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From bare to renormalized order parameter in gauge space: Structure and reactions
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It is not physically obvious why one can calculate with similar accuracy, as compared to the experimental data,
the absolute cross section associated with two-nucleon transfer processes between members of pairing rotational
bands, making use of simple BCS (constant matrix elements) or of many-body [Nambu-Gorkov (NG), nuclear
field theory (NFT)] spectroscopic amplitudes. Restoration of spontaneous symmetry breaking and associated
emergent generalized rigidity in gauge space provides the answer and points to a new emergence: A physical sum
rule resulting from the intertwining of structure and reaction processes, closely connected with the central role
induced pairing interaction plays in structure, together with the fact that successive transfer dominates Cooper
pair tunneling.
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I. INTRODUCTION

The starting point of most descriptions of nuclear structure
and reactions is based on independent particle motion. The va-
lidity of such a picture is related to basic quantum mechanics.
Potential energy privileges fixed position between particles.
On the other hand, fluctuations, in particular quantum fluc-
tuations, favor symmetries. Regarding single-particle motion,
such competition is embodied in the quantality parameter [1],

q = h̄2

ma2

1

|v0| , (1)

where m is the nucleon mass and v0 and a are the strength
and the range of the strong NN potential, respectively (v0 ≈
−100 MeV, a ≈ 1 fm). The above equation is the ratio between
the kinetic energy of confinement and the potential energy.
Because q ≈ 0.4, nucleons in the nucleus are delocalized, and
mean field techniques can be used at profit in the description
of nuclear structure.

II. SPONTANEOUS SYMMETRY BREAKING

The fact that basic properties of a quantal system can be
described in terms of a mean field solution which does not
display some of the symmetries of the original Hamiltonian, is
known as the spontaneous symmetry-breaking phenomenon.

The lower symmetry mean field solution defines a
privileged orientation in the corresponding three-dimensional
(e.g., Nilsson) or gauge [e.g., BCS, Hartree-Fock-Bogoliubov
(HFB)] space. All orientations have the same energy, in
keeping with the fact that the restoring constant associated
with changes in the Euler and gauge angles is zero.
Fluctuations in orientation thus diverge in precisely the right
manner to restore symmetry (see, e.g., Ref. [2], Secs. 4.2.
and 4.2.3, and references therein). Because this divergence is
associated with the vanishing of the frequency for constant
inertia, the system acquires generalized rigidity (emergent
property). Thus, acting with the specific external field
(Cooper pair transfer in the case of pairing rotational band)
sets the deformed system into rotation as a whole, without
retardation effects. The above phenomena are at the basis of
the broken symmetry restoration paradigm used to identify
the elementary modes of nuclear excitation (see, e.g., Refs. [3]
and references therein), in particular pairing rotations [3–8].

Pairing in nuclei has been introduced a number of times, first
to explain the enhanced stability of even nuclei over odd nuclei
[9], subsequently to describe the correlations associated with
such staggering effects [10,11], after the BCS explanation of
superconductivity [12,13] to account for the presence of a gap
in the low-energy intrinsic excitation spectrum of deformed
nuclei [14], and finally in connection with the advent of
the Josephson effect, namely Cooper pair tunneling, and the
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study of two-nucleon transfer processes, specific probes of
deformation in gauge space [15,16].

A. Order parameter of nuclear superfluid phase

The order parameter associated with independent pair
motion is defined as

α′
0 = 〈BCS(N + 2)|P ′+|BCS(N )〉,

=
∑

j

√
2j + 1

2
B(j 2(0),N → N + 2), (2)

that is, the number of pairs participating in the BCS conden-
sate. The quantity

B(j 2(0),N → N + 2) = 〈BCS(N + 2)|T ′+(j 2(0))|BCS(N )〉

=
√

2j + 1

2
U ′

j (N )V ′
j (N + 2) (3)

is the two-nucleon transfer spectroscopic amplitude,

T ′+(j 2(0)) = [a′
j
+
a′

j
+]0√

2
, (4)

being the two-nucleon (Cooper pair) transfer operator, while

P ′+ =
∑
jm>0

a′
jm

+
a′

¯jm

+ =
∑

j

√
2j + 1

2
T ′+(j 2(0)) (5)

is the operator which creates a pair of particles in time-
reversal states. |BCS(N )〉 labels the BCS state for which
the λ parameter (Fermi energy) has been adjusted so that
2
∑

jm>0 V ′
j

2 = N.

In keeping with (2), the order parameter α′
0 =∑

j ( 2j+1
2 )U ′

j (N )V ′
j (N + 2) ≈ ∑

j ( 2j+1
2 )U ′

jV
′
j provides a

measure of the nuclear deformation in gauge space and thus
of the fact that the system displays a privileged orientation in
this space, as can be seen from the relation (see Appendix A)

α′
0 =

∑
j

(
2j + 1

2

)
U ′

jV
′
j

= e2iφ
∑

j

(
2j + 1

2

)
UjVj = e2iφα0. (6)

The primed quantities are the BCS occupation amplitudes,
which are referred to the intrinsic system of reference in
gauge space (i.e., body-fixed BCS state), while the unprimed
quantities are the same quantities referred to the laboratory
system of reference. The two systems are connected by a
rotation in gauge space of angle φ, induced by the operatorG =
exp(−iN̂φ), where N̂ is the number operator and thus a′+

jm =
G(φ)a+

jmG−1(φ) (see, e.g., Ref. [17] and references therein).
It is notable that the phasing (A2) used in connection with
Eq. (6) was chosen for somewhat historical reasons [18]. Using
the more standard one, namely Uν = U ′

νe
iφ, Vν = V ′

νe
−iφ (see

Ref. [17] and references therein), the order parameter can be
written as α0 = ∑

ν>0 U ∗
ν Vν = e−2iφ

∑
ν>0 U ′

νV
′
ν = e−2iφα′

0.
A simple empirical confirmation that α0 is the number

of Cooper pairs of a superfluid nucleus can be made with

the help of the single j -shell model.1 In this model, Vj =
(N/2�)1/2 and Uj = (1 − N/2�)1/2, where � = (2j + 1)/2.
For a system with N = � particles, i.e., �/2 pairs, half-filled
shell, typical of a superfluid nucleus, Vj = Uj = (1/2)1/2

and α0 = �/2. Thus, α0 gives an estimate of the number of
Cooper pairs which participate in specifying the orientation
the |BCS〉 state has in gauge space. With the help of the
approximate expression � = (2/3)A2/3, one obtains α0 = 8
for 120Sn. Detailed microscopic calculations give values of
α0 = 5–6 (see Sec.VI, Table II).

Symmetry restoration results from zero-point fluctuations
of the gauge angle. They set the BCS deformed state into
rotation, leading to pairing rotational bands, e.g., the ground
state of superfluid Sn isotopes, where N plays in gauge space
the role that angular momentum plays in quadrupole rotational
motion. This symmetry restoration can be implemented by
diagonalizing in the Quasi Random Phase Approximation
(QRPA) the residual interaction Hres acting among quasipar-
ticles that is neglected in the BCS mean field approximation
(see Appendix A).

Since there are two parameters which determine the
admixture of particle and hole states connected with gauge
symmetry breaking, namely Uj and Vj (quasiparticle trans-
formation), there are only two fields F which contribute to
Hres through terms of the type FF+. One is antisymmetric
with respect to the Fermi energy, namely U 2

j − V 2
j , and leads

to pairing vibrations of the gauge deformed state |BCS〉
(H ′

p contribution to Hres , cf., e.g., Ref. [2], Appendix J).
The other one, Uj

2 + Vj
2, is symmetric with respect to εF

and leads to fluctuations which restore gauge symmetry (H ′′
p

contribution to Hres,HBCS + H ′′
p commute with N̂ ). Within

this scenario, the field U 2
j − V 2

j excites two-quasiparticle
states. By eliminating (in a particle-conserving fashion) this
contribution from U 2

j + V 2
j , one obtains the field that connects

the members of ground-state rotational bands. That is, [(U 2
j +

V 2
j )2 − (U 2

j − V 2
j )2]1/2 ∼ UjVj . This result, together with (3)

and (4), testifies to the fact that two-nucleon transfer reactions
are, from the point of view of structure, the specific probes of
pairing condensation in nuclei [19], as it emerges in a natural
fashion by writing

α0 = 〈BCS|
∑

j

(√
2j + 1

2
T ′+(j 2(0))

)
|BCS〉. (7)

It is then natural that2 the absolute two-nucleon-transfer
cross section between members of a pairing rotational band

1In the remainder of this paper, although we continue to refer all
quantities to the intrinsic, body-fixed frame of reference in gauge
space, we will not use primed letters, with the exceptions of particular
cases which will be signaled and where the explicit appearance of the
gauge angle φ is of use [cf., e.g., Appendix A, Eq. (A10)].

2Within this context, the Coulomb excitation cross section associ-
ated with the excitation of members of a quadrupole rotational band is
proportional to Q2

0, the square of the quadrupole moment, a quantity
which provides a measure of the number of aligned nucleons [3].
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(II)

(a) (b) (c) (d)

(a) (b) (c) (d) (e) (f) (g)

FIG. 1. (I) (a) ZPF associated with (particle-hole) surface vibra-
tions, (b) odd system, (c) the antisymmetrization between the particles
considered explicitly and those involved in the vibration; and (d)
time ordering of panel (c). Diagrams (c) and(d) lead to the clothing
of single-particle motion in lowest order in the particle-vibration
coupling vertex. (II) A dressed nucleon moving in a state ν in the
presence of (a) a bare nucleon moving in the time-reversed state ν̄ and
(c) another dressed nucleon. Exchange of vibration in panel (a) leads
to (b) the NFT lowest-order contribution in the particle-vibration
coupling vertex of the induced pairing interaction (Appendix D).
Exchange of vibrations in panel (c) leads to (d) self-energy, (e) vertex
correction of the induced pairing interaction (Appendix E), and (f)
ladder diagram contributing to the induced pairing interaction. The
symmetrization between the bosons displayed in panel (c) is shown
in panel (g).

can, schematically, be written as

σ ∼ |α0|2, (8)

emphasizing again the close connection (unification) of struc-
ture and reaction aspects of the subject under discussion.

