
PHYSICAL REVIEW C 96, 034602 (2017)

Semiclassical calculations for the 156Gd (p,d) reaction
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Numerical semiclassical calculations are carried out to study the angular distribution of deuterons from the p,d
pickup reaction of 25 MeV protons incident on the nucleus 156Gd and also its proton elastic scattering. It is found
that, due to the rapid fall of the real optical potential in the vicinity of the target nucleus, the classical trajectories
are very sensitive to the proton impact parameters. A selection of 276,983 trajectories is used for protons with
impact parameters bp satisfying 7.23018 fm � bp � 10 fm with steps of 10−5 fm. Using the imaginary part of the
optical potential for protons, a simple quantum approach is constructed to evaluate the probability of a surviving
proton throughout its path. In addition, a simple three-body quantum approach is developed to calculate the
probability of a neutron transfer by a surviving proton at closest approach. The formed deuteron is then allowed
to start its trajectory while keeping its identity until detected. Throughout this journey, the deuteron trajectory is
under the influence of its Coulomb and real optical potential, while its absorption is determined by the imaginary
optical potential component. Within estimated uncertainties, the resulting theoretical angular distribution achieves
a comparable fit with experimental results for the angular momentum transfer L = 0 compared to other theoretical
models, and concludes that the strong p,d cross sections are due to the dominant s1/2 component of the Nilsson
1
2

+
[400] level in 155Gd.
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I. INTRODUCTION

Serious efforts have been made in recent years for the
measurement of nuclear-reactions involving deformed nuclei.
Still, a large amount of information and theoretical questions
remain.

Inspired by the doctoral thesis of Tim Ross [1] under the
guidance of Prof. Con Beausang, and the data in their three
publications with colleagues [2–4], we have undertaken to
develop a semiclassical theoretical model to both the 156Gd
(p,p) and 156Gd (p,d) reactions. The experimental data mostly
come from collaboration at cyclotrons at Lawrence Berkeley
National Lab and at Texas A & M cyclotron in College
Station, TX. Unlike Ref. [5], where a neutron is considered
to form a compound nucleus, we avoided considering cases
when protons with small impact parameters interact with the
rotational Gd nucleus to form a compound nucleus.

Also, in this study we treated semiclassical calculations for
both neutron-pickup and elastic scattering for 25 MeV protons
incident on 156Gd nuclei. With this model, we did not attempt
to calculate a two-neutron pick-up and compare it with other
work [6–8].

It is rare to consider semi-classical calculations as a solution
to the problem at hand. However, considerable theoretical
classical-trajectory calculations have produced reliable results
in many studies such as Radi et al. [9].

Here we make comparison with DWBA angular distribution
results in earlier publications [4,10].
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Experimental p,d relative cross sections for Gd targets,
labeled by the mass number of the final nucleus, are shown
in Fig. 1 (see Fig. 63 of Ref. [1]). This figure shows that the
1
2

+
[400] band is the most highly populated in 155,157Gd via the

(p,d) reaction.
We attempt to rationalize some of the patterns of Fig. 2

[4,10], but without invoking the double-BCS model of Chu
et al. [6], in which the BCS equations are applied separately
to the upgoing and downgoing Nilsson levels as quadrupole
deformation increases. We note the dominance of orbitals
1
2

+
[400] and 3

2
+

[402] from below the 82-shell gap. They both
have substantial wave functions at the north and south poles
of the target nucleus.

The p,d reaction states 1
2

+
[400] in 155,157Gd and their

relative intensities of Refs. [4,10], are shown in Table I.
Motivated by these results and the fact that the wavelength

of the incoming proton is considerably smaller than the nuclear
size, we can simplify the theoretical treatment of L = 0 for
the 156Gd target by considering a semiclassical approach as
denoted previously. Also, the code developed by this treatment
is simpler than earlier computer program codes: such as the
DWUCK [11], CHUCK [12], PTOLEMY [13], and FRESCO
[14] codes.

II. NUCLEAR DEFORMATION AND POTENTIAL

The p,d reaction of a 25 MeV proton with 156Gd is mainly
a peripheral one. This will be evident from this study. We
consider quadrupole and hexadecapole deformations of a
prolate spheroidal Gd nucleus. When an angle χ is measured
from the nuclear major axis, the radius of the nucleus at any
angle 0 � χ � π is given by

RT(χ ) = RTo[1 + β2 Y20(χ ) + β4 Y40(χ )], (1)
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FIG. 1. Relative cross sections for p,d reactions on three even-
even Gd targets (from Ross et al. [2]). The excitation energy of the
Nilsson band-head energies for 155Gd are also taken from data in
Allmond et al. [10] work.

where we used the monopole radius RTo = roA
1/3
T (with ro �

1.2 fm [15,16]), β2 = 0.271, and β4 = 0.088 [17]. In addition,
we assume that transfer occurs at the point of closest approach
(CA), which is indicated by a distance rCA from the center of
the target nucleus (see Fig. 3). In the lab, we consider a sta-
tionary 156Gd target nucleus and a proton coming from infinity
at t = 0 with a speed vp and impact parameter bp (see Fig. 3).

The simplest spherical liquid-drop density model is given
by a constant nucleon density ρo out to a radius RT. For
a nucleus of any mass number AT, this density has nearly
the value ρo = 0.138 nucleon/fm3 [18–20]. The sharp-surface
model can be improved if we allow the surface to be diffuse.
This can be done by considering the following well-known,
two-parameter Wood-Saxon distribution [21]:

ρT(r) = ρo

1 + e(r−RT)/a
[a = nuclear diffuseness]. (2)

The value of a determines the nuclear-skin thickness t =
4a ln3, at which ρT(r) decreases from 0.9ρo to 0.1ρo. From
Atomic Data and Nuclear Data Tables, we take the value a =
0.576 fm [21–25], which gives t = 2.53 fm. For a deformed
156Gd with RTo = roA

1/3
T = 6.46 fm, Eq. (1) gives a major

axis (north pole) with value (RT)max = 8.045fm and a minor
axis (equator) with value (RT)min = 6.088fm. Figure 4 shows
the variation of nuclear density along the major axis (a) and
minor axis (b).

TABLE I. Experimental results from TABLE III of Ref. [10] and
Table VII of Ref. [4]. The relative yields for levels directly populated
by the 156Gd(p,d)155Gd and 158Gd(p,d)157Gd reactions are indicated.
Yields (Irel) are shown relative to the state with the highest cross
section, the 1

2

+
[400]. Relative yields are measured between 33◦ and

55◦ with respect to the beam axis.

Nucleus E∗(keV) Irel J π �π [Nnz�]

155Gd 367.66 (27) 100(16) 1
2

+ 1
2

+
[400]

157Gd 682.90 (4) 100(4) 1
2

+ 1
2

+
[400]
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FIG. 2. (Top) The experimental angular momentum transfer
L = 0 data of Allmond et al. [10] and L = 0 DWBA [11] angular
distributions for the direct population of the 367 keV, 1

2

+
[400].

(Bottom) The experimental data of the level 729 keV are the colored
dots with error bars and are taken from Fig. 7(e) of Ross et al. [4].
The graph shows the DWBA angular distributions fit which is best
characterized by L = 0,1,4. The three different L values are: solid
black for L = 0; colored line running through the highest point for
L = 1, and a dot-dash black line for L = 4.

For a general treatment of the problem, we consider the
reaction T(p,o)R, where T is the 156Gd target nucleus (mass
mT), p is the incoming proton (mass mp), o is the outgoing
particle (mass mo), and R is the residual nucleus (mass mR).
The center of mass (c.m.) of the system has a constant velocity
vc.m.

pT = (mpvp)/mtot, where mtot is the total mass of the system.
The initial lab kinetic energy of the proton is K lab

p (= Elab
p ) =

1
2mpv

2
p. Therefore, the initial kinetic energy of the system in

the center of mass frame is

Kc.m.
pT = 1

2mtot
(
vc.m.

pT

)2
. (3)

The initial relative kinetic energy is the difference between
the two energies and will be the energy available for the
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FIG. 3. Schematic diagram for the scattering trajectory of a
proton on a deformed Gd nucleus (exaggerated scale).

collision of the proton with the target nucleus. Thus,

Ec.m
pT = 1

2μpT v2
p, (4)

where μpT = mpmT/(mp + mT) is the reduced mass of the
proton (p) colliding with the target nucleus (T).

