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Phase-shift parametrization and extraction of asymptotic normalization
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We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix
but differing from it in several respects. Negative-energy zeros of this function correspond to bound states.
Positive-energy zeros correspond to resonances and “echo poles” appearing in elastic-scattering phase-shifts,
while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize
phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way,
independently of any potential model. The method is first tested on a d-wave 12C + α potential model. It is
shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC)
starting from the elastic-scattering phase shifts only. Next, the 12C + α experimental p-wave and d-wave phase
shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve
the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d)16O
transfer-reaction measurement and with the recent remeasurement of the 16N β-delayed α decay is obtained, with
improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion
order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy “echo pole,” the physical
meaning of which is still debatable.
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I. INTRODUCTION

Low-energy nuclear reactions, in particular those relevant
to nuclear astrophysics [1], are a fascinating application field
for quantum scattering theory [2]. Because of the Coulomb
repulsion between nuclei, cross sections are often impossible
to measure directly and theoretical extrapolations are indis-
pensable. The simplest of these reactions, elastic scattering,
is theoretically described with a partial-wave decomposition,
each partial wave l being fully characterized by a nuclear
phase shift δl or scattering matrix Sl = e2iδl , both functions of
the energy. Resonances appear as fast increases of δl at real
positive energies or as poles of Sl at complex energies. For
some reactions subthreshold bound states at small negative
energies also play an essential role. This is for instance the
case for the 1− and 2+ bound states lying just below the
12C + α threshold which strongly affect the 12C(α,γ )16O cross
section, an important reaction for stellar evolution [3]. For
these states, energies are usually well known experimentally,
but their wave-function asymptotic normalization constant
(ANC) is not. These are generally deduced from indirect
experimental data, like β-delayed α emission [4,5] or α-
transfer reactions [6].

A natural way to extract an ANC for a given l is to
parametrize the experimental δl and to extrapolate at negative
energies, as bound states also correspond to Sl poles [2]. A
usual tool to do so is the reaction (R) matrix [7,8], which
describes both resonant and bound states as poles characterized
by real energies and reduced width amplitudes (Mittag-Leffler
expansion). This motivated the high-precision measurement
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of 12C + α scattering [9,10] but led to a very loose constraint
on the 1− ANC [9] and to a questionable constraint on the 2+
ANC [11]. The background δl (between resonances) are indeed
described in terms of a channel radius and of a high-energy
large-width pole, which adds several parameters with no direct
physical meaning to the fit. Hence, simpler parametrizations
are necessary.

A first option is the effective-range function (ERF) Kl of
Eq. (2) [12]. Its analyticity properties imply the existence
of a Maclaurin expansion, the effective-range expansion [2],
which provides both a parametrization of δl and an access
to subthreshold-bound-state ANCs [13,14]. This expansion is
generally limited to low energies, which restricts the analysis
of experimental data [15], but this could be overcome by
the use of Padé approximants [13,16–18]. A more serious
drawback is that Kl is a weakly sensitive quantity: very close
ERFs can lead to very different, sometimes unphysical, δl

and ANCs [15,19]. This flaw is due to the second (h) term
of Eq. (2); it can be avoided by directly expanding the first
term of Eq. (2), which is actually related to the inverse of
the modified K matrix Kl [20–22] (see below). Strangely
enough, we could not find an explicit connection between
Kl and Kl in the literature. Like the R matrix, Kl is usually
Mittag-Leffler expanded. The background description does
not require a channel radius but is however complicated,
in particular through the use of complex pole energies and
reduced width amplitudes [23,24]. For 12C + α both methods
lead to similar ANC constraints [4].

Here, we instead propose to expand function �l of Eq. (3),
which can be considered a simplified Kl or K−1

l . Function �l

also appears in quantum-defect theory for attractive Coulomb
potentials [25] and has the same expression for all l’s (no
wl function). This is desirable because the Coulomb potential
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dominates the centrifugal potential at large distances; hence,
the low-energy phase-shift behavior should only depend on
the Coulomb potential, not on l. We also show that a Padé
approximant is more efficient than a Mittag-Leffler expansion,
with fewer, more physical, but possibly complex parameters,
hence leading to better constraints on the 12C + α ANCs from
δl parametrizations.