III. PHYSICAL NUCLEONS AND INDUCED PAIRING

In what follows, we will show that there is a simple physical
reason at the basis of the above parlance, rooted in the fact that
the atomic nucleus is a leptodermous finite many-body quantal
system. Virtual states, like those associated with zero-point
fluctuations (ZPF) of the nuclear vacuum (ground state), e.g,
in which a surface quantised vibration and an uncorrelated
particle-hole mode get virtually excited for a short period
of time [Fig. 1(I)(a)], are a basic characteristic feature of
these systems [20]. Adding a nucleon to it [odd system,
Fig. 1(I)(b)] leads, through the particle-vibration coupling
strength (V ; see, e.g., Ref. [21], Eq. (C6)] to processes which
contain the effect of the antisymmetry between the single
particle explicitly considered and the particles out of which
the vibrations are built [Fig. 1(I)(c)]. Time ordering gives rise
to the graph shown in Fig. 1(I)(d). Processes I(c) and I(d),
known as correlation (CO) and polarization (PO) contributions
to the mass operators (see Refs. [22,23], and references
therein), clothe the particles, leading to physical nucleons
whose properties can be compared with the experimental
findings. Summing up, the processes shown in Fig. 1(I) are
textbook examples of quantum field theory phenomena. They
testify that the clothing of nucleons is at the basis of the quantal
description of the atomic nucleus.

Nuclear superfluidity in general, and its incipience in the
case of a single Cooper pair like in 11Li in particular, are
among the most quantal of all the phenomena displayed by the
nuclear many-body system. Even if the 1S0, NN interaction
was not operative, or was rendered subcritical by screening
effects as in the case of 11Li, Cooper binding will still be
healthy, as a result of the exchange of vibrations between pairs
of physical (clothed) nucleons moving in time-reversal states
close to the Fermi energy [Figs. 1(II)(b), 1(II)(d)–1(II)(g)], a
direct consequence of the ZPF of the nuclear vacuum (ground
state) [Figs. 1(I)(a) and 1(I)(c)].3

Within this context, and only so, one can posit that the order
parameter α0 does not depend on the presence or absence of
the 1S0, NN bare potential. Independent Cooper pair motion
and thus nuclear superfluidity is intrinsically contained in
the fluctuations of the quantal nuclear vacuum. As such, it
is a truly emergent many-body nuclear property, implying
generalized rigidity in gauge space, with the associated pairing
rotational bands being specifically excited through pair transfer
[3,4,6,7]. The fingerprint of spontaneous symmetry breaking

3Let us note that the Hamiltonian contains the Newtonian quanti-
tative expression for causation in the potential energy, the classical
idea of force. If, for instance, particles are acting on one another
with a Coulomb force (as protons in the nucleus or the nucleus and
the electrons in an atom), there appears in H the same timeless
action over finite distance as in Newtonian mechanics. These vestiges
of classical causality can give rise to serious problems under
certain circumstances (cf., e.g., Refs. [24–26]), problems which are
eliminated by taking into account the fact that the Coulomb interaction
arises from the exchange of photons between charged particles. It is
interesting to quote from the notes of Feynman on the self-interaction
of two particles: “the self energy of two electrons is not the same
as the self-energy of each one separately. That is because among the
intermediate states which one needs in calculating the self-energy of
particle number 1, say, the state of particle 2 can no longer appear in
the sum because a transition of 1 into the state of 2 is excluded by
the Pauli exclusion principle. The amount by which the self-energy
of two particles differs from the self-energy of each one separately
is actually the energy of their electric attraction” (see Ref. [27],
p. 235). Fluctuations, in quantum mechanics, not only enter through
the kinetic energy but also through the potential energy. Because of
Heisenberg’s indeterminacy relations and Born-Jordan commutation
laws, the quantal many-body system even in its ground state is at a
finite, effective temperature, and the separation between enthalpies
(potential) and entropic (kinetic) components is not clear cut, as
forces are also ω− dependent many-body phenomena which only
approximately can be treated in terms of static terms. In other words,
the central issue in the quest of solving the many-body problem is that
of having a correct description of the ground state as far as it reflects
the virtual excitation of the system (Appendix B). This is the reason
why effective field theories in general and NFT in particular have a
good starting point, while ab initio calculations have to create it at
each stage. While this task may not be too complicated to describe the
effect of ZPF associated with giant resonances, that associated with
low-lying collective modes is likely more trying. On the other hand,
these states play the dominant role, through their state-dependent
ZPF, in determining the texture of the nuclear physical vacuum and
the nuclear properties at large.
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in finite many-body systems is the presence of rotational
bands associated with symmetry restoration. To qualify as a
rotational band, a set of levels must display enhanced transition
probabilities (absolute cross sections) associated with the
operator having a nonvanishing value in the (degenerate)
ground state (order parameter). In the present case (pairing
rotational bands), this is the two-nucleon transfer operator
[17,28]. In other words, cross talk (absolute transfer cross
sections) between a member of a pairing rotational band and
states not belonging to it should be much smaller than between
members of the band. It could be argued that also important for
the characterization of a pairing rotational band is the parabolic
dependence of the energy with particle number. This is true, but
many nonspecific effects can modify this dependence without
altering the gauge kinship (common |BCS〉-like intrinsic state).
Before ascribing to two-nucleon transfer processes the role of
specific probe not only from the point of view of nuclear
structure but also from the vantage point of nuclear reactions,4

a central issue concerning the reaction mechanism should be
clarified.

Considering that in superfluid nuclei lying along the
stability valley, e.g., the Sn-isotopes, about half of the neutron
pairing gap is associated with the induced pairing interaction
[29,30], that is, 
ind ≈ gpvα0 = 
exp/2 ≈ 0.8 MeV, where
gpv is the particle-vibration coupling parameter (equal to
minus the induced pairing interaction). The mass enhancement
factor λ [i.e., mω = m(1 + λ) ≈ 1.4m; see, e.g., Refs. [22]and
[21], Eq. (C11)] can be written as λ = gpvN (0)(≈ 0.4), and
therefore one obtains

N (0) ≈ 1
2α0 MeV−1 ≈ 4 MeV−1 (9)

for the density of neutron levels of, e.g., 120
50 Sn70 at the

Fermi energy and for one spin orientation, as experimentally
observed [a ≈ N/8 MeV−1 for both spin orientations; see
Ref. [31], Eq. (7.16)].

As a consequence of Eqs. (8) and (9),

σ ∼ [N (0)]2. (10)

In other words, Cooper pair tunneling in nuclei is dominated
by successive transfer. The significance of this result becomes
clearer by recalling the fact that, according to Fermi’s golden
rule, processes like tunneling or decay are associated with a
linear decay width in the density of states.

One can then argue that successive transfer may imply pair
breaking, making two-nucleon transfer reactions a less-than-
ideal probe of pairing correlations in nuclei. This is not true,
however, a fact which can be understood by calculating the
correlation length, that is, the range over which Cooper pair

4Within this context, one may mention that while, e.g., (p,t)
reactions are quite attractive processes to learn about pairing in nuclei,
the s-relative motion of the two transfer nucleons is quite different in
the target nucleus, e.g., 120Sn, than in the outgoing triton (�n overlaps,
[28]). Inducing Cooper pair transfer with heavy ions allows one to
better probe the s correlations. On the other hand, the simultaneous
opening of many other channels makes the analysis of such reactions
more involved and, arguably, less reliable.

partners, correlated by the exchange of collective vibrations,
feel the presence of each other. One obtains5

ξind = h̄vF

π
ind
= h̄vF

πgpvα0
= h̄vF N (0)

πλα0
≈ 24 fm. (11)

In carrying out the above estimate, use has been made of
vF /c = 0.3, λ = 0.4, and α0 = 8. As a result, the generalized
pair quantality parameter

qξind = h̄2

(2m)ξ 2
ind

1

gpvα0
≈ h̄2

2mξ 2
ind

N (0)

λα0
≈ 0.04 (12)

has a value much smaller than 1, implying potential energy
dominance and thus a strong correlation of the two partner
nucleons of the Cooper pair over distances of the order of ξ ,
a quantity larger than nuclear dimensions. This result testifies
to the fact that successive transfer of nucleons fully probes the
nuclear pair correlations.

The wave functions of the nucleons in the pair are phase
coherent, so one has to add the transfer amplitudes before
taking the modulus square. The nucleons do not tunnel
independently of each other but act more like a single particle,
and the probability of a pair being transferred is comparable
to the probability for the single-nucleon transfer process. It is
like interference in optics with phase-coherent wave mixing.
By denoting P1 and P2 as the single- and pair-nucleon transfer
probability,6 one can write

P2 =
∣∣∣∣ 1√

2
(eiφ′

U
√

P1 + eiφV
√

P1)

∣∣∣∣2

= P1
(1 + 2UV cos ε)

2
≈ P1, (ε ≡ φ − φ′), (13)

where the assumption was made that ε = 0 and U = V =
1/

√
2, which makes use of the fact that the single-pair wave

function is (Uν + Vνe
−i2φa+

ν a+
ν̄ )|0〉 and of the single-j shell

estimate of the BCS occupation amplitudes.
In summary, in the reaction 120Sn + p → (119Sn + d) →

118Sn + t , the first neutron of the Cooper pair picked up by the
proton to constitute the (virtual) deuteron can be at the surface
of the nucleus close to the proton, while the second one can be
at the antipode (diameter ≈ 12 fm). Eventually, the second one
is transferred to form the triton within the interaction range
(≈2 fm). This scenario involves relative distances between
the partners of a Cooper pair, one in the target and the other
one in the (virtual) deuteron, of the order of 10–14 fm [see
Fig. 2, where the inner (n1) orbital motion is to be interpreted
to schematically describe clockwise motion and the external
one (n2) describes anticlockwise motion]. Thus, transfer of a
rather extended object made out of two neutrons moving in
time-reversal states is still correlated as a single-particle of

5In keeping with the fact that 
ind ≈ 
exp/2 as stated above,
the actual Cooper pair mean square radius of 120Sn, i.e., the order
parameter, is about half the value (11).