For (p,p) and (p,d) reactions, conservation of energy of
the system for the incoming (in) and outgoing (out) channels
leads to

Ec.m.
pT = 1

2μpT v2
p =
{

1
2μpT v2 + UpT

(
r,Elab

p

)
, [in & out]

1
2μoR v2 + UoR

(
r,Elab

o

)
, [out]

,

(5)

where v is the speed at any distance r from the center of the
nucleus (rCA � r � ∞) for the proton or the outgoing particle.
For classical trajectories, the terms UpT and UoR are the total
Coulomb plus only the real part of the optical potentials

156Gd with diffuseness a=0.576 fm
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FIG. 4. (a) Variation of the nuclear density of a 156Gd nucleus
along the major axis and (b) along the minor axis.

for the proton-target interacting system and outgoing-residual
interacting system, respectively.

Based on the C. Perey and F. Perey [26] compilation, this
potential depends on the energy of the interacting particle
and the constituents of the nucleus. The total potential can be
written as a sum of a Coulomb-potential term plus a complex
optical-potential term. For the proton interaction, we have

UpT
(
r,Elab

p

) = V C
pT(r) + V

Opt
pT

(
r,Elab

p

)+ iW
Opt
pT

(
r,Elab

p

)
. (6)

For a proton interacting with a nucleus of atomic number ZT

and mass number AT, a uniform spherical charge distribution
is considered [26] for the Coulomb term by taking the nuclear
radius to be RC

p = rC
p A

1/3
T , with rC

p = 1.25 fm. Thus,

V C
pT(r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

4πεo

ZpZTe2

r

(
r � RC

p

)
1

4πεo

ZpZTe2

2RC
p

(
3 − r2(

RC
p

)2
) (

r � RC
p

) . (7)

Here we accept the nondependence of the quadrupole and
hexadecapole contributions to the Coulomb interaction.

The real part of the optical potential contains a spin-
independent central potential (indicated by the superscript
“ce”) plus a spin-orbit potential (indicated by the superscript
“so”). Based on Ref [26], the real and imaginary parts of the
optical potential can be written as

V
Opt

pT

(
r,Elab

p

) = −V ce
pT

(
Elab

p

)
f
(
xce

pT

)− 2
r aso

p
V so

p exso
pTf 2
(
xso

pT

)
,

(8)

W
Opt
pT

(
r,Elab

p

) = −Wpf
(
xW

pT

)− 4WD
pT exD

pTf 2
(
xD

pT

)
, (9)

where
f
(
xn

pT

) = 1
/[

1 + exn
pT
]
,

xn
pT = (r − rn

p A
1/3
T

)/
an

pT

}
(n = ce, so, W, D). (10)

In case of an outgoing particle o (deuteron, tritium, etc.)
interacting with a residual nucleus R, a similar relation to
Eqs. (6)–(10) holds, except the subscript pT is replaced by the
subscript oR. Thus,

UoR
(
r,Elab

o

) = V C
oR(r) + V

Opt
oR

(
r,Elab

o

)+ iW
Opt
oR

(
r,Elab

o

)
. (11)

Table II [26] lists the parameters of the proton’s optical
potential for the real part and imaginary part, Eq. (6). Table III
[26,27] lists the parameters used in the optical potential when
the outgoing particle is a deuteron (d) interacting with a
residual nucleus AR

ZR
RNR , Eq. (11). In the deuteron case, the

parameters that have no values are indicated by the symbol ∅.
We used the monopole radius RRo = roA

1/3
R with Refs. [15,16].

For displaying the residual nucleus shape, 155Gd, we will use
β2 = 0.252, and β4 = 0.083 [17].

Figure 5 shows the results of using the real parameters
of Tables II and III in calculating the real optical potential for
156Gd(p,p)156Gd, Eq. (6), and 156Gd(p,d)155Gd, Eq. (11), when
Elab

p = 25 MeV.
Figure 5 indicates that the attractive real optical potential is

of the order of −5MeV when the proton touches the nuclear
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TABLE II. Optical potential parameters used when a proton interacts with a target nucleus AT
ZT

TNT [26].

V ce
pT [54 − 0.32 Elab

p + 24(NT − ZT)/AT + 0.4(ZT/A
1/3
T )] M eV rce

p 1.17 fm ace
p 0.75 fm

V so
p 6.2 M eV r so

p 1.01 fm aso
p 0.75 fm

Wp [0.22 Elab
p − 2.7] M eV rW

p 1.32 fm aW
pT [0.51 + 0.7 (NT − ZT)/AT] fm

W D
pT [11.8 − 0.25 Elab

p + 12(NT − ZT)/AT] M eV rD
p 1.32 fm aD

pT [0.51 + 0.7(NT − ZT)/AT] fm

rC
p 1.25 fm

surface at the north pole and we assume a sharp-nuclear-
surface of the target. If the proton touches the equator, the
optical potential goes to a much greater negative value of
about −33 MeV. Therefore, a peripheral reaction near the
equator is much less probable due to the strength of the nuclear
attraction. When we study proton trajectories with different
impact parameters, we will find that a peripheral reaction is
more probable near the north and south poles of the prolate
nucleus.

For deuterons, Fig. 5 shows that the attractive real optical
potential is of the order of −10 MeV when the deuteron is
formed at the north pole of the nuclear surface. If the deuteron
is formed near the equator, where the real optical potential is
about −52 MeV, then one should expect that the deuteron will
be attracted to the residual nucleus.

III. PROTON AND DEUTERON TRAJECTORIES

In addition to energy conservation given by Eq. (5), the
angular momentum of the proton with respect to the c.m.
is also considered to be conserved. This approximation is
accepted for grazing trajectories since the nuclear potential
has a small effect on the conservation of angular momentum.
We use the relation between the magnitude of the proton’s
angular momentum at the initial point (ri,θi) and at any point
(r,θ ) (see Fig. 3) and applying the real upper part of Eq. (5),
to find the following:

dr

dt
= ±vp bp

r2
FpT
(
r,bp,E

lab
p

)
, and (12)

dr

dθ
= ± FpT

(
r,bp,E

lab
p

)
, (13)

where the function FpT depends on the proton’s position,
impact parameter, lab energy, the kind of target nucleus under
consideration, and can be written as

FpT
(
r,bp,E

lab
p

) = r2

bp

√√√√[1 −
(

bp

r

)2]
− Re
[
UpT
(
r,Elab

p

)]
Ec.m.

pT

.

(14)

Equation (13) is an ordinary first-order differential equation
that cannot be solved analytically due to the existence of
a complicated potential in the square root of the right-hand
side of Eq. (14). On the other hand, Eq. (13) can be
solved numerically for the incoming-proton channel and/or
the outgoing-proton or -deuteron channels.

For the incoming channel with an impact parameter bp, we
start from an initial large angle θi = 179.96◦ and calculate the
initial values (see Fig. 3):

ri = bp/ sin(π − θi) > 10,000 fm,

D = bp/ tan(π − θi) > 10,000 fm. (15)

Then we integrate Eq. (13) until we reach the point of
closest approach (rCA,θCA), i.e., (θi � θ � θCA). Since both r
and θ decrease in the incoming channel, the positive sign of
Eq. (13) is selected. Thus,

dr

dθ
= +FpT

(
r,bp,E

lab
p

)
(incoming proton). (16)

When the proton reaches the point of CA, its velocity will
be tangent to its trajectory and the condition dr/dθ |CA = 0
must be fulfilled. This will lead to the following relation:

bp = rCA

√√√√1 − Re
[
UpT
(
rCA,Elab

p

)]
Ec.m.

pT

. (17)

For the outgoing-proton channel, we start from the point of
closest approach (rCA,θCA) and integrate Eq. (13) to the final
values (rf,θf ), where rf ≈ 2×106 fm and θCA � θ � θf . Since
r increases while θ decreases, the negative sign of Eq. (13)
must be selected. Thus,

dr

dθ
= −FpT

(
r,bp,E

lab
p

)
(outgoing proton). (18)

We consider cases for a particular range of bp that produces
CA points that lie within the short-range-tails of the nuclear
matter. When a proton (p) reaches the point of CA at a
distance rCA, there is a chance that this proton can pick up
a neutron. Then, the c.m. energy of the formed deuteron (d) in

TABLE III. The optical-model parameters used when a deuteron interacts with a residual nucleus AR
ZR

RNR [26,27].

