
PHYSICAL REVIEW C 96, 034609 (2017)

Statistical ensembles and fragmentation of finite nuclei

P. Das, S. Mallik, and G. Chaudhuri
Theoretical Nuclear Physics Group, Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India

and Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
(Received 16 February 2017; revised manuscript received 30 June 2017; published 15 September 2017)

Statistical models based on different ensembles are very commonly used to describe the nuclear multifrag-
mentation reaction in heavy ion collisions at intermediate energies. Canonical model results are more appropriate
for finite nuclei calculations while those obtained from the grand canonical ones are more easily calculable.
A transformation relation has been worked out for converting results of finite nuclei from grand canonical to
canonical and vice versa. The formula shows that, irrespective of the particle number fluctuation in the grand
canonical ensemble, exact canonical results can be recovered for observables varying linearly or quadratically
with the number of particles. This result is of great significance since the baryon and charge conservation
constraints can make the exact canonical calculations extremely difficult in general. This concept developed in
this work can be extended in future for transformation to ensembles where analytical solutions do not exist. The
applicability of certain equations (isoscaling, etc.) in the regime of finite nuclei can also be tested using this
transformation relation.
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I. INTRODUCTION

The statistical models based on canonical and grand
canonical ensembles have been used successfully to describe
the nuclear multifragmentation reaction in heavy ion collisions
at intermediate energies [1–4]. The basic assumption behind
this is attainment of statistical equilibrium at the freeze-out
stage. In such models of nuclear disassembly, the population of
different channels is solely decided by their statistical weights
in available phase space. The microcanonical ensemble is
applicable in the case of fixed particle number and fixed
energy, but any practical calculation based on this is extremely
difficult because of these two constraints [3,5]. The canonical
model is applicable when the number of particles is finite (as it
would be in experiments) but the energy fluctuates though the
average can be constrained to a given value [2]. The grand
canonical model on the other hand is applicable for both
varying particle number as well as energy. The grand canonical
version of the model for nuclear multifragmentation has been
known for long time and is the most commonly used [6,7]
since it is easy to implement. But it is more important to
know how to treat an exact number of particles rather than
an ensemble of particle numbers since the given dissociating
system (finite nucleus) has a fixed number of particles. The
answer is the canonical ensemble which deals with a fixed
number of neutrons and protons. It is equally important to have
knowledge about dealing with a particular energy rather than a
spectrum of energies, and the answer is the microcanonical
ensemble. These constraints of mass, charge, and energy
conservation put severe restrictions on the calculation of the
partition sum, which led to the more frequent use of the grand
canonical ensemble for describing the fragmentation of finite
nuclei. The main motivation of this work is to formulate a
transformation relation for the finite nuclei calculation so that
results from one ensemble can be converted to the other easily
with the help of such a relation. Since both canonical and
grand canonical versions [2] of the thermodynamical model
are analytically solvable, they constitute an ideal framework to

test the quality of the approximate transformations devel-
oped in this work. Very good agreement has been obtained
using the transformation relation for different observables,
and this is of great significance since it allows one to compute
the results of any observable in the canonical enemble if
the corresponding result in the grand canonical ensemble
is known. The natural continuation of this work will be to
exploit such transformations to account for situations where no
analytical solutions exists. With this one can avoid in general
the calculation of the computer intensive partition sum in
the canonical ensemble, yet directly arrive at those results
from the grand canonical ensemble ones and thus account
for the conservation law (lepton and baryon) relevant for
finite nuclei. In particular, applying the constraint of energy
(microcanonical ensemble) requires numerically heavy Monte
Carlo techniques with all the associated convergence prob-
lems. The transformation equations can handle the situation
in a much easier way by an approximate implementation of
these conservation laws through Lagrange parameters. This
idea of using the transformation relation to obtain results in
ensembles (for which solutions do not exist) can be extended
to other domains of nuclear physics as well as other branches
of physics, since most models in statistical mechanics cannot
be solved analytically in a particular ensemble.

