φ mesons
are taken into account to describe the reaction. The solid curves
arise because of the GVMD model; i.e., the effective higher
ρ meson state (ρ ′ meson), in addition to the above vector
mesons, is used to calculate the nuclear transparency. Figure 3
distinctly shows that the nuclear shadowing is reduced because
of the ρ ′ meson in the GVMD model, and the bump appearing
at Eγ ∼ 1.6 GeV for heavier nuclei is well reproduced by this
model. The calculated results accord well with the data of the
shadowing in the photonuclear reaction.

FIG. 4. The total cross section per nucleon of the photonuclear
reactions presented with the measured spectra [5]. The curves
represent the calculated results due to SVMD and GVMD models, as
explained in Fig. 3.

The total cross sections per nucleon of the photonuclear
reaction, i.e., σ

γA
t /A calculated using Eq. (1), are compared

with the data [5] in Fig. 4. The dot-dashed curves in this figure
are due to the SVMD model whereas the solid curves arise
because of the GVMD model. The figure shows that the cross
section increases because of the ρ ′ meson in GVMD model.
The calculated results reproduce the data reasonably well.

Figures 3 and 4 show that the calculated results based on
the SVMD model reproduce well the measured spectra for
lighter nuclei, i.e., 12C and 27Al, throughout the considered

034616-4



SHADOWING IN LOW-ENERGY PHOTONUCLEAR REACTIONS PHYSICAL REVIEW C 96, 034616 (2017)

beam energy region. The results for heavier nuclei (i.e., 63Cu,
112Sn, and 208Pb) also accord well with data except in the beam
energy region Eγ ∼ 1.5–1.7 GeV, where they underestimate
the measured spectra. It is noticeable that the calculated results
due to the GVMD model trend differently. The results based
on this model overestimate the data for the lighter nuclei in
the energy region Eγ ∼ 1.5–1.7 GeV. Beyond this region,
those results accord well with the data. For the heavier nuclei,
the calculated results due to the GVMD model reproduce the
measured spectra remarkably well.

IV. CONCLUSIONS

The shadowing of the photonuclear reaction in the 1–3 GeV
region is studied using the optical theorem in the Glauber
approach for the multiple scattering of vector mesons in the
nucleus. Both SVMD and GVMD models are used to interpret

the vector meson production in the considered reaction. In
the first model, the low-lying vector mesons (i.e., ρ0, ω,
and φ mesons) are considered, whereas the latter model
adds an effective higher ρ meson state, i.e., the ρ ′ meson.
The shadowing in the photonuclear reaction distinctly occurs
because of the ρ meson. The cross section of the photonuclear
reaction increases due to the inclusion of the ρ ′ meson (GVMD
model) which leads to the reduction of the shadowing in
the reaction. The calculated results accord well with data.
Specifically, the GVMD model reproduces noticeably well
the bump appearing in the measured spectrum for the heavy
nuclei.
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