V ce
dR [81 − 0.22 Elab

d + 2(ZR/A
1/3
R )] MeV rce

d 1.15 fm ace
d 0.81 fm

V so
d ∅ r

(so)
d ∅ aso

d ∅
W D

d [14.4 − 0.24 Elab
d ] MeV rD

d 1.34 fm aD
d 0.68 fm

rC
d 1.15 fm
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sharp maximum and minimum radii of the target and residual nuclei
and their corresponding potential values are displayed. (b) The small
contribution of the spin-orbit term to the total real optical potential
for protons is displayed in a smaller window.

the outgoing channel will be

Ec.m.
dR = Ec.m.

pT + Q − Eexc, (19)

where Q is the Q-value of the T(p,d)R reaction and Eexc is the
excitation energy of the residual nucleus R. This c.m. energy
Ec.m.

dR must correspond to a deuteron coming from infinity with
a speed vd, impact parameter bd, and lab energy Elab

d given by

Elab
d = (md + mR)

(
Ec.m.

pT + Q − Eexc
)/

mR. (20)

Thus, in the deuteron-outgoing channel, we start from the
CA of the deuteron and solve the differential equation:

dr

dθ
= −FdR

(
r,bd,E

lab
d

)
(outgoing deuteron), (21)

where the function FdR depends on the position, energy, the
calculated impact parameter of the deuteron (as well as the
constituents of the residual nucleus R), and is given by:

FdR
(
r,bd,E

lab
d

) = r2

bd

√[
1 −
(

bd

r

)2]
− Re
[
UdR
(
r,Elab

d

)]
Ec.m.

dR

.

(22)
Additionally, we consider the deuteron’s CA point to

coincide with the proton’s CA point, i.e., rCA is common to
both the proton and deuteron trajectories at a given impact
parameter. At this point, the deuteron’s velocity will be
tangent to its trajectory and the condition dr/dθ |CA = 0 for
the outgoing deuteron must be fulfilled. This will lead to the
following relation for bd:

bd = rCA

√
1 − Re

[
UdR
(
rCA,Elab

d

)]
Ec.m.

dR

. (23)

FIG. 6. The figure shows five incoming proton trajectories with
a difference of 0.02 fm between each value of bp. After the CA, the
outgoing proton trajectories acquire a small range of deflection 
θp. If
the proton picks up a neutron at CA, the range of deuteron deflection

θd is much bigger than 
θp due to the greater attraction of the
nuclear potential at the CA.

The numerical solutions of Eq. (18) produce proton trajec-
tories that penetrate the nuclear matter when the impact param-
eters satisfies bp � 6.911227 fm. For the range 6.911228 fm <
bp < 6.912695 fm, the proton’s trajectories will not penetrate
the nuclear matter, but produce the proton’s final deflection that
is less than −90◦. Of course, these protons cannot be detected.
For an impact satisfying 6.912695 fm � bp � 7.076 fm, we
get deflections in the range −90◦ � θp � 0◦.

The restriction established for proton trajectories also
applies to deuterons at the CA if bp < 7.229271 fm. This
results from satisfying the condition of choosing one common
point for the proton’s and deuteron’s CA, as if forcing the
deuteron to come from infinity and reach this particularly
common value rCA. From bp = 7.229271 fm to the value
bp < 7.230175 fm, the solution produces deuterons at CA
but with final angles less than θd < −90◦. We get deuterons
in the forward direction when the proton’s impact satisfies
bp � 7.23018 fm. This allows us to conclude that the neutron
pick-up process occurs mostly near the poles of the nucleus
for this value of energy Elab

p = 25 MeV.
Figure 6 displays the proton’s trajectories when only five

selected impact parameters are chosen, bp = 7.24, 7.26, 7.28,
7.30, and 7.32 fm. At the point of CA, we considered the
possibility that the incoming proton trajectory might either
continue as an outgoing proton trajectory, or result in an
outgoing deuteron trajectory when the proton picks up a
neutron. So, Fig. 6 displays both possibilities of existence.
The range of the proton deflection angle 
θp is relatively small
(from 9.45◦ to about 12.65◦);while due to the relatively strong
attractive optical potential, the range of the deuteron deflection
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angle 
θd is relatively larger (from −58.5◦ to −12.45◦). In the
same figure we represent the point of the CA by a small red
dot. At this point, and for the five selected impact parameters,
the average Coulomb potential is about 10 MeV and the
average real optical potential for the protons and deuterons are
respectively about −1.5 MeV and −2.9 MeV. As expected,
protons with big impact parameters, bp > 10 fm, will suffer
small deflections and their chance to pick-up a neutron from
the Gd nucleus is extremely small. On the other hand, if the
proton encountered the nucleus from the south pole, the angles
of the outgoing protons will be negative, while the deuteron
angles will be positive. In this work we consider only protons
with impact parameters that lie in the yz plane and above the
y axis. Rotating the y axis by 90 degrees produces trajectories
that can be viewed experimentally in an xz plane.

At ᾱ = θ̄CA = 96.1◦, if the proton deflects without picking
up a neutron, the nucleus remains 156Gd. However, if the proton
picks up a neutron, the nucleus becomes 155Gd. Since the size
of 156Gd is almost identical to 155Gd, the nucleus drawn in
Fig. 6 can be taken to represent either.

Table IV lists the values of the parameters used and
quantities obtained to assemble Figure 6. For the elastic
156Gd(p,p)156Gd reaction, the common values used for the
calculations are Elab

p = 25 MeV and Ec.m.
p Gd = 24.84 MeV. In

addition, for the 156Gd(p,d)155Gd reaction, the common values
used for the calculations are Ec.m.

d Gd = 18.529 MeV and Elab
d =

18.768 MeV. The last two values are based on Eqs. (19) and
(20) after taking Q = −6.312 MeV.

We calculated 276,983 trajectories for protons with impact
parameters satisfying 7.23018 fm � bp � 10 fm with steps of
10−5fm. This range of bp is suitable for forming deuterons
since rCA values lie in the nuclear tail.

Figure 7(a) shows the variation of the proton’s final
deflection angle θp with respect to bp. All deflection angles
have positive values with a maximum of about 22.6◦ at about
8.5 fm.

Figure 7(b) shows the variations of the deuteron final
deflection θd with bp (assuming deuterons are produced in
this range). For 7.235 fm � bp � 7.41 fm, the deuteron angles
are negative and increase rapidly in the range −89◦ � θd � 0◦.
After that region, θd reaches a maximum of about 26◦ at about
8.9 fm. Then, θd starts to decrease slightly with increasing bp.

The attempts made in Fig. 7 should be supplemented with a
quantum study (in the next sections) to calculate the probability
of forming a deuteron at the CA, and also to consider the proton
and deuteron absorption due to the imaginary part of the optical
potential.

TABLE IV. Different values of bp and their resulting final values
as depicted in Fig. 6.

bp (fm) θp (deg) bd (fm) θd (deg) rCA(fm) α (deg)

7.24 10.32 7.024 −47.68 8.99 95.4
7.26 11.11 7.025 −29.59 9.03 95.8
7.28 11.82 7.027 −20.93 9.06 96.2
7.30 12.45 7.029 −15.20 9.09 96.5
7.32 13.11 7.033 −10.89 9.12 96.8

FIG. 7. Final deflection angles of 276,983 protons and deuterons
with respect to the proton impact parameter.