Analytical transformation relations connecting the grand
canonical and the canonical ensembles have already been
developed in our group [8], but that was confined to one kind
of particle; that is, without distinguishing between the neutron
and proton. This work is actually an extension of the earlier
work and here isospin is successfully included and thus can
be applied to results from fragmentation of finite nuclei. This
is extremely important for several reasons. As stated earlier,
calculations in the canonical ensemble are in general difficult
due to the constraints. The most important application of this
transformation equation is of course to obtain these canonical
results directly through the grand canonical ensemble and
the transformation equation without calculating the canonical
partition sum. In the case of our thermodynamical model [2],
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the existence of the recursion relation enables solving the
canonical model analytically, but such recursion relations
are in general not available in all cases, and there the
appropriate transformation relation will be of significant use. It
is well known that results from canonical and grand canonical
ensembles agree in the thermodynamic limit; that is, when
the number of particles become infinite [9]. But in the case
of finite nuclei too, they converge under certain conditions.
These conditions of equivalence or convergence can be easily
tested if one has a direct transformation relation connecting
the two without directly calculating the observables using
both the ensembles [10]. Another important domain where
this transformation relation can be immensely useful is when
dealing with symmetry energy [11] from isoscaling [12,13] and
isobaric yield ratio parameters [13,14], and also temperature
measurement by the double isotope ratio method [15]. These
isoscaling and isobaric yield ratio equations as well as the
equation for measuring the temperature have been derived
using the yields of the fragments in the framework of the
grand canonical ensemble. The actual experimental yield on
the other hand is much closer to the canonical values. Hence
the applicability of those equations in extracting different
parameters in case of finite nuclei is limited and is not valid
for all energies, source sizes, as well as asymmetry ratios.
Different parameters deduced using these equations need to be
corrected for finite nuclei, and the transformation relations can
play a significant role in determining these correction factors.

The transformation relations connecting the two ensembles
is not completely valid in the temperature or density regime
where the liquid-gas phase transition occurs. Fluctuations
become high in this domain, which limits the applicability
of the formula. But since the Coulomb interaction quenches
the liquid-gas phase transition, the formula works remarkably
well in most of the thermodynamic region associated with the
multifragmentation phenomenon. Another region where this
formula is of limited applicability is when the observable value
is very small and thehigher order correction terms become
more significant. As stated earlier, since analytical solutions
exist for both canonical and grand canonical ensembles in
our thermodynamical model for fragmentation of nuclei, it is
possible to test the efficiency of the developed transformation
formula by applying it to observables significant for nuclear
fragmentation as well as for the liquid-gas phase transition.
This work can be a stepping stone for extension of this concept
to other applications in future.

The paper is structured as follows. The next section gives
a brief introduction to the models. Derivation of the ensemble
transformation relation for realistic nuclei is described in
Sec. III. In the Sec. IV results are presented, and finally the
last section gives the summary.

II. CANONICAL AND GRANDCANONICAL MODEL

In a canonical model [2], the partitioning is done such that
all partitions have the correct A0,Z0 (equivalently N0,Z0). The
canonical partition function is given by

QN0,Z0 =
∑ ∏ ω

nN,Z

N,Z

nN,Z!
, (1)

where the sum is over all possible channels of breakup
(the number of such channels is enormous) satisfying N0 =∑

N × nN,Z and Z0 = ∑
Z × nN,Z; ωN,Z is the partition

function of the composite with N neutrons and Z protons
and nNZ is its multiplicity. The partition function QN0,Z0 is
calculated using a recursion relation [2]. From Eq. (1), the
average number of composites with N neutrons and Z protons
is given by

〈nN,Z〉c = ωN,Z

QN0−N,Z0−Z

QN0,Z0

. (2)

In the grand canonical ensemble, if the neutron and proton
fugacities are fn and fz (fn = βμn and fz = βμz; μn and μz

are the neutron and proton chemical potentials and β = 1/T )
corresponding to average number of particle 〈N0〉 and 〈Z0〉,
then they can be expressed in terms of grand canonical partition
sum Qfn,fz

by the relations

〈N0〉fn,fz
= ∂lnQfn,fz

∂fn

, 〈Z0〉fn,fz
= ∂lnQfn,fz

∂fz

. (3)