6Single-particle 120Sn(p,d)119Sn and two-nucleon transfer
120Sn(p,t)118Sn (g.s.) absolute cross sections are in both cases of
the order of a few mb (see Ref. [30] and references therein).
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FIG. 2. Schematic representation of Cooper pair transfer in the
reaction 120Sn(p,t)118Sn (g.s.) leading to essentially a single peak
in the spectrum at 0◦ (after [19], Figs. 1(II)(b) and 1(II)(c) of this
reference).

mass 2m∗, in keeping with the estimated value of ξ and the
phase coherence expressed by the relation P2 ≈ P1.

Following standard practice, we refer throughout this paper
to structure and reactions as two separate issues in the study of
the atomic nucleus. While likely pedagogic, such an approach
is fundamentally wrong, as already suggested in the abstract.
In a nutshell, structure and reactions are two aspects of the
same subject. One likely involves bound, the other continuum
states, a distinction which is not even operative universally
and certainly not in the case of light exotic halo nuclei.
But even more important, because in quantum mechanics,
nonmeasurable aspects of the system under study can hardly
be called physical.

Within this context, the quantity (6) modulus squared can
be measured only when each of its terms are properly weighted
by the form factors (i.e., successive as well as simultaneous and
nonorthogonal functions) and energy denominators (Green’s
functions), as forcefully expressed in (7) (see Appendix A, Eq.
(A.21) of Ref. [19], and also Sec. III, Eq. (38(b)) of Ref. [17]
as well as Figs. 2 and 12 of Ref. [32]). Consequently, when
discussing the order parameter α0, in particular concerning the
possible emergence of a physical sum rule, we are aware of

FIG. 3. Schematic representation of the generalized quasiparticle
transformations from independent particle states a+

a |0〉 = |a〉, to

many-body clothed quasiparticle states | ˜a(≡ (lj ))(n)〉 = α̃+
a(n)|0̃〉,

(α̃+
a(n) = ũa(n)a

+
a − ṽa(n)aa), made also in terms of a two-step protocol

used in the present paper, implemented in terms of a quasiparticle
transformation from Hartree-Fock (a+

a ) to Hartree-Fock-Bogoliubov
(α+

a ) and a (self-energy based) rotation [see Eq. (20)].

FIG. 4. Absolute differential cross sections associated with the
reaction 120Sn(p,t)118Sn(g.s.) calculated making use of the BCS,
HFB, and renormalized NFT(NG) spectroscopic amplitudes (Table II)
and global optical parameters (Table III), in comparison with the
experimental findings (solid dots) [43].

this fact even if, for simplicity, we do not state it explicitly. In
other words, when talking about |α0|2, the ultimate reference
is to the results displayed in Figs. 4 and 5, namely predicted
observables (absolute differential cross section) in comparison
with the experimental findings. This implies that each term of
α0 has to be viewed as the weighted j 2(0), mainly successive,
form factor associated with independent pair motion, similar
to the way in which talking about one-nucleon transfer,
independent particle motion implies a spectroscopic amplitude
and a radial form factor, also renormalized if that is the case
(see, e.g., Ref. [33] and references therein). While the results
contained in Tables I and II play an important role in the
calculation of observables, the different entries still refer to
the assessment of theory against theory.

With the above proviso, we can state that in keeping with
the fact that |BCS〉 is a coherent state displaying off-diagonal

1800

2000

2200

2400

2600
exp
NG
BCS
HFB (v

14
)

σ 
(µ

b)

FIG. 5. Integrated absolute cross sections associated with the re-
action 120Sn(p,t)118Sn(g.s.) (see caption to Fig. 4). The error ascribed
to the NFT(NG) theoretical results stems from the uncertainties in the
calculation of the corresponding two-neutron transfer spectroscopic
amplitudes estimated from the variations the contribution of spin
modes associated with different Skyrme interactions induce in the B

coefficients.

034606-5



POTEL, IDINI, BARRANCO, VIGEZZI, AND BROGLIA PHYSICAL REVIEW C 96, 034606 (2017)

TABLE I. In the first four columns, we list the orbital, its HF energy εa calculated with the SLy4 interaction, and the renormalized
energy ε̃a(n) of the main n peaks resulting from the breaking of the strength due to renormalization effects, with the numeral n being given
in the fourth column. In the next six columns, we list the renormalized quasiparticle energies, occupation factors, total quasiparticle strength,
Z factor, and state-dependent gap of the lowest peaks associated with each of the five valence levels in 120Sn, carrying more than 5% of
the single-particle strength. In the other columns, we list quasiparticle energies and occupation factors obtained in a HFB calculation with
the Argonne interaction (v14) (
HFB = 1.08 MeV) and with a monopole force of strength G = 0.26 MeV, fitted to reproduce the empirical
three-point value 
exp ≈ 1.45 MeV. This last calculation is equivalent to BCS. In all cases, the energy of the d5/2 level has been shifted by
600 keV toward the Fermi energy [30]. In the renormalized calculation, spin modes have been effectively taken into account by including
a repulsive monopole interaction of strength G = 0.03 MeV acting on the valence orbitals in the solution of the Nambu-Gorkov equation
(quantitative effect of spin modes).

a εa ε̃a(n) n Ẽa(n) ũ2
a(n) ṽ2

a(n) Na(n) Za(n) 
̃a(n) Ea(v14) U 2
a (v14) V 2

a (v14) Ea(G) U 2
a (G) V 2

a (G)

d5/2 −10.7 −9.4 1 2.55 0.06 0.28 0.34 0.60 1.96 3.12 0.03 0.97 3.09 0.06 0.94
−9.9 2 2.75 0.01 0.10 0.11 1.80
−10.5 3 3.19 0.01 0.10 0.11 1.68
−10.6 4 3.36 0.01 0.07 0.08 1.88
−11.2 5 3.95 0.01 0.07 0.08 1.97
−12.4 6 4.77 0.0 0.07 0.07 −1.29
−12.7 7 4.98 0.0 0.09 0.09 −0.61

g7/2 −10.1 −9.3 1 2.10 0.09 0.59 0.68 0.78 1.43 2.56 0.06 0.94 2.54 0.09 0.91
−10.6 2 2.83 0.00 0.08 0.08 0.34
−9.9 3 3.20 0.00 0.0 0.0 −2.40
−11.2 4 3.50 0.00 0.11 0.11 0.97

s1/2 −9.0 −8.4 1 1.80 0.26 0.53 0.79 0.72 1.69 1.61 0.13 0.87 1.79 0.22 0.78
−10.4 2 2.84 0.00 0.04 0.04 −1.03
−10.1 3 3.20 0.00 0.0 0.0 −2.20
−12.4 4 4.64 0.00 0.07 0.07 −0.46

d3/2 −8.5 −7.9 1 1.48 0.38 0.46 0.84 0.76 1.48 1.37 0.24 0.76 1.57 0.33 0.67
−7.5 2 2.75 0.0 0.00 0.0 −2.73
−8.8 3 3.06 0.0 0.01 0.01 −2.88
−11.3 4 3.49 0.0 0.05 0.05 −0.14

h11/2 −7.1 −7.2 1 1.64 0.57 0.26 0.83 0.79 1.52 1.34 0.79 0.21 1.74 0.77 0.23
−4.7 2 3.08 0.09 0.00 0.09 0.08
−9.6 3 3.97 0.00 0.00 0.0 3.54

long-range order7 (ODLRO; see Appendix A), one expects (8)
to be a physically conserved quantity. Also, the robustness of
the order parameter α0 to characterize nuclear superfluidity
as compared to the pairing gap is testified by the fact that α0

is different from zero also in nuclear regions, like between
two heavy ions at the distance of closest approach in, e.g.,

7Within this context, note that the overall gauge phase ensuring
that |BCS〉 is a coherent state in this space, is the same as the one
at the basis of the Josephson effect. In fact, the Josephson effect
provided the first (only) specific probe to measure the gauge angle
(difference) in superconductors. Now, because in condensed matter
there are a number of phenomena like supercurrents, Meissner effect,
etc., which testify to pair condensation, the direct relation existing
between ODLRO and the Josephson effect has not been at center
stage. However, the situation is completely different in the case of
atomic nuclei, where supercurrents cannot be observed, in keeping
with the fact that ξ � R0. Consequently, Cooper pair transfer is
essential to probe nuclear superfluidity and associated gauge space
coherence.

the process a(= b + 2) + A → b + B(= A + 2), a situation
in which the pairing interaction and thus also 
 are zero.8

Let us conclude this section by noting that while the
expression (13) displays, in a simple way, the gauge phase
coherence associated with independent pair motion, it does
not contain the independent particle limit, lacking the energy
denominator. Of course, this limit is simple to exhibit in the
quantal [17] or semiclassical [19] formalism mentioned above,
which has the drawback of becoming involved in connection
with phase gauge coherence.

IV. MANY-BODY ASPECTS OF THE NUCLEAR
PAIRING INTERACTION

While in condensed matter the many-body aspects of the
pairing interaction could not be ignored, this could happen
in nuclear physics. This is primarily because the electron-

8Using an analogy, the deformation of a 3D-quadrupole-rotating
system is measured by the quadrupole moment Q0, and not by the
field approximation (κQ0) to the separable quadrupole-quadrupole
interaction HQ = −κ(QQ).
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TABLE II. Two-nucleon spectroscopic amplitudes [Eqs. (3) and
(33)] and contributions to α0 [(ja + 1/2)1/2B(a)] calculated making
use of the quantities given in Table I. In the last row, the value of α0 is
reported while the percentage of the number of neutrons (i.e., 2α0/70)
participating in the condensate is given in parentheses. In the last
column, the quantities worked out making use of the approximation
(34) for ũa(n) and ṽa(n) are given.