IV. SPHERICAL SQUARE-WELL
POTENTIAL APPROXIMATION

To introduce quantum-mechanical effects into this theoreti-
cal treatment, we employ a simple description for the neutron-
tunneling process, avoiding complicated nuclear potentials
as in Ref. [28], target deformations as in Ref. [15], and
detailed analysis of neutron orbitals based on realistic Nilsson
diagrams based on a rounded Wood-Saxon potential [29].
This is done by assuming a spherical square well for the
neutron-nucleus potential of the heavy nucleus (referred to
as 1) and neutron-proton potential of the deuteron (referred to
as 2). These potentials have the form

Vi(r) =
{−V0i , r < Ri

0, r > Ri
(i = 1,2), (24)

where R1 is the radius of the heavy nucleus and V01 is its
potential depth. Similarly, R2 is the radius of the deuteron
and V02 is its potential depth. The distance r is the separation
between the neutron and the center of the core of the heavy
nucleus for the first system and in the second system it is
between the neutron and proton in the deuteron.

Ignoring the nucleon’s spin, let us consider the time-
independent Schrödinger equation of only a single neutron
in the potential given by Eq. (24) as

− h̄2

2μi

∇2φi(	r) + Vi(r)φi(	r) = Ebi φi(	r), (i = 1,2), (25)

where μi = mn Mi/(mn + Mi) is the reduced mass, mn is the
neutron mass, Mi is the mass of the heavy nucleus (if i = 1)
or the proton (if i = 2), and 	r is the relative position of the
neutron with respect to the center of mass of the heavy nucleus
(i = 1) or the proton (i = 2). As known from elementary
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studies, the solution of the wave function for central potentials
can be separated into radial and angular parts as φi(r) =
Rin(r) Ym(θ,φ). For the case of a ground- state solution
(n = 1,  = 0), we substitute with the form Rin(r) = ui(r)/r
in Eq. (25) to obtain the acceptable solutions of φi(r) in the
two regions of r as

φi(r) =

⎧⎪⎪⎨
⎪⎪⎩

Ai

sin(κir)

r
, r � Ri

Bi

e−ki r

r
, r � Ri

(i = 1,2), (26)

where κi , ki , Ai , and Bi (with i = 1, 2) are given by

κi =
√

2μi(V0 i − |Eb i |)
h̄2 , ki =

√
2mn|Eb i |

h̄2 ,

Ai = 1√
4π

√
2ki

1 + kiRi

, Bi = sin(κiRi)√
4π

√
2ki

1 + kiRi

ekiRi .

Finiteness of φi(r) and the continuity of ui(r) and dui(r)/dr
leads to the transcendental equation

cot αi = −ki Ri

αi

, where αi = κiRi. (27)

When assuming a spherical 156Gd nucleus of radius R1 =
roA

1/3, with ro = 1.24 fm, this choice gives R1 = 6.69 fm,
which is between the values of (RT)min and (RT)max; see
Fig. 4. With this model, it is proposed to search for a neutron
energy level near the top of the potential well that matches
the experimental neutron separation energy, Sn = 8.536 MeV
[30]. Consequently, the variation of the depth V01 will lead
to this energy level when solving the transcendental equation
given by Eq. (27) and finding values of α1 that result from the
intersection of the two functions cot α1 and −k1R1/α1. The
nuclear potential depth V01 = 48.718 MeV produces this top
energy level. This level has α1 = 9.240 rad and is categorized
by the values κ1 = 1.388 rad/fm and k1 = 0.640 rad/fm.

The stable weakly bound deuteron that can be described by
using Eq. (24) has a binding energy Eb2 = 2.2245 MeV and
a matter radius R2 = 1.975 fm. Using these two well-known
values, we solve the transcendental equation, Eq. (27), and plot
both the two functions cot α2 and −k2R2/α2 versus α2. The two
functions intersect at one value α2 = 1.817 rad, which gives
V02 = 37.3 MeV, κ2 = 0.92 rad/fm, and k2 = 0.232 rad/fm.

V. PICKUP OF A NEUTRON AT THE POINT
OF CA IN A (p,d) REACTION

In the 156Gd(p,d)155Gd reaction, we study the interaction of
a proton with the nucleus until it reaches the point of closest
approach (CA). Then we consider the pickup of a loosely
bound neutron at CA. This can be done if the 156Gd nucleus
is considered to consist of a 155Gd nucleus core plus a valence
neutron. This reaction is illustrated as:

p+ 156Gd −−−−→
near CA

p + (n+155Gd) = d + 155Gd (28)

Therefore, if we consider a quasi-break-up process, then
away from the CA we deal only with a two-body problem as

shown in Fig. 3, while near the CA, we deal with a three-body
problem. We let 	r be the position of the proton with respect to
the center of the nucleus.

To treat the interaction generally in the incoming chan-
nel for rCA � r < ∞, we immediately see that the total
Hamiltonian contains two interactions. The first interaction
is determined by the Hamiltonian Hp(	r), which deals with
the proton until a point near the CA and does not consider a
neutron pickup. The real part of Hp(	r) governs the proton’s
motion; whereas the imaginary part represents the absorptive
component and facilitates the absorption of protons and
becomes effective in the vicinity of nuclear matter. Explicitly,
this Hamiltonian contains the real and imaginary potentials
given by Eq. (6), which includes the Coulomb potential,
Eq. (7), plus the real and imaginary optical potentials, Eq. (8)
and Eq. (9). Formally, we write

Hp(	r) =
	̂P 2

p

2mp
+ V C

pT(r) + V
Opt

pT

(
r,Elab

p

)+ iW
Opt
pT

(
r,Elab

p

)
.

(29)

The time-dependent Schrödinger equation of the proton is

ih̄
∂

∂t
�p(	r,t) = Hp(	r) �p(	r,t). (30)

The technique of separation of variables allows us to have

�p(	r,t) = χp(t) φp(	r). (31)

We make the ansatz solutions of the wave function φp (	r)
and χp(t) as follows:⎡
⎣ 	̂P 2

p

2mp
+ V C

pT(r) + V
Opt

pT

(
r,Elab

p

)⎤⎦φp(	r) = Eφp(	r), (32)

χp(t) = ap(t) e−i E t /h̄, (33)

where E ≡ Ec.m.
pT is the proton’s c.m. energy and ap(t) is the

probability amplitude at time t that the proton has not been
absorbed by the imaginary optical potential. Initially, at t = 0,
when r = ∞, we must have ap(0) = 1 since the imaginary
optical potential is zero at infinity.

A. Probability of a surviving proton near CA

Equation (32) is very difficult to solve due to the compli-
cated form of the optical potential. Instead, we use the results
of the classical trajectories presented in Sec. III, specifically
the variation of r with time t . When substituting from Eq. (31)
into Eq. (30), with χp(t) given by Eq. (33), and then employing
Eq. (32), we get

ih̄
d

d t
ap(t) = i ap(t) W

Opt
pT

(
r,Elab

p

)
. (34)

Figure 8 shows the variation of W ≡ W
Opt
pT and W ≡ W

Opt
oR .

Integrating Eq. (34) from t = 0 to t = tCA and then to any
value t will give the probability amplitude that the proton
would survive being absorbed until time t . Thus,

ap(t) = exp

[
h̄−1
∫ t

0
W

Opt
pT

(
r(t),Elab

p

)
dt

]
, 0 � t � ∞. (35)
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FIG. 8. For 0 < r � 12 fm, the negative values of the imaginary
optical potential W are displayed for protons (red), Eq. (9), and with
similar equation for the deuteron (black) [26].

For bp = 7.230175 fm, Fig. 9 displays the variation of r(t),
W

Opt
pT (r(t),Elab

p ), the integration in Eq. (35), and the survival
probability of protons |ap(t)|2 with respect to t (in yocto
seconds, 1 ys = 10−24 s) and in a region where W = 0.