The average number of composites with N neutrons and Z
protons is given by [7]

〈nN,Z〉gc = efnN+fzZωN,Z. (4)

In both the models, the partition function of a composite
having N neutrons and Z protons is a product of two parts.
One is due to the the translational motion and the other is the
intrinsic partition function of the composite:

ωN,Z = V

h3
(2πmT )3/2A3/2 × zN,Z(int), (5)

where V is the volume available for translational motion. Note
that V will be less than Vf , the volume to which the system
has expanded at breakup (freeze-out volume). We use V =
Vf − V0, where V0 is the normal volume of a nucleus with Z0

protons and N0 neutrons. In this work the freeze-out volume
is kept constant at 3V0. For nuclei in isolation, the internal
partition function is given by zN,Z(int) = exp[−βF (N,Z)],
where F = E − T S. For mass number A � 5, we use the
liquid-drop formula for calculating the binding energy, and
the contribution for excited states is taken from the Fermi-gas
model. The properties of the composites used in this work are
listed in detail in [2].

III. THEORETICAL FORMALISM OF
ENSEMBLE TRANSFORMATION

The partition functions in canonical and grand canonical
ensembles are related to each other other through the fol-
lowing equation, and this connection forms the basis of the
transformation formula for converting results of observables
from one ensemble to another:

Qfn,fz
=

∞∑

N0,Z0=0

QN0,Z0 exp{fnN0 + fzZ0},

Pfn,fz
(N0,Z0) = QN0,Z0 exp{fnN0 + fzZ0}

Qfn,fz

, (6)

where QN0,Z0 is the canonical partition function defined in
Eq. (1) and Qfn,fz

is the grand canonical partition function,
which can be deduced by the condition of normalization
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FIG. 1. Grand canonical proton and neutron number distributions
for fragmenting source 〈Z0〉 = 28, 〈N0〉 = 30 at temperature
T = 8 MeV.

of probabilities. From the definition of the grand canonical
partition function Qfn,fz

in Eq. (6), it is evident that it is a
combination of different canonical sources QN0,Z0 of varying
particle number with different probabilities Pfn,fz

. This is
shown in Fig. 1. Hence in realistic modeling of nuclear systems
which are not coupled to any particle bath, the ideal ensemble
cannot be grand canonical. Using similar arguments for energy
(as for particle number) one can say that since nuclear systems
are not connected to any heat bath, the ideal ensemble should
be microcanonical, which corresponds to a fixed energy instead
of a combination of all possible energies with varying weights.

Pfn,fz
(N,Z) in Eq. (6) is the particle number distribution in

the grand canonical ensemble, and using this one can express
the average number of protons and neutrons as

〈N0〉fn,fz
=

∞∑

N0,Z0=0

N0Pfn,fz
(N0,Z0),

〈Z0〉fn,fz
=

∞∑

N0,Z0=0

Z0Pfn,fz
(N0,Z0). (7)

Using Pfn,fz
(N,Z), the definition of particle number

fluctuation in the grand canonical ensemble can be introduced
as follows:

σ 2
n = ∂2 ln Qfn,fz

∂f 2
n

=
∞∑

N0,Z0=0

(N0 − 〈N0〉fn,fz
)2Pfn,fz

(N0,Z0),

(8)

σ 2
z = ∂2 ln Qfn,fz

∂f 2
z

=
∞∑

N0,Z0=0

(Z0 − 〈Z0〉fn,fz
)2Pfn,fz

(N0,Z0),

(9)

σnz = ∂2 ln Qfn,fz

∂fn∂fz

=
∞∑

N0,Z0=0

(N0 − 〈N0〉fn,fz
)(Z0 − 〈Z0〉fn,fz

)Pfn,fz
(N0,Z0).