B(a) [(α0)a]

a ≡ {lj } NFT(NG) HFB(v14) BCS(G) Z BCS(G)

d5/2 0.43 (0.74) 0.29 (0.51) 0.41 (0.71) 0.40(0.70)
g7/2 0.46 (0.92) 0.47 (0.95) 0.57 (1.14) 0.45(0.89)
s1/2 0.37 (0.37) 0.34 (0.34) 0.41 (0.41) 0.30(0.30)
d3/2 0.59 (0.84) 0.60 (0.85) 0.66 (0.94) 0.50 (0.71)
h11/2 0.95 (2.34) 1.0 (2.44) 1.03 (2.52) 0.81(1.99)
α0 5.21 (15%) 5.09(15%) 5.74(16%) 4.59(13%)

electron bare interaction is repulsive (Coulomb), but also
because the highest values of Tc in low-temperature metallic
superconductors are, as a rule, associated with bad conductors
at room temperature, underscoring the role played by the
electron-phonon coupling in the superconducting phenomenon
and the need for a correct treatment of this interaction. In
other words, the scenario of the Nambu-Gorkov and Eliashberg
approach to superconductivity [34–36].

In nuclear physics, on the other hand, the values of 1S0 phase
shifts are positive for low values of the relative nucleon ve-
locities (Elab � 200 MeV), and the particle-vibration coupling
mechanism is still often thought to give only rise to self-energy
phenomena. As a result, it was assumed that the nuclear pairing
interaction was short range and resulted solely from meson
exchange, with long-range interactions being responsible for
mean field effects (see, e.g., Ref. [37] for a review of this
nuclear model, and references therein). This attitude has
proven to be difficult to overcome. In other words, like the fact
that one cannot measure the bare nucleon mass in nuclei but the
clothed one [see Figs. 1(I)(c) and 1(I)(d)], one cannot measure
the bare pairing interaction in the nuclear medium but only the
effective one, which is the sum of the bare (vp

bare) and induced
(vind

p ) ones [see Figs. 1(II)(b), 1(II)(d)–1(II)(g)]. Furthermore,
in nuclear physics as in condensed matter, a nonperturbative
treatment of the particle-vibration coupling (PVC) is needed
in a number of cases, e.g., in connection with the breaking
of the d5/2 orbit of 120Sn. Within the framework of Nuclear
Field Theory (NFT), by applying the Nambu-Gorkov (NG)
technique developed to describe metallic superconductors to
this open shell nucleus, it is possible to obtain a complete
characterization of it. The theoretical predictions reproduce the
experimental results to within the 10% level [30]. As we shall
see below, the contributions of the many-body effects related
to the one-particle channel do not affect the absolute two-
nucleon transfer reaction cross section in any major way. This
fact testifies to the robustness of α0, in the sense of two-nucleon
transfer spectroscopic amplitude as explained in Sec. III, and
to the physical soundness of making it the nuclear superfluid
order parameter.

V. ELEMENTARY MODES OF EXCITATION: EMPIRICAL
RENORMALIZATION IN STRUCTURE AND REACTIONS

The elementary modes of excitation of a many-body
system represent a generalization of the idea of normal
modes of vibration. They constitute the building blocks of
the excitation spectra, providing insight into the deep nature
of the system one is studying, aside from allowing for an
economic description of complicated spectra in terms of a
gas of, as a rule, weakly interacting bosons and fermions.
In the nuclear case, they correspond to clothed particles and
empirically renormalized vibrations (rotations).

Two ideas lie behind the concept of elementary modes of
excitation: first, that one does not need to be able to calculate
the total binding energy of a nucleus to accurately describe
the low-energy excitation spectrum, in much the same way
in which one can calculate the normal modes of a metal
rod not knowing how to calculate its total cohesive energy.
The second idea is that low-lying states (h̄ω  εF  BE)
are of a particularly simple character and are amenable to a
simple treatment. Their interweaving is carried out at profit,
in most cases, in perturbation theory.9 Within this context,
it is necessary to have a microscopic description of the
ground state of the system which ensures that it acts as the
vacuum state |0̃〉 of the elementary modes of excitation. In
other words, aν |0̃〉 = 0,�α|0̃〉 = 0, where a+

ν |0̃〉 = |ν〉 and
�+

α |0̃〉 = |α〉 represent a single particle and a one-phonon state,
respectively. This implies, in keeping with the indeterminacy
relations 
x
p � h̄/2, that |0̃〉 = |0〉F |0〉B displays quantal
zero-point fluctuations (ZPF).

Within the framework of nuclear field theory (NFT) used
below, in which single-particle (fermionic, F) and vibrational
(bosonic, B) elementary modes of excitation are to be calcu-
lated within the framework of HFB and QRPA respectively,
|0̃〉 must display the associated ZPF (cf. Appendix B). In
particular, for (harmonic) vibrational modes 
x
p = h̄/2,
the associated zero-point energy amounts to h̄ω/2 for each
degree of freedom, e.g., 5h̄ω/2 for quadrupole vibrations, with
h̄ω being the energy of the collective vibrational mode under
consideration.

An illustrative example of the above arguments is provided
by the low-lying quadrupole vibrational state of 120Sn. Diago-
nalizing SLy4 in QRPA leads to a value of B(E2) (890 e2 fm2),
which is about a factor of 2 smaller than experimentally
observed (2030 e2 fm2). Taking into account renormalization
effects in NFT, namely in a conserving approximation (self-
energy and vertex corrections, generalized Ward identities),

9More precisely, and in keeping with the fact that boson degrees
of freedom have to decay through linear particle-vibration coupling
vertices into their fermionic components to interact with another
vibrational mode, the interweaving between the variety of many-body
components clothing a single-particle state or a collective vibration
will be described at profit in terms of an arrowed matrix which,
assuming perturbation theory to be valid, can be transformed,
neglecting contributions of the order of g3

pv or higher, into a
codiagonal matrix, namely a matrix whose nonzero elements are
(i,i − 1) and (i,i + 1), aside from the diagonal ones (i,i).
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one obtains a value (2150 e2 fm 2) which essentially coincides
with the experimental findings. One does not know how to
accurately calculate the absolute ground-state energy E0 (total
binding energy) of, e.g., 120Sn, but one can do pretty well
to work out the properties of the low-energy mode of this
nucleus, the collective energies h̄ωL = EL − E0, and thus the
associated ZPF and zero-point energy E0 by renormalizing
QRPA solutions to lowest order through self-energy and vertex
corrections contributions [29]. Now, if the collective phonons
are not the main object of the study but are to be used to clothe
the single-particle states and give rise to the induced pairing
interaction, one can make use of phonons which account for
the experimental findings (NFT renormalization [30]; see also
Refs. [32,33]).

It is to be noted that in calculating the Eλ life-
times, e.g., the quadrupole lifetime associated with the
low-lying quadrupole mode [T (E2) = 1.22 × 109 × E5

γ ×
B(E2), Eγ = h̄ω2+], the kinematic (E5

γ ) and structural
[B(E2)] contributions can be treated separately. This is in
keeping with the fact that in the case of electromagnetic
decay as well as of anelastic processes, the relative motion
coordinate is always that of the entrance channel, at variance
with particle-transfer processes. Consequently, in connection
with these processes, structure and reactions are treated
separately, a possibility not operative in the case of transfer
reactions. Let us extend this discussion to the particle-transfer
process, in particular, to the two-particle pickup reaction
120Sn(p,t)118Sn(g.s.). In this case, and to be able to calculate
the radial dependence of successive transfer, everything has to
be translated in terms of single-particle motion and associated
absolute separation energies and radial wave functions in
systems with different coordinates of relative motion.

If the k-mass connected with the Perey-Buck energy-
dependent term [22] already made the concept of a single mean
field potential somewhat illusory (Appendix C), consider the
difficulties one is confronted with in attempting to translate
into a description of single-particle motion inside a common
potential, independent motion of Cooper pairs, composite
bosonic particles with binding energies of the order of one
tenth of the Fermi energy10 (≈ 2
/εF ≈ 3 MeV/ 36 MeV) and
a correlation length of tens of fm, subject to a strong external
field of radius R0 ≈ 6 fm and depth ≈ 50 MeV. A way out of
this situation is provided by the fact that in superfluid nuclei,
one is not very far from an independent-particle picture. As
a consequence, no major errors are introduced in treating the
system accordingly, which is also in keeping with the fact that
transfer takes place through the single-particle field [17].

In summary, while one does not know how to calcu-
late the mass of the nucleus, one can accurately calculate
Uj (118)Vj (120), as well as the relative value of the clothed
single-particle energies. In keeping with the fact that renor-
malized NFT, which makes use of the NG equation, correctly
reproduces the quasiparticle energies, the Fermi energy of

10Within this context, we note that in 120Sn the two-neutron
separation energy is S2n = 15.6 MeV, while S1n = 9.1 MeV, i.e.,
(2 × S1n) − S2n = 2.6 MeV.

the single-particle potential used to generate the radial wave
function is adjusted so that the least bound state has the ex-
perimental separation energy Sn. Within the unified picture of
structure and reactions (NFT (r + s), [32]), dressing the radial
wave functions give rise to the correct form factors for transfer
processes. While these effects are small for 120Sn, they are
overwhelming in other situations, e.g., that of halo nuclei [33].

VI. COOPER PAIR POPULATION OF PAIRING
ROTATIONAL BANDS: BCS, HFB, AND NG

In what follows, we analyze the stability of the order
parameter as probed by Cooper pair transfer.

A. BCS

Starting from a HF calculation with the SLy4 interaction
(Table I, second column), we solve the BCS equations for 120Sn
and thus determine the corresponding occupation numbers
Ua(G) and Va(G) (Table I, last two columns) with a schematic
monopole pairing force of strength G = 0.26 MeV, adjusted
to fit the empirical three-point value 
exp ≈ 1.4 MeV.