An offset of 149,236 ys is taken to correspond the zero time
in Fig. 9. This represents the elapsed time from t = 0 until
W

Opt
pT (r(t),Elab

p ) � 0. At CA we have tCA=734.4 ys, rCA =
8.98 fm, W

Opt
pT =−1.59 MeV,

∫ tCA

0 W
Opt
pT dt =−98.5 MeV · ys,

and a probability of about 74.1 % that the proton would survive
absorption by the imaginary optical potential. At infinity, the
probability decreases to about 55 %.

B. Probability of neutron transfer near CA

The second important interaction in the incoming channel
for rCA � r < ∞ is near the target nuclear matter and par-
ticularly near the CA. This interaction describes the possible
transfer of a loosely bound neutron from the heavy nucleus to
the proton, forming a deuteron.

With respect to the arbitrary origin o and at a time t , we
let 	r1 and 	r2 be the c.m. positions of the target and proton,
respectively, see Fig. 10. In this figure, 	r and 	rn are the positions
of the proton with respect to the target nucleus and neutron with
respect to o, respectively. If we take o at the center of the target,
then 	r1 = 0 and 	r2 = 	r .

The total Hamiltonian of the system can be written as

H (	r,	rn) = Hp(	r) + Hn(	rn,	r), (36)

and this satisfies the time-dependent Schrödinger equation:

ih̄
∂

∂t
�(	r,	rn,t) = [Hp(	r) + Hn(	rn,	r)] �(	r,	rn,t), (37)

FIG. 9. Variation with time t when 550 ys � t � 950 ys for (a) r ,
(b) W

Opt
pT , (c)

∫ t

0 W
Opt
pT dt , and (d) |ap(t)|2. For the regions t < 630 ys

and t > 875 ys, almost no proton absorption occurs.

where the total wave function �(	r,	rn,t) is the product of the
proton and neutron wave functions:

�(	r,	rn,t) = �p(	r,t) �n(	rn,t). (38)

The Hamiltonian of the neutron in the region of the closest
approach can considered as

Hn(	rn,	r) =
	̂P 2

n

2mn
+ V1(|	rn − 	r1|) + V2(|	rn − 	r2|), (39)

where mn is the mass of neutron. We assumed that V1(|	rn − 	r1|)
is the real potential felt by the neutron when it interacts with the
target nucleus. Similarly, V2(|	rn − 	r2|) is real potential when
it interacts with the proton. Consequently, the time-dependent
Schrödinger equation that describes the neutron is

ih̄
∂�n(	rn,t)

∂t

=
[ 	̂P 2

n

2mn
+ V1(|	rn − 	r1|) + V2(|	rn − 	r2|)

]
�n(	rn,t). (40)

It is possible to separate the variables in �n(	rn,t) as a
product of space and time functions. For the space-dependence
part, we denote φ1(|	rn − 	r1|) to be the neutron real wave
function in the target nucleus, and we denote φ2(|	rn − 	r2|)
to be the neutron wave function in the deuteron. The two wave
functions φi, (i = 1,2) are assumed to satisfy the Schrödinger
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Heavy Nucleus

Deuteron

Near CA
o2V p pv

n2R

o1V

1R

o

2r
r

nr

nr 1r

1r

nr 2r

FIG. 10. At time t near the point of CA, and with respect to an
arbitrary origin o, the positions of the proton and the loosely- bound
neutron are 	r2 and 	rn, respectively. The figure displays an exaggerated
deuteron size.

equations:[ 	̂P 2
n

2mn
+ Vi(|	rn − 	ri |)

]
φi(|	rn − 	ri |) = E i φi(|	rn − 	ri |), (41)

where E1 and E2 are the binding energies of the neutron in
the heavy nucleus and deuteron, respectively. In Eq. (41), the
reduced masses are not used because we are taking the c.m.
vectors 	r1 and 	r2 as being fixed in space at time t and also we
are also neglecting the recoil effects.

Based on the proposed approximate spherical square-well
potential given by Eq. (24), the two forms displayed in Eq. (26)
are based on an origin at the center of the heavy nucleus.
These two forms can be modified to consider the origin o
shown in Fig. 10. Therefore, expressions of φi(|	rn − 	ri |) can be
written as

φi(|	rn − 	ri |) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ai

sin κi |	rn − 	ri |
|	rn − 	ri | , |	rn − 	ri | � Ri

Bi

e−ki |	rn−	ri |

|	rn − 	ri | , |	rn − 	ri | � Ri

. (42)

For the time dependence part of �n(	rn,t), we separate the
position dependence in 	rn and time t by

�n(	rn,t) = χ ′
1(t) φ1(|	rn − 	r1|) + χ ′

2(t) φ2(|	rn − 	r2|). (43)

The separation of variables technique will allow us to write
the time-dependent function χ ′

n(t) as

χ ′
n(t) = a′

n(t) e−i En t/h̄, (n = 1,2), (44)

where a′
1(t) is the probability amplitude at time t of a neutron

being in the heavy nucleus and a′
2(t) is that at the same time

for being picked up by the proton. Initially, at t = 0, we have

a′
1(t = 0) = 1 and a′

2(t = 0) = 0. Moreover, a′
1(t = tCA) is the

probability amplitude at CA when the neutron stays in the
target nucleus, while a′

2(t = tCA) is that when the neutron is
captured by the proton at CA.

Substituting with �p(	r,t), given by Eq. (31), and �n(	rn,t),
given by Eq. (43), into Eq. (38) we get the following total wave
function of the system:

�(	r,	rn,t) = [χ1(t) φ1(|	rn − 	r1|)
+χ2(t) φ2(|	rn − 	r2|)] × φp(	r), (45)

where χ1(t) = χ ′
1(t)χp(t) and χ2(t) = χ ′

2(t)χp(t). From
Eqs. (44) and (33) we have

χn(t) = an(t) e−i (En +E) t/h̄, (n = 1,2), (46)

where an(t) = a′
n(t) ap(t),(n = 1,2). Now, a1(t) is the prob-

ability amplitude, at time t , a neutron that has not been
picked up by a proton which has not been absorbed by
the imaginary optical potential. Initially, at t = 0, we have
a1(0) = a′

1(0) ap(0) = 1. Additionally, a2(t) is the probability
amplitude, at time t , a neutron that is being picked up by a
proton which has not being absorbed by the imaginary part
of the optical potential. Initially, a2(0) = a′

2(0) ap(0) = 0 at
t = 0. Likewise, a2(tCA) is the probability amplitude at the
CA of picking up a neutron by a surviving proton.

Substituting Eq. (45) into Eq. (37), and after some algebra,
we arrive to the following differential equation:

a
·
n(t) = 1

i h̄

[
(Xn m + iW ) an(t) + Ynme−i (Em−En ) t

h̄ am(t)
]
, (47)

where W ≡ W
Opt
pT ,

Xn m = 〈nmn〉 − 〈12〉〈nmm〉]
1 − 〈12〉2

Ynm = 〈nnm〉 − 〈12〉〈mnm〉
1 − 〈12〉2

,

⎧⎨
⎩

n = 1,m = 2
or

n = 2,m = 1
, (48)

and we used the bra-ket notation to represent the resulting
overlap integrals shown in Table V.

In all overlap integrals, φi(|	rn − 	ri |) of Eq. (42) is used to
find Xn m and Ynm analytically. For convenience we use the
dimensionless parameters αij = kiRj , βi = kir12, γi = κiRi ,
δi = κir12, and Fi = Ri/r12, where if i = 1 then j = 2 or if
i = 2 then j = 1. The analytical expressions of 〈121〉 and

TABLE V. Shorthand symbols for the bra-ket notation.

Overlap integral Shorthand symbol

〈φ1|V2|φ1〉 〈121〉
〈φ2|V1 |φ2〉 〈212〉
〈φ2|V2|φ1〉 = 〈φ1|V2|φ2〉 〈221〉 = 〈122〉
〈φ1|V1 |φ2〉 = 〈φ2|V1 |φ1〉 〈112〉 = 〈211〉
〈φ1|φ2〉 = 〈φ2|φ1〉 〈12〉 = 〈21〉
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〈212〉 are evaluated and combined as

〈ij i 〉 = V0j βisin2(γi) e2αii

(1 + αii)

[
Fj − (1 − F 2

j

)
ln

1 + Fj

1 − Fj

+ 2
∞∑

n=1

n∑
=1,3,..