(10)

The analytical connection between the canonical and grand
canonical ensembles [as in Eq. (6)] suggests that one should be
able to extract grand canonical results from canonical ones and
vice versa, provided the probability distribution is completely
described by a limited number of moments. Consider any
observable which can be studied in both canonical and
grand canonical ensembles at a given temperature T and
freeze-out volume Vf , denoted by Rc(N0,Z0) and Rgc(fn,fz)
respectively. By using the exact relation connecting canonical
and grand canonical ensembles,

Rgc(fn,fz) =
∞∑

N0,Z0=0

Pfn,fz
(N0,Z0)Rc(N0,Z0). (11)

By doing Taylor series expansion of Rc around (〈N0〉,〈Z0〉)
and truncating at the second order,

Rgc(fn,fz) ≈ Rc(〈N0〉fn,fz
,〈Z0〉fn,fz

)

+ 1

2
σ 2

n

∂2Rc

∂N2
0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

+ 1

2
σ 2

z

∂2Rc

∂Z2
0

∣∣∣∣
〈N0〉fn,fn ,〈Z0〉fn,fz

+ σnz

∂2Rc

∂N0∂Z0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

. (12)

Now, similar to Rc, another observable is defined
T n2

c (N0,Z0) = ∂2Rc(N0,Z0)
∂N2

0
. By making the Taylor expansion of

T n2

c and substituting for the same, one gets

1

2
σ 2

n

∂2Rc

∂N2
0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

≈ 1

2
σ 2

n

∂2Rgc

∂〈N0〉2

∣∣∣∣
fn,fz

− 1

4

(
σ 2

n

)2 ∂4Rc

∂N4
0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

− 1

4
σ 2

n σ 2
z

∂4Rc

∂N2
0 ∂Z2

0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

− 1

2
σ 2

n σnz

∂4Rc

∂N3
0 ∂Z0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

. (13)

Considering the limit of small particle number
fluctuation σ 2

n /〈N0〉2
fn,fz

< 1, σ 2
z /〈Z0〉2

fn,fz
< 1, and

σnz/〈N0〉fn,fz
〈Z0〉fn,fz

< 1, one can neglect the terms
containing (σ 2

n )2, σ 2
n σ 2

z , and σ 2
n σnz; therefore

1

2
σ 2

n

∂2Rc

∂N2
0

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

≈ 1

2
σ 2

n

∂2Rgc

∂〈N0〉2

∣∣∣∣
fn,fz

. (14)

Similarly, by considering, T z2

c (N0,Z0) = ∂2Rc(N0,Z0)
∂Z2

0
and

T nz
c (N0,Z0) = ∂2Rc(N0,Z0)

∂N0∂Z0
and repeating the same algebra

for these variables, one finally gets the transformation
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equation

Rc(〈N0〉fn,fz
,〈Z0〉fn,fz

)

≈ Rgc(fn,fz) − 1

2
σ 2

n

∂2Rgc

∂〈N0〉2

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

− 1

2
σ 2

z

∂2Rgc

∂〈Z0〉2

∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

− σnz

∂2Rgc

∂〈N0〉∂〈Z0〉
∣∣∣∣
〈N0〉fn,fz ,〈Z0〉fn,fz

. (15)

The right-hand side of the expression can be entirely
calculated from the grand canonical ensemble, and then by
applying this transformation relation one can calculate the
canonical ensemble result from the grand canonical ensemble.
The quantity R in Eq. (15) can represent different observables,
and in the next section we examine the ones most relevant for
nuclear miltifragmentation.

IV. RESULTS AND DISCUSSIONS

In this section the results will be displayed for different
fragmentation observables in order to test the predictability of
the formula [Eq. (15)] developed for converting results from
grand canonical to canonical ones. Since both grand canonical
and canonical ensembles have analytical solutions in this
particular case, they serve as a suitable platform for testing the
accuracy of the formula. The mass distribution of the fragments
formed as a result of disassembly of the nucleus is one of the
most important observable of nuclear multifragmentation. It
is accessible to almost all experiments and also can serve
as an indicator of the liquid-gas phase transition [16,17]. In
Fig. 2, the results for mass distribution are plotted for two
different temperatures, 6 and 8 MeV, from fragmentation of

FIG. 2. Mass distribution of fragments produced from disassem-
bly of a particular source of mass number 58 and proton number
28, calculated from canonical (black dotted line) and grand canonical
(blue dashed line) models for two different temperatures, T = 6 MeV
(left panel) and 8 MeV (right panel). The red solid lines represent the
canonical result obtained from the grand canonical model by using
Eq. (15).