B. HFB

Making use of the same Skyrme interaction and of the
v14 Argonne, 1S0, NN potential and neglecting the influence
of the bare pairing force in the mean field, we solved the
HFB equation. As a result, this step corresponds to an
extended BCS calculation over the HF basis, allowing for
the interference between states of equal quantum numbers
a(≡ lj ), but different number of nodes (k,k′). To properly
take into account the repulsive core of v14 in the calculation
of 
HFB, we include for each a states up to ≈ 1 GeV. As
a consequence, one obtains a set of quasiparticle energies
E

μ
a , with the quasiparticle index (μ = 1,2, . . . ,Na). Each

quasiparticle α+
a,μ = ∑Na

k=1(Uμ,k
a a+

a,k − V
μ,k
a aa,k) is associated

to an array of quasiparticle amplitudes U
μ,k
a and V

μ,k
a , which

are the components of the quasiparticles over the HF basis
states φa

k = 〈�r|a+
a,k|0〉(≡ 〈�r|a,k〉). Going to the canonical

basis, where the density matrix takes a diagonal form, we
look for the state having the largest value of the abnormal
density, (UV )max. As a rule, for a well-bound nucleus such
as 120Sn, this canonical state is the quasiparticle state having
the lowest value of the quasiparticle energy. The label k then
drops because there is only one orbital for a given value of
a(≡ (lj )). This implies that the bare quasiparticle amplitudes
can be characterized simply by Ua,Va and the associated
state-dependent value of the bare pairing gap is equal to

bare

a = 2UaVaEa . The values of (Ea)min and [Va(v14)]max for
the five valence orbitals are reported in Table I.

C. Renormalized NFT and NG

We now go beyond mean field and include the particle-
vibration coupling leading to retardation phenomena both in
self-energy as well as in induced interaction processes. The
vibrational modes are calculated in QRPA, making use of
empirical Woods-Saxon (WS) single-particle levels, BCS with
constant G, and multipole-multipole separable interactions of
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essentially self-consistent strength [3] which reproduce the
observed properties of the low-lying collective states.

To be able to treat the variety of possible situations, we
return to the full HFB basis. In this basis, the ω-dependent
self-energy has the following matrix structure [38]:

�̂a
μ,μ′(ω) =

(
�

11,a
μ,μ′(ω) �

12,a
μ,μ′(ω)

�
21,a
μ,μ′(ω) �

22,a
μ,μ′(ω)

)
. (14)

The Dyson equation,

Ĝa(ω + iη) = [
ω + iη − ĤHFB − �̂a(ω + iη)

]−1
, (15)

provides the connection to the corresponding Green’s function
matrix. The imaginary part of this function is related to the
strength functions that define energies and weights of the
dressed quasiparticles,

S̃
a,+
k,k′ (ω) = − Im

π

{ ∑
μ,μ′

G
11,a
μ,μ′U

μ,k
a Uμ′,k′

a − G
12,a
μ,μ′U

μ,k
a V μ′,k′

a

−G
21,a
μ,μ′V

μ,k
a Uμ′,k′

a + G
22,a
μ,μ′V

μ,k
a V μ′,k′

a

}
, (16)

S̃
a,−
k,k′ (ω) = − Im

π

{ ∑
μ,μ′

G
11,a
μ,μ′V

μ,k
a V

μ′,k′
a′ + G

12,a
μ,μ′V

μ,k
a U

μ′,k′
a′

+G
21,a
μ,μ′U

μ,k
a V

μ′,k′
a′ + G

22,a
μ,μ′U

μ,k
a U

μ′,k′
a′

}
, (17)

S̃a
k,k′(ω) = − Im

π

{ ∑
μ,μ′

G
11,a
μ,μ′U

μ,k
a V

μ′,k′
a′ + G

12,a
μ,μ′U

μ,k
a U

μ′,k′
a′

−G
21,a
μ,μ′V

μ,k
a V

μ′,k′
a′ − G

22,a
μ,μ′V

μ,k
a U

μ′,k′
a′

}
, (18)

where S̃
a,+
k,k′ (ω), S̃a,−

k,k′ (ω), and S̃a
k,k′(ω) play the role of the

probability density of the dressed quasiparticle, quasihole, and
the corresponding anomalous component. It is also possible to
express �̂ as a function of S̃+,S̃−, and S̃ [38]. Thus one can
carry out an iterative, self-consistent procedure to calculate
quasiparticle renormalization, accounting for the so-called
rainbow series. This formalism does not assume the validity
of the quasiparticle approximation and iterates the solutions
of the Dyson equations on the ansatz of continuous strength
functions. However, close to the Fermi energy, quasiparticle
peaks in the strength functions are clearly identifiable due
to their characteristic Lorentzian shape, as implied by the
extension to the complex plane introduced in (15) in terms of
the parameter η [39]. Fitting these peaks, one can determine the
centroid energy Ẽa(n) (dressed quantities labeled with a tilde
carry a sum over μ values [see Eqs. (16)–(18)]) and associated
width �̃a(n) for the fragment n, as well as its occupation
amplitudes ũk

a(n) and ṽk
a(n).

Alternatively, one can obtain the same result, still with an
accuracy fixed by the η parameter, but this time in terms of
individual levels solving (at the last iteration) the eigenvalue
Nambu-Gorkov equation,

[ĤHFB + �̂a(Ẽa(n))]k,k′

(
xk′

a(n)

yk′
a(n)

)
= Ẽa(n)

(
xk

a(n)
yk

a(n)

)
. (19)

The above formalism provides a most general framework
to deal with the nuclear many-body problem, also in situations
in which repulsive core and ω-dependent soft-mode-mediated
interactions are active (see, e.g., Ref. [40]). In the case of
well-bound nuclei lying along the stability valley, as in the
present case, the above equations can be simplified by turning
to the canonical basis and, in keeping with the fact that the
particle-vibration couplings are mostly effective in a small
region around the Fermi energy, it is possible to restrict the
phase space of the calculations to the valence orbitals.

Within this scenario, we introduce the shorthand notation
�

ij
a(n) ≡ �ij,a(Ẽa(n)) for i,j = 1,2. It is convenient to define

the renormalized quasiparticle amplitudes associated with a
given solution a(n) as

ũa(n) = xa(n)Ua − ya(n)Va,

ṽa(n) = xa(n)Va + ya(n)Ua. (20)

The above quantities are the quasiparticle amplitudes of the
renormalized state |ã(n)〉. The total quasiparticle strength
associated with the nth fragment is (see Fig. 3)

Ña(n) = ũ2
a(n) + ṽ2

a(n). (21)

The matrix elements of the total self-energy, rotated into the
canonical basis and identified in terms of primed quantities in-
cluding the bare interaction and the particle-phonon coupling,
are given by

�̃11′
a(n) = U 2

a �̃11
a(n) + V 2

a �̃22
a(n) − 2UaVa�̃

12
a(n),

�̃22′
a(n) = U 2

a �̃22
a(n) + V 2

a �̃11
a(n) + 2UaVa�̃

12
a(n),

�̃12′
a(n) = 
bare

a + (
�̃12

a(n)

)′
ind, (22)(

�̃12
a(n)

)′
ind ≡ �̃12

a(n)

(
U 2

a − V 2
a

) + UaVa

(
�̃11

a(n) − �̃22
a(n)

)
. (23)

The total pairing gap is equal to


̃a(n) = Z̃a(n)
(
�̃12

a(n)

)′
, (24)

with the Z factor [41] being

Z̃a(n) =
(

1 − �̃odd
a(n)

Ẽa(n)

)−1

, (25)

where

�̃odd
a(n) = �̃11

a(n) + �̃22
a(n)

2
. (26)

It is of notice that for levels close to the Fermi energy
�̃odd/Ẽa(n) approaches a derivative, and the physical role
of Z̃a(n) approaches that of Ña(n), namely the quasiparticle
component in the many-body renormalized quasiparticle state
|ã(n)〉.

We can identify two contributions to the pairing gap 
̃a(n):


̃a(n) = [
Z̃a(n)


bare
a

] + [
Z̃a(n)

(
�̃12

a(n)

)′
ind

]
. (27)

The first one is related to the pairing gap associated with
the bare force and quenched by the many-body effects which
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TABLE III. Optical potentials used in the calculation of the absolute two-nucleon transfer differential cross sections. The quantities
V, W, VSO, Wd are in MeV while the remaining quantities are in fm. The nuclear term of the optical potential was chosen to have the form
U (r) = −Vf1(r) − iWf2(r) − 4iWd g3(r) − ( h̄

mπ c
)
2
Vso

g4(r)
a4r

l · s, with fi(r) = 1
1+e(r−Ri )/ai

; gi(r) = e(r−Ri )/ai

(1+e(r−Ri )/ai )
2 , and mπ being the pion mass,

while Ri = riA
1/3, with A being the mass number of the heavy nucleus in the corresponding channel. The Coulomb term is taken to be the

electrostatic potential generated by an uniformly charged sphere of radius R1.

ASn(p,t)A−2Sn

V W Vso Wd r1 a1 r2 a2 r3 a3 r4 a4

p, ASna 50 5 3 6 1.35 0.65 1.2 0.5 1.25 0.7 1.3 0.6
d, A−1Snb 78.53 12 3.62 10.5 1.1 0.6 1.3 0.5 0.97 0.9 1.3 0.61
t, A−2Sna 176 20 8 8 1.14 0.6 1.3 0.5 1.1 0.8 1.3 0.6

aReference [43].
bReference [59].

clothe the bare nucleons. The second contribution obeys a
generalized gap equation [42],(

�̃12
a(n)

)′
ind = −

∑
b,m

(2jb + 1)

2

×〈b(m)b(m)|vind|a(n)a(n)〉ũb(m)ṽb(m), (28)

where the induced interaction vind is associated with the
exchange of collective vibrations between pairs of nucleons
moving in time reversal states. The matrix element in Eq. (28)
is (see Appendix D)

〈b(m)b(m)|vind|a(n)a(n)〉

=
∑
λ,ν

2|h(a,bλν)|2
(2jb + 1)

[
1

Ẽa(n) − Ẽb(m) − h̄ωλν

− 1

Ẽa(n) + Ẽb(m) + h̄ωλν

]
, (29)

where h(a,bλν) denotes the matrix element coupling the
particle a to the configuration (b ⊗ λν)a , while the energy
of the νth phonon of multipolarity λ is denoted h̄ωλν [3].
Concerning vertex correction to both vind and vbare, we refer
readers to Appendix E.