(−2βi)nF
+2
j

n (n − )! ! ( + 2)

]
,

⎧⎨
⎩

i = 1,j = 2
or

i = 2,j = 1
,

(49)

where the summation term converges rapidly after about
reaching 30 to 50 terms. The analytical expressions of 〈112〉
and 〈122〉 can take the following combined form (with the
alteration of i and j as defined previously):

〈1 i 2〉 = 2V0i sin γj eαjj −βj

√
(1 + α11)(1 + α22)

(
δ2
i + β2

j

)
√

βi

βj

× [βj sin γi cosh αji − δi cos γi sinh αji]. (50)

The analytical integration of 〈φ1| φ2〉 is divided into three
parts. The first part is carried out when the neutron of Fig. 10
lies inside the heavy nucleus domain. The domain of the second
part is taken when the neutron lies inside the deuteron. The
integration of the third part is carried out when the neutron is
outside both the heavy nucleus and the deuteron. By taking the
origin in Fig. 10 in this case at the heavy nucleus, we allow 	rn to
cover the whole domain D given by R1 � rn � ∞, 0 � θ � π ,
and 0 � φ � 2π even when |	rn − 	r| < R2. Of course, this
domain D will cover the unwanted region of the deuteron.
Since the size of the deuteron is negligible with respect to the
huge domain D, this choice of integration is perfectly valid.
Accordingly, the analytical integration of 〈φ1| φ2〉 = 〈12〉 will
be

〈12〉 = 2√
(1 + α11)(1 + α22)

[√
β1

β2

sin γ2 eα22−β2(
β2

2 + δ2
1

)
×{β2 sin γ1 cosh α21 − δ1 cos γ1 sinh α21}

+
√

β2

β1

sin γ1 eα11−β1(
β2

1 + δ2
2

)
×{β1 sin γ2 cosh α12 − δ2 cos γ2 sinh α12}

+
√

β1

β2

sin γ1 sin γ2e
α11+α22

(β1 + β2)

{
e−β1−β2 sinh β2

+ e−β2

(β1 − β2)
[e−α11 (β1 sinh α21 + β2 cosh α21)

− e−β1 (β1 sinh β2 + β2 cosh β2)]

}]
. (51)

We now turn back to the coupled-first-order linear differ-
ential equations, Eq. (47). We can write them as

a
·

1(t) = g11 a1(t) + g12 e−iω ta2(t),

a
·

2(t) = g21 e+iω ta1(t) + g22 a2(t), (52)

where ω = E21/h̄ = (E2 − E1)/h̄. The g’s are related to the
coefficients Xnm, Ynm, and the imaginary optical potential W

by the following relations:

g11 = (ih̄)−1(X12 + iW ), g12 = (ih̄)−1Y12,

g21 = (ih̄)−1Y21, g22 = (ih̄)−1(X21 + iW ). (53)

We cannot solve these coupled-first-order differential equa-
tions using the normal procedure of matrix algebra since some
coefficients are time-dependent. When using the technique
of the Laplace transform, we can find the probability at
time 0 � t � tCA of picking-up a neutron by a surviving
proton as

|a2(t)|2 = 1 − e2Wt/h̄ [1 − C sin2(f t)], 0 � t � tCA, (54)

where due to the negative values of the imaginary optical
potential W (see Fig. 8), the attenuation factor e2Wt/h̄ goes
from 1 to a smaller value e2WtCA/h̄ when t goes from 0 to tAC.
The values of f and the factor C in Eq. (54) are related to the
predefined coefficients and are given by

f 2 = A2 + B2, A = 1
2 h̄−1(E21 + X21 + X12),

B = h̄−1[E21X12 + X12X21 − Y12Y21]1/2,

C = 1 − D2/f 2, D = 1
2 h̄−1(E21 + X21 − X12). (55)

The numerical values of f and D are very close to each
other (usually of the order of 4×10−3 (ys)−1 for most of the
impact parameters in this study). Therefore, C has a very small
value or zero. In addition, even with the violent fluctuation of
sin2(f t) in the time scale of t > 530 ys, we end up with a
simpler probability formula (with a second term that is similar
to the well-known WKB penetration probability) for picking-
up a neutron by a survived proton:

|a2(t)|2 � 1 − e2Wt/h̄, 0 � t � tCA. (56)

Similar steps to Eq. (29) through Eq. (34) can be applied to
the deuteron after the CA. These steps will give the probability
amplitude, ad(t), that the deuteron would survive from being
absorbed by the deuteron optical potential an any time t � tCA.
Therefore,

ad(t) = exp

[
h̄−1
∫ ∞

tCA

W
Opt
dR

(
r(t),Elab

d

)
dt

]
. (57)

For the incoming channel (t � tCA) and for three different
impact parameters, the left rising part of Fig. 11 displays
|a2(t)|2 as a function of time t (in ys), when using the same
offset time 149,236 ys as in Fig. 9. All trajectories start at
t = 0 when the distance D in Fig. 3 is about 104fm. For the
smallest selected value, bp = 7.23 fm, Fig. 11 indicates that
the probability starts to increase gradually after t ≈ 600 ys.
The probability that a surviving proton can pick up a neutron
and form a deuteron is about 38.6% at CA when the proton
reaches rCA = 8.98 fm at tCA � 734 ys. For the selected value,
bp = 7.60 fm, the bottom blue curve of the figure shows
the same trend of increase. The probability of forming a
deuteron is about 16% when the proton reaches rCA �
9.50 fm at tCA � 720 ys. Thus, for large impact parameters,
the chance of forming a deuteron near the CA decreases as
expected.

For the outgoing channel (t � tCA), the attenuated right part
of the same figure displays |ad(t)|2 as a function of time for
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FIG. 11. Graph of the variation of |a2(t)|2,(0 � t � tCA) and ad(t),
(t � tCA) for three selected impact parameters.

t (in ys). For the small value bp = 7.23 fm, Fig 11 indicates
that the deuteron imaginary optical potential has considerable
effect on absorbing the deuterons. As a comparison, this effect
goes away much less than the absorption that occurs for the
case of the proton, as seen in Fig. 9. The probability of creating
a deuteron drops from 38.6% at CA to only 34.4% when
detected at infinity. The figure indicates that larger impact
parameters have a limited effect on absorbing deuterons after
their formation at CA. In other words, the absorption effect on
the formed deuterons is not appreciable when the protons have
relatively large impact parameters.

C. Angular distribution weighted by probability

Based on the formulations of the subsections A and B,
we calculated 276,983 weighted trajectories for protons and a
similar number of deuterons created at CA. Figure 12(a) shows
the probability that a proton was not absorbed by the imaginary
optical potential as a function of the impact parameter. Since
deuterons can be created in the forward direction only when
bp � 7.23018 fm, this part of the figure starts with the proton
probability loss of 0.55 when detected. As bp increases, the
survival probability increases and reaches a value close to 1
when bp = 10 fm (no proton loss).

Figure 12(b) shows the probability of a neutron that is
picked up by a proton which is not absorbed by the imaginary
optical potential, and hence forming a deuteron. At bp =
7.23487 fm, the probability of creating a deuteron at CA and
then detected at infinity is 0.35. As bp increases, the deuteron’s
probability decreases and when bp = 10 fm, it reaches a very
small value of 0.003.

FIG. 12. The survival probability as a function of the impact
parameter is plotted for protons (a) and deuterons (b).

Figure 13(a) displays the number of detected protons at
infinity, Np, weighted by their survival probability as a function
of θp (with a bin size 
θp = 1.5◦). Here one can see a smooth
gradual increase followed by a sharp increase in the number

FIG. 13. Each point on the abscissa represents a bin size of 
θp =

θd = 1.5◦. (a) Angular distribution weighted by a proton’s survival
probability. (b) The same as (a), but for deuterons weighted by their
creation probability at CA and then surviving from being absorbed
by the imaginary optical potential after the CA and then detected.
A smaller window is added to show the number of deuterons in the
experimental range.
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FIG. 14. Comparison between the deuterons angular distributions
of the present calculations with the experimental angular momentum
transfer L = 0 data for the direct population of the ground state and
the level 367-keV, 1

2

+
[400] of Allmond et al. [10] and L = 0 DWBA

calculations [11].

of protons. The change in angles occurs in the range 11◦ �
θp � 21.5◦ with the number of protons in the range 2 � Np �
173,000.