FIG. 3. Variation of average size of the largest cluster (〈Zmax〉)
with temperature (T ) for the fragmenting system of charge 28 and
mass 58 calculated from canonical (black dotted line) and grand
canonical (blue dashed line) models. The red solid lines represent the
canonical result obtained from the grand canonical model by using
Eq. (15).

a particular source of mass number 58 and proton number
28 at constant freeze-out volume 3V0. For each temperature,
three lines are shown: one is from canonical model calculation,
another is from grand canonical model calculation, and the
third is the canonical result obtained using the expression for
grand canonical to canonical transformation. It is seen that
results from the transformation formula agree with those of
the canonical model to a large extent at both the temperatures.
Slight deviation is seen when the cross section (multiplicity)
becomes very small, and in such cases the formula is not
strictly valid since the higher order correction terms can no
longer be neglected. The formula works remarkably well over
an appreciable mass range, and one can thus reliably use this
for converting results to canonical if one has access to the
grand canonical results.

The average size of the largest cluster formed as a result
of fragmentation of nuclei serves as a good order parameter
for the nuclear liquid-gas phase transition both theoretically
as well as experimentally, and hence calculation of this
observable is of great significance. Figure 3 displays the
variation of the size of the largest cluster with temperature
for both canonical and grand canonical model calculations as
well as that using the transformation formula.

The results from the formula agrees very well with the
canonical model results, once again confirming its validity
above the phase transition region. The reason for the disagree-
ment of the formula with the canonical model results around
the phase transition temperature is explained in the next figure.

If a system undergoes liquid-gas phase transition, then
the particle number fluctuation suddenly increases near the
phase transition temperature and then it again decreases. One
can have some idea of the phase transition temperature from
this variation. In Fig. 4 we show the results of σ 2

n , which
actually indicate the fluctuation of the particle number with
temperature. The results agree with our understanding that
fluctuation reaches a maximum in the phase transition region
and is less on either side of the phase transition temperature.
The transformation formulas are not applicable when the
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σ

FIG. 4. Variation of σ 2
n (red solid line) with temperature (T ) for

the fragmenting system of charge 28 and mass 58.

fluctuation is very high, since higher order terms in the formula
can no longer be neglected. Although Coulomb interaction
quenches the phase transition to some extent in fragmentation
reactions, still one should apply the formula beyond the
transition temperature in order to get better agreement. This
also explains the disagreement at lower temperature in Fig. 3.

Isotopic distribution is another very important observable
studied from nuclear multifragmentation, and is also measured
in most experiments. The yields of fragments with different
proton and neutron numbers form the basis of calculation and
extraction of important parameters such as isoscaling, isobaric
yield ratio, temperature, and others. The symmetry energy
coefficient is often calculated using the isoscaling and isobaric
yield ratio parameters [12–14]. Most of these depend on the
ratios of yields of the fragments at varying conditions, and
hence accurate calculation of the yields is extremely important.
Figure 5 displays the isotopic distribution for Z = 7 and 12
at two fixed temperatures and for two different sources with
the same proton number but different neutron number. Here
also the transformation formula does a remarkably good in
reproducing the values of the observables in the canonical
ensemble starting from the grand canonical ones.