The selection of the basis |ã(n)〉 = α̃+
a(n)|0̃〉 through the

rotation (20) allows the eigenvalues of (19) to retain the
standard BCS relation, namely,

Ẽa(n) =
√

(ε̃a(n) − εF )2 + (
̃a(n))2, (30)

with the renormalized quasiparticle energy being

ε̃a(n) − εF = Z̃a(n)
[
(εa − εF ) + �̃even′

a(n)

]
, (31)

where

�̃even′
a(n) = �̃11′

a(n) − �̃22′
a(n)

2
. (32)

It is of notice that �̃odd is invariant under the rotation (20), the
same being true for Z̃a(n), 
̃a(n), and Ẽa(n), while this does not
apply to �̃even′

a(n) .
The results obtained from the solution of the Nambu-

Gor’kov equation are collected in Table I, together with
those of HFB and BCS. The fragments carrying the largest

fraction of the quasiparticle strength associated with each of
the five valence orbitals of unperturbed energy εa are listed
in order of increasing energy. For each fragment, the value of
the renormalized quasiparticle energy Ẽa(n), the renormalized
quasiparticle amplitudes ũa(n),ṽa(n), the renormalized single-
particle energy ε̃a(n), and the renormalized pairing gap 
̃a(n)

are provided.
The formalism outlined above has been used to compute

the two-nucleon transfer spectroscopic amplitudes

B̃[a(n)] =
√

2ja + 1

2
ũa(n)ṽa(n)

=
√

2ja + 1

2

∫ Ẽa(n)+�̃a(n)/2

Ẽa(n)−�̃a(n)/2
S̃a(ω)dω, (33)

associated with the reaction 120Sn(p,t)118Sn(g.s.) between
two members of the Sn ground-state pairing rotational band,
S̃a(ω) being the anomalous component of the strength function
associated with the dressed quasiparticle of energy Ẽa(n)

[Eq. (18)], expressed in the reduced space of the valence
orbitals of the canonical basis. The corresponding results are
shown in Table II, in comparison to those corresponding to
the HFB and BCS calculation. Making use of global optical
potentials (Table III), the absolute differential cross sections
were calculated and are compared with the experimental
findings in Fig. 4. Theory reproduces the experimental findings
essentially at the 10% level (BCS 9.1%, HFB 13%, NFT (NG)
7%), well within experimental errors (see also Fig. 5). The
stability of the theoretical results is apparent.

VII. DISCUSSION

The spectroscopic results reported in Table I testify to
the important effects renormalization of the single-particle
states and of the pairing interaction have at the level of
quasiparticles. In spite of this, all three approaches [NFT
(NG), HFB, BCS], notwithstanding their large differences in
terms of many-body facets, predict essentially equally correct
absolute two-nucleon-transfer cross sections, as testified by the
results displayed in Figs. 4 and 5, where theory is compared
to experiment.

It seems then fair to conclude that the quantity which
controls the specific excitation of pairing rotational bands,
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namely the order parameter α0, in the sense of Cooper pair
transfer amplitude (Sec. III), is essentially invariant, whether
calculated within the framework of the simplest one-pole
quasiparticle (BCS) approximation or calculated by taking into
account the variety of many-body renormalization effects.

The emergence of a physical sum rule is apparent (within
this context, see Ref. [44], while for exact sum rules, see
Refs. [45,46]). Let us elaborate on this point. By approximating

ũa(n) = √
Na(n)Ua, ṽa(n) = √

Na(n)Va, (34)

and

Na(n) ≈ Za(n) ≈ Zω (εa ≈ εF ), (35)

one can write

α0 =
∑
a,n

2ja + 1

2
ũa(n)ṽa(n) = N (0)

Zω

∫
dε

2jε + 1

2
ũε ṽε,

(36)

where N (0)/Zω is the effective density of levels at the Fermi
energy [21]. With the help of Eq. (35), one obtains

α0 = N (0)

Zω

Zω

∫
dε

2jε + 1

2
UεVε ≈

∑
a

2ja + 1

2
UaVa.

(37)

The above relations are of no consequence, as they are trivially
fulfilled, in the case in which the one-pole approximation to
the quasiparticle level is valid, but they become relevant for
those levels, like, e.g., the d5/2 valence orbital, which undergo
substantial fragmentation. Using each term of the expressions
(36) and (37) as weighting factors of the corresponding
two-nucleon-transfer form factors, in keeping with the unified
structure-reaction physical interpretation of α0 (Sec. III), and
the result that (see Figs. 4 and 5) |σi − σexp|/σexp is equal to
0.09, 0.13, and 0.07 (i = BCS, HFB, NG), the relative errors
of the associated two-nucleon-transfer amplitudes α0(∼ √

σ )
are 4.5%, 6.5%, and 3.5%.

Because the matrix elements of v14 for configurations based
on the valence orbitals are essentially state independent and
Z2 ≈ 0.5, setting vind = 0 one expects for the renormalized
[NFT (NG)] cross section a value ≈ 1000 μb (0.5 ×σHFB),
precluding the above accuracy. Consequently, on the basis
of the validity of (36) and (37) and thus of the conservation
of two-nucleon-transfer amplitudes in going from BCS mean
field to NFT (NG) many-body, medium renormalization
representations, one also finds the central role played by the
induced pairing interaction.
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APPENDIX A: OFF-DIAGONAL LONG-RANGE
ORDER (ODLRO)

The challenge solved by Schrieffer [47] in his contribution
to BCS was that of writing, starting from Cooper single-
pair solution to pairing [48], a many-particle wave function
in which each electron moving close to the Fermi energy
participated in the condensate. The main problem is that
N -fixed many-body wave functions cannot have a definite
phase. But if one uses a coherent state representation, it
is possible to describe a condensate with a definite phase.
Schrieffer found a way to write down a coherent state of
fermion pairs, namely (notice that primed quantities are again
being used; see footnote 1),

|BCS〉 = �ν>0(Uν + Vνa
+
ν a+

ν̄ )|0〉. (A1)

Introducing the phasing [18]

Uν = |Uν | = U ′
ν, Vν = e−2iφV ′

ν(V ′
ν ≡ |Vν |), (A2)

one can write

|BCS(φ)〉K = �ν>0(U ′
ν + V ′

νe
−2iφa+

ν a+
ν̄ )|0〉

= �ν>0(U ′
ν + V ′

νa
′+
ν a′+

ν̄ )|0〉 = |BCS(0)〉K′ , (A3)

where K and K′ label the laboratory and the intrinsic (body-
fixed BCS, deformed state in gauge space) frame of reference,
while a′+

ν = G(φ)a+
ν G−1(φ) = e−iφa+

ν (a′+
ν̄ = e−iφa+

ν̄ ) is a cre-
ation operator referred to this intrinsic frame. The operator
G(φ) = (exp(−iN̂φ) induces a rotation of angle φ in gauge
(two-dimensional) space (gauge transformation), where N̂
is the number of particle operator. The states |ν〉 and |ν̄〉,
connected by the time-reversal operator, have the same energy
(Kramers’ degeneracy).

A property of the above wave function, which has been
given the name “off-diagonal long-range order” (ODLRO)
[49], is of crucial importance regarding the physics at the
basis of BCS condensation,11 This property can be extracted

11Within this context, let us quote from Ref. [50]: “It has become
fashionable ... to assert ... that once gauge symmetry is broken,
the properties of superconductors follow ...with no need to inquire
into the mechanism by which the symmetry is broken. This is not
... true, since broken gauge symmetry might lead to molecule-like
pairs and a Bose-Einstein [BEC, Feshbach resonance our comment,
see below] rather than BCS condensation ... in 1957, we were
aware that what is now called broken gauge symmetry would, under
some circumstances (an energy gap or an order parameter), lead to
many of the qualitative features of superconductivity. ...The major
problem was to show how an energy gap, an order parameter of
‘condensation in momentum space’ could come about ...to show
...how the gauge-invariant symmetry of the Lagrangian could be
spontaneously broken due to the interactions which were themselves
gauge invariant” (p. 18). A Feshbach resonance is an enhancement
in the scattering amplitude of a particle incident on a target—for
instance, a nucleon scattering from a nucleus or an atom scattering
form another one—when it has approximately the energy needed to
create a quasibound state of the two-particle system. By making it
feasible to precisely (Zeeman-tuned) control interactions, Feshbach
resonances provide a tool for creating ultracold molecules and BECs.
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0
FIG. 6. Coordinates used to define the pair operator P +( �R).

from the BCS wave function in a number of ways (see, e.g.,
Ref. [51])

To introduce the subject, let us start by writing down
operators which create or annihilate pairs of fermions in the
�r representation, i.e., by making use of ψ+(�r) = 〈�r|a+

ν |0〉 and
the Hermitian conjugate. One can define the pair operator (see
Fig. 6)

P +( �R) =
∫

d3rφ(�r)ψ+
ν ( �R + �r/2)ψ+

ν̄ ( �R − �r/2), (A4)

where φ(�r) is the pair wave function. Thus P +( �R) creates a
spin singlet fermion pair where the particles are separated by
the relative distance �r and with center of mass �R, i.e.,

�R = �r1 + �r2

2
, �r = �r1 − �r2, (A5)

and thus

�r1 = �R + �r
2
, r2 = �R − �r

2
. (A6)

One can now define a density matrix
ρ( �R − �R′) = 〈P +( �R)P ( �R′)〉, (A7)

that is, a generalized particle density for pairs, the so-called
abnormal density, related to the two-particle density

ρ2(�r1σ1,�r2σ2,�r3σ3,�r4σ4) = 〈ψ+
ν (�r1)ψ+

ν̄ (�r2)ψν̄ ′(�r3)ψν ′ (�r4)〉.
(A8)

Making use of the relations (A6) and (A7), one can write

ρ( �R − �R′) =
∫

d3rd3r ′φ(�r)φ(�r ′)

× ρ2( �R + �r/2,σ ; �R − �r/2, − σ ; �R ′ − �r ′/2,

− σ ; R ′ + �r ′/2,σ ′). (A9)

The pair wave function φ(�r) vanishes when the relative
distance becomes larger than the correlation length ξ . Thus,
ρ is different from zero provided that r(≡ |�r1 − �r2|) and r ′(≡
|�r1

′ − �r2
′|) are smaller than ξ . But the pairs can be separated

by any arbitrary distance. In other words, lim| �R− �R′|→∞ρ( �R −
�R ′) �= 0, that is, ODLRO. And this is what the |BCS〉 state

ensures, in keeping with the fact that it describes independent

pair motion in which all pairs are in the same state, i.e.,

|BCS(φ)〉K = (�ν>0U
′
ν)

{
1 +

∑
ν>0

c′
νe

−2iφa+
ν a+

ν̄

+ 1

2!