Figure 13(b) displays, as a function of θd (with a bin size

θd = 1.5◦), the number of detected deuterons Nd, weighted
by their probability (after the creation at CA and detected at
infinity). The number of deuterons becomes significant after
θd > −70◦ and increases gradually in the beginning and then
violently to a peak at about θd � 25◦ when Nd � 11,500. The
trajectory calculations show that when b∗

p = 7.40091 fm we
get final angles θp � 15.215◦ and θd = 0◦. This is indicated by
the two arrows in both parts of Fig. 13. For values greater than
b∗

p, θd is positive and reaches a maximum at θd � 25◦.
As displayed in both the top and bottom parts of Fig. 2,

the observed experimental results are for angles greater than
30◦ and less than 60◦ [10,4]. Therefore, we need to plot
the calculated theoretical number Nd for only the angles in
Fig. 13(b) that fall within the experimental measurements.

To get a good fit with the experimental results, the calculated
values for the ground state of 155Gd in Fig. 13(b) are scaled
up by a factor of 1.35 and plotted in Fig. 14. To get the curve
of the 367.6 keV level to overlap with the ground-state curve
of Fig. 14, a scaling-up factor of 1.48 is used. This indicates
that, for the excited 155Gd nucleus, the number of detected
deuterons is smaller. Thus, exciting 155Gd nucleus to higher
Nilsson levels contributes fewer detected deuterons than that
with the ground energy.

As seen from Fig. 14, our theory fits the experimental values
for all small angles except at the two large angles 49.84◦

FIG. 15. Comparison between the experimental results of T. Ross
et al. [4] and the present calculations for deuterons.

and 50.99◦. The overall fit looks acceptable and describes
the general features of the experimental results, even without
considering the interference between deuterons created with
negative and positive angles. This is because positive angles
have a maximum value of about θd = 25◦; see Fig. 13(b).
Therefore, deuterons with positive angles are considered to be
in the direction of the proton’s beam. The L = 0 DWBA curve
displayed in Fig. 14 passes through the experimental curve at
38.31° and deviates most from the experiment at small and
large angles.

According to the CCBA theory presented by Ascuitto
and Glendenning for the stripping (d,p) reaction [31] and
the two-neutron transfer (p,t) reaction [32], there are certain
situations where one or two of the usual three assumptions for
the DWBA are false when considering transfer reactions. This
might explain why the DWBA cannot explain the experimental
results of Fig. 14. On the other hand, the CCBA theory is
more complex in its formalism than our simple semi-classical
approach, which gives a reasonable fit to the experiment.
Unfortunately, no published research literature relevant to
CCBA is available in the case of 25 MeV proton incident
on 156Gd nucleus in a (p,d) reaction.

Following the DWBA angular-distribution fit which is best
characterized by angular momentum transfer L = 0,1,2 for the
experimental work of Ref. [4], Fig. 15 shows the calculations
for the 158Gd(p,d)157Gd reaction when considering the ground
state and the two states shown in Table VI.

In Fig. 15 we compare the results of our angular momentum
transfer L = 0 theory with experimental work of T. Ross et al.
[4]. To get a good fit with the experimental work, the calculated
values for the ground state are scaled down by a factor of 1/12.
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TABLE VI. Experimental energy level of 157Gd. Taken from
Table 6 of Ref. [33].

E∗(keV) J π K[Nnz�]

682.84 (3) 1
2

+ 1
2 [400]

729.14 (3) 3
2

− 1
2 [521]

To get the curves of the 682.84 and 729.14 keV levels to overlap
with the ground state curve, a scaling-down factor of 1/10 is
used.

Although the experimental work of Ross et al. [4] is not
for L = 0, the semiclassical calculations agree with almost the
highest 12 experimental angles and deviate in case of the two
smallest angles.

For the comparison with the DWBA curves presented at
729 keV in Fig. 7 of Ref. [4] and displayed in the bottom of
Fig. 2 of this paper, we note that the L = 0 DWBA curve does
not fit the experiment and the L = 1,4 curves fit the data for
angles less than 45◦ but deviate for angles greater than 45◦.
The comparison and agreement of our angular distribution
with the experimental data presented in the bottom part of
Fig. 2, which displayed in Fig. 15, is only for deflections
greater than 30°. The DWBA curve does not show L = 0 at
smaller angles, but it looks as if it could be extrapolated up at
smaller angles. We might hope that experimental data could
be extended into smaller angles, despite interference from
elastically scattered protons. Again, the discrepancy between
experiment and DWBA may be due to the strong coupling
of inelastic channels to the ground in deformed nuclei, as
indicated by the CCBA theory [31].

VI. RESULTS AND DISCUSSION

Using the optical model parameters of C. Perey and F.
Perey [26], we see that the p,d pickup reaction must take place
near the nuclear surface at the poles. That condition favors
filled neutron orbitals with relatively large wave functions with
� = 0, which guarantees a finite neutron population at the nu-
clear poles. Due to conservation of energy, the pickup will fa-
vor filled orbitals below the Fermi surface near the 2.2245 MeV
binding energy of the final state deuteron. The most strongly
populated final state in both p,d products of 155Gd and 157Gd
is the 1

2
+

[400] state at 367.6 keV in 155Gd and 682.8 keV
in 157Gd, which are a mix of s1/2 and d3/2 from the shell
below N = 82 (see Table 11 from Ref. [1]). The fact that
this dominant band has by far predominant population in its
spin 1

2 ground state, is a consequence of Coulomb excitation
on the inward path of the proton being cancelled by that
on the outward path of the formed deuteron. This is more
evidence that most of the p,d pickup takes place near the
poles.

One feature of the nuclear structure that has not been taken
into account by Ross et al. [2] is the feature of “quadrupole
pairing,” Chu et al. [6]. This feature proved to be a major
factor in accounting for the low energy of the first-excited
0+ state in 154Gd. We note that Chu’s work [6] recognized

that monopole pairing for solving the BCS-mixing equations
needs special treatment in systems where the Nilsson orbitals
divide into two groups: down-going and up-going. The former
involves the nucleon wave functions that mainly occupy the
north and south polar regions, whereas the up-going orbitals
mainly occupy the equatorial regions. An exception to this
general rule are the two most heavily populated bands in the
p,d reaction, namely, the 1

2
+

[400] and the 3
2

+
[402]. From the

weak signature splitting in these bands we know that there is
considerable mixing of the s1/2 and d3/2 orbitals. Thus, they
both have amplitudes at the nuclear poles from the presence
of the s1/2 orbital. Both of these Nilsson states are available
for neutron pickup at their poles, though the 1

2
+

[400] is the
greater at the poles.

In systems with BCS mixing, transition rates have a uv
factor. In the case of the odd-A Gd the up-going orbitals from
the shell below the 82 gap are mostly filled with neutrons
and vn is near 1. For the orbitals near the Fermi energy most
are downsloping (polar) and their BCS solution will have u
(emptiness) and v (fullness) values of near square roots of 1

2 .
This pairing influence gives an enhancement to pick up from
the up-going orbitals well below the Fermi energy, such as
1
2

+
[400] and 3

2
+

[402]. That is, the removal of a neutron from
the upgoing neutron-orbital will barely affect the BCS solution
for the down-going orbitals.

Both bands ( 1
2

+
[400] and 3

2
+

[402]) have the feature of a
strong lobe in the wave function at the poles of the spheroid.
This justifies our classical trajectories grazing the poles at 0
and 180 degrees latitude. Of more importance is that the proton
beam energy, 25 MeV, was chosen for the maximum pickup
probability by DWBA theoretical calculations. We understand
that at lower beam energies, the protons are below the Coulomb
barrier at all latitudes. The lowest Coulomb barrier is at the
poles, where most of the p,d pickup occurs. The decline of
the pickup cross section in DWBA at higher energies may be
attributed to the increasing speed of the grazing protons at the
poles.