The last figure (Fig. 6) displays the isoscaling results as
a function of neutron number (left panel) and proton number
(right panel) for different Z and N values respectively. It is
observed both theoretically and experimentally [12,13,18–21]
that the ratio of multiplicities R21 = n2(N,Z)/n1(N,Z) from
two reactions 1 and 2 having different isospin asymmetry (2 is
more neutron rich than 1) exhibit an exponential relationship
as a function of N and Z, i.e.,

R21 = n2(N,Z)/n1(N,Z) = C exp(αN + βZ), (16)

where α and β are isoscaling parameters and C is a nor-
malization constant. The isoscaling parameters are nothing
but the slopes of the lines as displayed in the figure; α for
the left panel and β for the right one. The results from
the grand canonical ensembles are straight lines parallel
to each other as expected [20,21]. The results from the
canonical ensembles deviate from the straight lines (fixed
slope) and their variation is very nicely reproduced by the
values obtained from the transformation formula, once again
establishing its validity. The derivation of the isoscaling

FIG. 5. Multiplicities of Z = 7 (left panels) and Z = 12 (right
panels) isotopes produced from two fragmenting systems of the
same atomic number 28, but different mass numbers 58 (upper
panels) and 64 (lower panels), calculated from canonical (black dotted
line) and grand canonical (blue dashed line) models. The freeze-out
temperature for both the system is T = 8 MeV. The red triangles
represent the canonical result obtained from the grand canonical
model by using Eq. (15).

equation is based on the use of the grand canonical yields
while experimental results are expected to be closer to those
of the canonical ensemble [21]. The correction factors in the
isoscaling parameters (slopes) due to this deviation can be
incorporated with the help of the transformation relation. A
similar correction is also mandatory for other parameters,
such as temperature, calculations of which are based on grand

FIG. 6. Ratios (R21) of multiplicities of fragments (N,Z) where
mass and charge of the fragmenting system for reaction 1 are 58 and
28 respectively and those for reaction 2 are 64 and 28. The freeze-out
temperature for both the fragmenting systems is T = 8 MeV. The left
panel shows the ratios as a function of neutron number N for fixed Z

values, while the right panel displays the ratios as a function of proton
number Z for fixed neutron numbers (N ) calculated from canonical
(black dotted line) and grand canonical (blue dashed line) models.
The red triangles represent the canonical result obtained from the
grand canonical model by using Eq. (15).

034609-5



P. DAS, S. MALLIK, AND G. CHAUDHURI PHYSICAL REVIEW C 96, 034609 (2017)

TABLE I. The grand canonical result, as well as the approx-
imation, Eq. (15), of the canonical result from the grand canonical
ensemble are compared to the exact canonical calculation for different
observables obtained from fragmentation of the source of mass
number 58 and proton number 28 at freeze-out volume Vf = 3V0

and two different temperatures T = 6 and 8 MeV.

Observables Temperature Grand Canonical Transformation
(MeV) canonical model relation [Eq. (15)]

model result result

〈n〉tot 6 5.994 6.155 6.116
8 9.131 9.184 9.171

〈Zmax〉 6 10.293 10.752 10.724
8 6.653 6.796 6.798

α 6 0.668 0.958 0.942
8 0.578 0.786 0.801

β 6 −0.780 −1.035 −1.048
8 −0.670 −0.856 −0.867

canonical yields [15]. Table I displays the results of different
observables at two different temperatures using canonical and
grand canonical ensembles and also from the transformation
formula for conversion from canonical to grand canonical.
The observables which have been examined here are total
multiplicity 〈n〉tot, charge of the largest cluster 〈Zmax〉, and the
isoscaling parameters α and β. The agreement is very good
at both the temperatures irrespective of the observable used,
which ensures the accurateness of the ensemble transformation

relation for finite nuclei formed in the fragmentation reactions
at intermediate energies.

V. SUMMARY

A transformation relation for converting results in finite nu-
clei from grand canonical to canonical ensemble and vice versa
has been devised and tested for different observables relevant
to nuclear multifragmentation. The results thus obtained from
the formula are found to be in excellent agreement with those
of the exact canonical results obtained through calculation of
the partition sum. This is of great significance since it allows
one to have access to the canonical results from the grand
canonical ones. In the intermediate energy domain, the nuclear
systems formed in the laboratory are coupled to neither the
particle reservoir nor the heat bath. Hence the ideal ensemble to
work with would be microcanonical, but the strict conservation
laws render the calculation extremely difficult. Since the
transformation relation has been proved to be very efficient
in this work, the extension of this transformation relation for
conversion of results from canonical to microcanonical (where
no analytical solution exist) would be the motivation for a
future work.
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