(∑
ν>0

c′
νe

−2iφa+
ν a+

ν̄

)2

+ 1

3!

(∑
ν>0

c′
νe

−2iφa+
ν a+

ν̄

)3

+ · · ·
}

(A10)

where

c′
ν = V ′

ν

U ′
ν

. (A11)

This is the mean field solution of the pairing Hamiltonian.
In other words, the ground state of the mean field pairing
Hamiltonian

HMF = U + H11, (A12)

where

U = 2
∑
ν>0

(εν − λ)V 2
ν − 
2

G
(A13)

and

H11 =
∑

ν

Eν α+
ν αν. (A14)

Gauge symmetry restoration is obtained by taking into account
the interaction

H ′′
p = G

4

(∑
ν>0

(�+
ν − �ν)

)2

, (A15)

acting among the quasiparticles, where �+
ν = α+

ν α+
ν̄ . In fact,

it can be shown that

[HMF + H ′′
p ,N̂ ] = 0, (A16)

with N̂ being the number of particle operator. By diagonalizing
Eq. (A15) in QRPA, i.e.,

[HMF + H ′′
p ,�′′+

n ] = W ′′
n �+

n , (A17)

where

�′′+
n =

∑
ν>0

(anν�
+
ν + bnν�ν), (A18)

the associated dispersion relation reads∑
ν>0

2Eν

(2Eν)2 − (W ′′
n )2

= 1

G
, (A19)

while

anν = �′′
n

2Eν − W ′′
n

, bnν = �′′
n

2Eν + W ′′
n

, (A20)

with

�′′
n = 1

2

(∑
ν>0

2EνW
′′
n

((2Eν)2 − (W ′′
n )2)2

)−1/2

. (A21)
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The lowest (most “collective”) root of Eq. (A19) has W ′′
1 = 0

(BCS gap equation), the associated eigenstate being

|1′′〉 = �′′+
1 |0〉 = �′′

1

∑
ν>0

1

2Eν

(�+
ν + �ν)|0′′〉. (A22)

In keeping with the fact that, in QRPA, the number operator
reads

Ñ = 

∑
ν>0

1

Eν

(�+
ν + �ν) + N0, (A23)

one can write

|1′′〉 = �′′+
1 |0′′〉 = �′′

1

2

(Ñ − N0)|0′′〉. (A24)

A finite rotation in gauge space can be generated by a series
of infinitesimal operations induced by the operator G(φ) = exp
(−iN̂φ), i.e.,

G(δφ) ≈ 1 − iN̂δφ. (A25)

Within this context, i{G(δφ) − [G(0) − iN0δφ]} = (N̂ −
N0)δφ, where δφ = �′′

1/(2
) [Eq. (A24)]. Because �′′
1 di-

verges as W ′′
1 → 0, (N̂ − N0)|0̃′′〉 ≈ (Ñ − N0)|0̃′′〉 → 0, in

keeping with Eq. (A16).
Divergence in gauge angle implies that φ can have any

value in the range 0–2π . Consequently, the system will be in
a given member of a pairing rotational band, e.g.,

|N〉 ∼
∫

dφeiNφ |BCS(φ)〉K ∼ ON/2|0〉, (A26)

where

O =
∑
ν>0

c′
νa

+
ν a+

ν̄ . (A27)

One now rewrites O as

O =
∫

d3r1d
3r2χ (r1,r2)ψ+

↑ (�r1)ψ+
↓ (�r2) =

∑
k

χ (�k)a+
�k↑a+

�k↓,

(A28)

where χ (�k) = V ′
k/U ′

k , and defines the normalized N -particle
state as

|N〉 = NNON/2|0〉 (A29)

and the one-particle density matrix according to

φ(�r1,�r1
′) ≡ 〈N |ψ+

↑ (�r1)ψ↑(�r1
′)|N〉

= 〈N |ψ+
↓ (�r1)ψ↓(�r1

′)|N〉. (A30)

Making use of ψ |0〉 = 0 and of the commutator

[ψ↑(�r1),ON/2] = N

2

∫
d3r2χ (�r1,�r2)ψ+

↓ (�r2)O(N−2)/2,

(A31)
one can write

φ(�r1,�r1
′) =

∫
d3r2χ̃(�r1

′,�r2)〈N |ψ+
↑ (�r1)ψ+

↓ (�r2)|N − 2〉,
(A32)

where

χ̃ (�r1,�r2) = (N/2)NNN−1
N−2χ (�r1,�r2). (A33)

The matrix element in Eq. (A32) is closely related with
Gorkov’s amplitude for two fermions at �r1 and �r2 to belong to
a Cooper pair, i.e.,

F>(�r1,�r2) = −i〈N − 2|ψ↑(�r1)ψ↓(�r2)|N〉, (A34)

its complex conjugate being

F>(�r1,�r2)∗ = i〈N |ψ+
↓ (�r2)ψ+

↑ (�r1)|N − 2〉
= −i〈N |ψ+

↑ (�r1)ψ+
↓ (�r2)|N − 2 > . (A35)

Thus, Eq. (A32) can be written as

φ(�r1,�r1
′) = i

∫
d3r2 χ̃ (�r1

′,�r2)F>(�r1,�r2)∗. (A36)

Let us now consider the two-particle matrix density

φ(�r1,�r2; �r3,�r4) ≡ 〈N |ψ+
↑ (�r1)ψ+

↓ (�r2)ψ↓(�r4)ψ↑(�r3)|N〉
= φ(�r1,�r3)φ(�r2,�r4) + F>(�r1,�r2)∗F>(�r3,�r4),

(A37)

equivalent to

〈N |ψ+
↑ (�r1)ψ+

↓ (�r2)ψ↓(�r4)ψ↑(�r3)|N〉
= 〈N |ψ+

↑ (�r1)ψ↑(�r3)|N〉〈N |ψ+
↓ (�r2)ψ↓(�r4)|N〉

+〈N |ψ+
↑ (�r1)ψ+

↓ (�r2)|N − 2〉〈N − 2|ψ↓(�r3)ψ↑(�r4)|N〉.
(A38)

The function (A37) thus leads to a two-particle density matrix
fulfilling

lim�r1,�r2→∞;�r3,�r4→−∞φ(�r1,�r2; �r3,�r4)

= lim�r1�r2→∞[F>(�r1,�r2)∗] × [lim�r3�r4→−∞F>(�r3,�r4)]

�= 0, (r12,r34 < ξ ), (A39)

a property known as ODLRO.
Within the nuclear embodiment, the wave function (A29)

describes a member of a pairing rotation band, for example, the
ground state of one of the superfluid Sn isotopes, in particular
120Sn(gs). In a reaction like 120Sn + 118Sn → 118Sn(gs) +
120Sn(gs), at energies where the distance of closest approach is
2Ro + a ≈ 13 fm (ECM ≈ 270 MeV), a number of the effects
discussed above can materialize (Fig. 7). In the tunneling of
a Cooper pair from a superfluid nucleus to the other, each
partner can be in a different nucleus but still correlated. This
is in keeping with the fact that the correlation length arising
from the empirical pairing gap (
 ≈ 1.4 MeV), resulting from
the summed contribution of the bare and induced pairing
interaction, is ξ = h̄vF /π
 ≈ 12 fm.

Let us go back to the QRPA (harmonic) diagonalization of
H = HMF + H ′′

p . One can rewrite H as the oscillator [2],

H = p2

2D′′
1

+ 1

2
D′′

1ω′′
1q

2, (A40)

and identify the momentum with the number operator, the
coordinate with the gauge angle, and the frequency with the
QRPA energy,

p = h̄(Ñ − N0), q = φ, h̄ω′′
1 = W ′′

1 . (A41)
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0.65 fm (a)

(b)

0.65 fm

FIG. 7. (a) Schematic representation of two Sn nuclei at a distance
of closest approach of ≈ 13 fm. (b) Single Cooper pair in which each
nucleon is in a different nucleus.

The phonon creation operator for the oscillator is

�′′+
1 =

√
h̄2

2D′′W ′′
1

(Ñ − N0) + iφ

√
D′′

1W ′′
1

2h̄2 . (A42)

Comparing the coefficient of (Ñ − No) in Eqs. (A24) and
(A42), and noting that the coefficient of φ in Eq. (A42)
vanishes in the limit W ′′

1 → 0, we get an expression for the
mass parameter

h̄2

2D′′
1W ′′

1

=
(

�′′
1

2


)2

(A43)

or

D′′
1

h̄2 = 4
2

2W ′′
1 �′′2

1

. (A44)

Making use of Eq. (A21), one obtains

1

W ′′
1 �′′2

1

= 4
∑
ν>0

2Eν

[(2Eν)2 − (W ′′
1 )2]2

. (A45)

In the limit W ′′
1 → 0, this relation becomes

1

W ′′
1 �′′2

1

=
∑
ν>0

1

2E3
ν

, (A46)

and the mass parameter can be written as

D′′
1

h̄2 =
∑
ν>0


2

E3
ν

, (A47)

an emergent property of generalized rigidity in gauge space for
a nucleus whose mean field solution violates gauge invariance.