One concern in our theoretical trajectory work is that we
have used the Perey and Perey [26] optical-model parameters,
which are based on a uniform spherical charge distribution.
More recent parameters, such as the global optical potential
[34,35] can also be used, but they have the same spherical
charge distribution feature. The actual radius of curvature at
the poles should be somewhat smaller than at the spherical
nuclei, and the Coulomb potential will differ slightly due to the
deformed nucleus. The refinement of the code to nonspherical
shapes is a future challenge.

VII. CONCLUSIONS

We believe these semiclassical calculations for the domi-
nant 1

2
+

[400] give a reasonable fit to experimental p,d angular
distributions, which have only been measurable at angles larger
than about 30 degrees, since smaller angles are flooded with
scattered protons. The simple support for this conclusion is
that the 1

2
+

[400] and 3
2

+
[402] are the most strongly populated

states because they have the largest C2
j coefficients for L = 0
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and 2, respectively, and the kinematics are such that the cross
sections are largest at these angles for L = 0 − 2.

Additionally, we believe that when the incoming proton
wavelength is considerably smaller than the nuclear size,
then this simplistic semi-classical code achieves a comparable
fit with experimental results for the case of the angular
momentum transfer L = 0 as compared to the DWBA ap-
proach used by the standard codes [11–14]. Also, since the
presented approach is particularly suited for describing the
angular momentum transfer L = 0, then it may provide an
elegant framework for future investigations of excited 0+
states populated in: (a) the (p,t) reaction [2,4,36–42]; (b)
the (t,p) reaction [43,44]; (c) the (d,p) reaction [45]; and

(d) the more heavier projectile reaction such as (3He,α)
[46–51].

ACKNOWLEDGMENTS

We thank James M. Allmond for providing us with the
experimental data of the 156Gd target and fruitful discussions
about the experimental analysis of the 156Gd(p,d)155Gd.
This work is partially supported by U.S. Department of
Energy Grants and Contracts No. DE-FG-05-88ER40407, No.
DE-AC02-05cch1123, No. DE-FG-ER40934, No. DE-AC05-
00OR22725, No. DE-AC5207NA27344, and No. DE-FG02-
95ER40939.

[1] T. J. Ross, Ph.D. thesis, University of Surrey, 2012.
[2] T. J. Ross, C. W. Beausang, R. O. Hughes, J. M. Allmond,

C. T. Angell, M. S. Basunia, D. L. Bleuel, J. T. Burke, R. J.
Casperson, J. E. Escher et al., Phys. Rev. C 85, 051304(R)
(2012).

[3] T. J. Ross, R. O. Hughes, C. W. Beausang, J. M. Allmond, C. T.
Angell, M. S. Basunia, D. L. Bleuel, J. T. Burke, R. J. Casperson,
J. E. Escher et al., Phys. Rev. C 88, 031301(R) (2013).

[4] T. J. Ross, R. O. Hughes, J. M. Allmond, C. W. Beausang, C. T.
Angell, M. S. Basunia, D. L. Bleuel, J. T. Burke, R. J. Casperson,
J. E. Escher et al., Phys. Rev. C 90, 044323 (2014).

[5] F. S. Dietrich, I. J. Thompson, and T. Kawano, Phys. Rev. C 85,
044611 (2012).

[6] S. Y. Chu, J. O. Rasmussen, M. A. Stoyer, L. F. Canto, R.
Donangelo, and P. Ring, Phys. Rev. C 52, 685 (1995).

[7] S. Y. Chu, J. O. Rasmussen, M. A. Stoyer, P. Ring, and L. F.
Canto, Phys. Rev. C 52, 1407 (1995).

[8] A. A. Shihab-Eldin, J. O. Rasmussen, M. A. Stoyer, D. G. Burke,
and P. E. Garrett, Int. J. Mod. Phys. E 04, 411 (1995).

[9] H. M. A. Radi, R. A. Mehrem, and J. O. Rasmussen, Phys. Rev.
C 39, 1340 (1989).

[10] J. M. Allmond, C. W. Beausang, J. O. Rasmussen, T. J. Ross, M.
S. Basunia, L. A. Bernstein, D. L. Bleuel, W. Brooks, N. Brown,
J. T. Burke et al., Phys. Rev. C 81, 064316 (2010).

[11] DWUCK (Distorted Wave University of Colorado Kunz) is a
program written by Peter D. Kunz to calculate nuclear reaction
cross sections numerically; A. Kiss, C. Mayer-Boricke, M.
Rogge, P. Turek, and S. Wiktor, J. Phys. G: Nucl. Phys. 13,
1067 (1987).

[12] CHUCK, A Coupled-channel program written by Peter D.
Kunz to evaluate nuclear scattering amplitudes and differential
collision cross sections; I. J. Thompson, Comput. Phys. Rep. 7,
167 (1988).

[13] PTOLEMY is a program written by M. H. Macfarlane and
Steven C. Pieper to compute nuclear elastic and direct-reaction
cross sections for Heavy-Ion, Argonne National Laboratory,
unpublished (1978); Shadi A. Bedoor, Ph.D. Dissertations,
Western Michigan University, 2014.

[14] FRESCO is a program developed by Ian Thompson over
the period 1983–2006, to perform coupled-reaction channels
calculations in nuclear physics.

[15] W. D. Myers and K.-H. Schmidt, Nucl. Phys. A 410, 61
(1983).

[16] R. Utama, Wei-Chia Chen, and J. Piekarewicz, J. Phys. G: Nucl.
Part. Phys. 43, 114002 (2016).

[17] P. Moller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data
Nucl. Data Tables 59, 185 (1995).

[18] M. Centelles, X. Roca-Maza, X. Viñas, and M. Warda,
Phys. Rev. Lett. 102, 122502 (2009).

[19] I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[20] A. N. Antonov, M. K. Gaidarov, P. Sarriguren, and E. Moya de
Guerra, Phys. Rev. C 94, 014319 (2016).

[21] H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl.
Data Tables 36, 495 (1987).

[22] D. Vautherin, Phys. Rev. C 7, 296 (1973).
[23] L. C. Chamon, G. P. A. Nobre, D. Pereira, E. S. Rossi, Jr., C.

P. Silva, L. R. Gasques, B. V. Carlson et al., Phys. Rev. C 70,
014604 (2004).

[24] Lie-Wen Chen, Che Ming Ko, and Bao-An Li, Phys. Rev. C 72,
064309 (2005)

[25] K. Washiyama, K. Hagino, and M. Dasgupta, Phys. Rev. C 73,
034607 (2006).

[26] C. M. Perey and F. G. Perey, At. Data Nucl. Data Tables 17, 1
(1976).

[27] C. M. Perey and F. G. Perey, Phys. Rev. 132, 755 (1963).
[28] A. De Shalit and H. Feshbach, Theoretical Nuclear Physics:

Nuclear Structure (John Wiley, New York, 1974), Vol. 1; P.
Marmier and E. Sheldon, Physics of Nuclei and Particles
(Academic Press, San Diego, 1970), Vol. 2.

[29] R. B. Firestone, S. Y. Frank Chu, and C. M. Baglin, Table of
Isotopes, 8th ed. (1999).

[30] A. Bäcklin, G. Hedin, B. Fogelberg, M. Saraceno, R. C.
Greenwood, C. W. Reich, H. R Koch, H. A. Baader, H.
D. Breitig, O. W. B. Schult et al., Nucl. Phys. A 380, 189
(1982).

[31] R. J. Ascuitto and N. K. Glendenning, Phys. Rev. 181, 1396
(1969).

[32] R. J. Ascuitto and N. K. Glendenning, Phys. Rev. C 2, 415
(1970).

[33] V. Bondarenko, A. V. Afanasjev, F. Bečvář, J. Honzátkoc, M.-E.
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