By making use of Eq. (A47) and of the fact that λ =
∂H/∂N , the energy of the members of a pairing rotational
band can be written as

EN = λN + h̄2

2J N2, (A48)

where

J
h̄2 = D′′

1

h̄2 =
∑
ν>0

4U
′2
ν V

′2
ν

Eν

= 2
∑
ν>0

〈νν̄|N̂ |BCS〉2

2Eν

(A49)

is the cranking formula of the moment of inertia of rotation
in gauge space. Pairing rotations can be viewed as the Gold-
stone mode, or better the Anderson-Goldstone-Nambu mode
[3,4,6–8] in gauge space, approaching the E = 0 limit linearly
with N . This is in keeping with the fact that such behavior
is only expected in the laboratory system, where it can be
measured. In other words, by summing to the BCS energy U
[Eq. (A13)], the Coriolis force in gauge space λN felt by the
condensate in the intrinsic system.

APPENDIX B: NFT VACUUM POLARIZATION

The role zero-point fluctuations play in the nuclear ground
state, i.e., in the NFT vacuum, can be clarified by relating it
to the polarization of the QED vacuum. Let us briefly dwell
on the “reality” of such phenomenon by recalling the fact
that Lamb gave a quantitative answer, both experimentally
and theoretically [52,53], to Rabi’s question of whether the
polarization of the QED vacuum could be measured [54], in
particular, the change in charge density felt by the electrons
of an atom, e.g., the electron of a hydrogen atom, due to
virtual creation and annihilation of electron-positron pairs .
The corresponding correction (Lamb shift) implies that the
2S1/2 level lies higher than the 2P1/2 level by about 1000 MHz,
as experimentally observed.

In connection with the discussion of vacuum polarization,
where a field produces a pair and the subsequent pair annihi-
lation produces a new field, namely a closed loop, Feynman
implemented in his space-time trajectories Wheeler’s idea of
electrons going backward in time (positrons). Such trajectories
would be like an N in time, that is, electrons which would back
up for a while and then go forward again. Being connected
with a minus sign, these processes are associated with Pauli
principle in the self-energy of electrons [see Fig. 1(I)(c)]. The
divergences affecting such calculations could be renormalized
by first computing the self-energy diagram in second order
and finding the answer, which is finite but contains a cutoff
to avoid a logarithmic divergence. Expressing the result in
terms of the experimental mass, one can take the limit (cutoff
→ ∞) which now exists. Concerning radiative corrections to
scattering, in particular that associated with the process in
which the potential creates an electron-positron pair which
then reannihilates, emitting a quantum which scatters the
electron, the renormalization procedure should be applied to
the electric charge, introducing the observed one (Bethe and
Pauli; see Ref. [55]).

In the nuclear case, for example, Skyrme effective in-
teractions give rise to particle-vibration coupling vertices
which, because of the contact character of these interactions,
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FIG. 8. Schematic representation of the induced pairing interac-
tion (29).

may lead to divergent zero-point energies, unless a cutoff is
introduced.12 The Gogny force, being finite range, does not
display such problems. Nonetheless, the associated results
concerning zero-point energies may not be very stable and/or
accurate when carrying out a complete summation over both
collective and noncollective contributions. In this case, one
can eliminate such a problem by going to higher orders in
the oyster diagrams [see Fig. 1(I)(a)]. The fermion exchange
between two of these diagrams (Pauli principle) essentially
eliminates all of the noncollective contributions.

An economic and quite reliable method to achieve a similar
result is that of using NFT renormalization, that is, calculating
the lowest order diagrams but introducing, in the intermediate
states, the dressed physical (empirical) states ([33,56]; see also
Ref. [57]).

APPENDIX C: STATE-DEPENDENT EFFECTIVE MASS
AND MEAN FIELD POTENTIAL

The bare mass of a nucleon in the nucleus is not a quantity
that can be measured. This is because a nucleon in the nucleus
is subject to a mean field which is nonlocal in both space and
time.

The first component arises at the level of Hartree-Fock and
is directly related to the Hartree exchange potential, assuming
velocity-independent interactions. This nonlocality can be
taken care of, in most situations, in terms of an effective mass,
the k mass, with its average value being mk ≈ 0.7m, where m
is the observed nucleon mass. The quantity mk is intimately
related to the so-called Perey-Buck potential, namely the
energy-dependent term in the strength V = V0 + 0.4E of the

12The velocity-dependent component of these forces also weaken
the PVC vertices, leading to poorly collective low-lying vibrations
and to equally poorly clothed valence states. The question then
emerges, about which are the provisos to be taken in the use
of effective forces to higher orders of the PVC, concerning the
implementation of renormalization in both configuration and 3D
spaces within the framework of NFT (see Refs. [30,32,33])? In
a nutshell, the bare mean field exists but its properties cannot be
measured (any more than the bare electron mass in renormalized
quantum electrodynamics) and corresponds to a set of parameters of
a Fermi-like function which ensure that the clothed states reproduce
the experimental findings, both structural and reaction.

real part of the optical potential needed to describe nucleon-
nucleus elastic scattering experiments at bombarding energies
of tens of MeV, where E = |εk − εF |(εk = h̄2k2/2m). One
can obtain essentially the same results by solving the elastic
scattering single-particle Schrödinger equation, making use of
an energy-independent potential of strength V ≈ (m/mk)V0 =
1.4V0 and an effective mass mk = [1 + (m/h̄2k)dV/dk]

−1

(within this context, see Fig. 2.14 of Ref. [22]). Similar results
and protocol are obtained and can be used to describe deep
hole states.

In other words, the concept of a single, mean field potential
is a somewhat illusory one. This is in keeping with the fact
that there is not a single mk , but a state-dependent one equal to
the expectation value of the quantity in parentheses, where
V is now the sum of the direct and exchange potentials,
calculated by making use of the corresponding single-particle
wave functions [58].

Retardation effects arise from the coupling of single
particles with collective vibrations [Fig. 1(I)]. They lead, for
states close to the Fermi energy, to the state-dependent ω mass
[mω = m(1 + λ),Zω = m/mω] and to fragmentation, effects
which can hardly be parameterized in terms of an average
mean field potential.

In other words, the above effects are at the basis of the dy-
namical shell model. While one can, within this context, accu-
rately calculate the single-particle properties [ε̃a(n),Z̃a(n),Ña(n)]
in simple and economic ways, e.g., renormalized NFT, the
situation is much more complex concerning the absolute value
of the Fermi energy.

APPENDIX D: INDUCED PAIRING INTERACTION

The exchange of collective vibrations between nucleons
moving in time-reversal states gives rise to an induced,

(a) (b) (c) (d)

FIG. 9. Particle-vibration coupling (PVC) vertex renormalization
of the induced pairing interaction. (a) PVC h(a,bλν). (b) Vertex
renormalization. (c) This diagram summed over d [see Eqs. (E1) and
(E2)] corresponds to one of those describing Compton scattering in
quantum electrodynamics and resulting from the time ordering of the
Pauli principle correction between the single nucleon considered ex-
plicitly and those out of which the vibrations are built, shown in panel
(d). In fact, it can be obtained from such process by time ordering and
corresponds to the symmetrization of the phonon renormalizing the
fermion |c > (self-energy process) and an external phonon (see, e.g.,
[60]). It is of notice that the quantity h(a,cλ′ν ′)/[Ẽa − (Ec + h̄ωλ′ν′ )]
in (E1) is the amplitude with which the state |a > is in the state |cλ′ >

[boxed process in diagram (b)].
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(a) (b)

FIG. 10. Particle-vibration coupling (PVC) vertex renormaliza-
tion of the bare pairing interaction. (a) Process through which two
nucleons moving in time-reversal states interact through the bare
pairing interaction. (b) Vertex renormalization through the PVC.

medium polarization, pairing interaction. In the quasiparticle
representation and QRPA treatment of the collective modes,
the different lowest order contributions in the PVC vertices to
(29) are shown in Fig. 8 [see Figs. 1 II(e)–(g) for examples
of higher order]. To each vertex is associated a function
h(a(n),b(m)λν). The denominator corresponds to the energy
difference between the configuration at time t and at time t ′,
i.e.,

(a) =
∑
λν

2|h(a(n),b(m)λν)|2
Ẽa(n) − Ẽb(m) − h̄ωλν

and

(D1)

(b) = −
∑
λν

2|h(a(n),b(m)λν)|2
Ẽa(n) + Ẽb(m) + h̄ωλν

,

the factor of 2 arising from the two time-ordered con-
tributions, i.e., t1 < t2 and t2 > t1, and t3 < t4 and t4 >
t3 respectively. Lines without arrows represent quasipar-

ticles, the wavy line denotes QRPA vibrations of mul-
tipolarity λ, and increasing energy is labeled by ν.

APPENDIX E: VERTEX CORRECTIONS

The PVC mechanism gives rise to self-energy processes
[e.g., Figs. 1(II)(a), 1(II)(c), and 1(II)(d)] but also to vertex
renormalization [Fig. 1(II)(e)]. In other words, h(a,bλν)
[Fig. 9(a)] is to be corrected to lowest order in the PVC vertex
[Fig. 9(b)], a correction which can be written as

δh(a,bλν) =
∑
c,λ′ν ′

Q(bλν,cλ′ν ′)h(a,cλ′ν ′)
Ẽa − (Ec + h̄ωλ′ν ′ )

, (E1)

where [Fig.9(c)]

Q(bλν,cλ′ν ′) =
∑

d

h(b,dλ′ν ′)

× 〈(jdλ
′)jb,λ; ja|(jdλ)jc,λ

′; ja〉
Ẽa − (Ed + h̄ωλν + h̄ωλ′ν ′)

h(c,dλν),

(E2)

with 〈(jdλ
′)jb,λ; ja|(jdλ)jc,λ

′; ja〉 being a recoupling coeffi-
cient.

Correction (E1), with the proper indexing, has to be added
to both vertices entering the expression for vind, as well as to
those of the various self-energies. In the case under discussion,
namely, 120Sn, that is, a medium-heavy superfluid nucleus
lying along the stability valley, the recoupling coefficient
[Eq. (E2)] displays random phases, leading to strong cancella-
tions when summed over the different quantum numbers and
resulting in values of δh of the order of few tens of keV.

Similar arguments apply to the bare pairing interaction
vertex correction [Fig. 10(b)].
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