II. SIMPLIFIED EFFECTIVE-RANGE FUNCTION

We consider the elastic scattering of two particles of charges
Z1e and Z2e at positive center-of-mass energy E = h̄2

2μ
k2, with

k the wave number and μ the reduced mass. The scattering
matrix reads [1,2]

S tot
l = e2iσl e2iδl ≡ 	(l + 1 + iη)

	(l + 1 − iη)
× cot δl + i

cot δl − i
, (1)

while the usual effective-range function reads [12,13]

Kl = 2wl

l!2a2l+1
N

[
π cot δl

e2πη − 1
+ Re h

]
, (2)

with the Coulomb phase shifts σl , η = 1/aNk and the nuclear
Bohr radius aN = 4πε0h̄

2/μZ1Z2e
2. The complicated func-

tions wl = ∏l
j=0 [1 + (j/η)2] and h = ψ(iη) − ln(iη) + 1

2iη
,

where ψ is the digamma function, are aimed at improving the
analyticity properties of Kc

l , the analytic continuation of Kl in
the complex plane [12].

Here we use the simpler function (see also [26–29])

�l = 2π

aN

cot δl

e2πη − 1
, (3)

which does not require the use of functions wl and h. In
the limit η → 0, it reduces to the standard l = 0 ERF for
the neutral case, k cot δ0. Equations (1) and (3) lead to the
expression of the nuclear scattering matrix in terms of �l ,

Sl = aN (e2πη − 1)�l + i 2π

aN (e2πη − 1)�l − i 2π
, (4)

while Eqs. (2) and (3) directly relate Kl to �l as

Kl = wl

l!2a2l
N

[
�l + 2 Re h

aN

]
, (5)

where the first term is nothing else than the inverse of the
modified K matrix [20–22],

Kl = l!2a2l
N

wl�l

. (6)

This last relation can be derived from Eqs. (2.2), (2.3), and
(3.4) of Ref. [30]. It implies that the zeros and poles of �l and
Kl are exchanged. We will see below that it also implies that
Kl can be more energy dependent than �l for l > 0, which
makes it less easy to parametrize.

Let us now study the properties of �l for real energies.
For E > 0, Eqs. (3) and (4) imply that �l is real, keeps Sl

unitary, has N0 zeros E = E0,j , j = 1, . . . ,N0 and N∞ poles

E∞,j , j = 1, . . . ,N∞ satisfying

δl(E)

π/2
=

{
even for E = E∞,j (j = 1, . . . ,N∞),

odd for E = E0,j (j = 1, . . . ,N0).
(7)

These characterize the general structure of the phase shift
for positive energies. Neglecting the energy variation of the
denominator in the vicinity of energies E0,j , Eq. (3) implies
that the derivative of the phase shift at these energies is simply
related to the slope of �l through

dδl

dE

∣∣∣∣
E=E0,j

≈ −aN

2π
(e2πη0,j − 1)

d�l

dE

∣∣∣∣
E=E0,j

. (8)

This allows us to distinguish resonances, which correspond to
an increasing phase shift and a decreasing �l function, from
“echo poles”, which correspond to a decreasing phase shift
and an increasing �l function [21]. For narrow resonances,
the phase-shift variation can be very quick; in a single-zero
approximation, the resonance energy is simply E0,j and its
width 	j reads

	j ≈ 4π

aN (e2πη0,j − 1)

[
−d�l

dE

]−1

E=E0,j

. (9)

For “echo poles”, in contrast, the phase-shift variation is
slow, with large negative “widths”; these characterize the
background structure of the phase shift and are not to be
considered resonances. The first factor of Eq. (9) is rapidly
varying with energy and is to be considered a purely Coulomb
penetration factor. The derivative of �l is then a reduced
width, the square root of which is a reduced-width amplitude.
Resonances thus correspond to real reduced-width amplitudes,
while “echo poles” correspond to imaginary ones.

For E = 0, if the scattering length al = −1/Kl(0) does
not vanish, �l admits a Maclaurin expansion because Kl , wl ,
and h admit one. Since wl(0) = 1 and h(0) = 0, one gets
�l(0) = −l!2a2l

N /al and the phase-shift behavior δl ∝ e−2πη

for E → 0+. For E → ∞, one has δl ∝ k−1 and hence
�l ∝ E, assuming the nuclear potential is regular enough and
neglecting relativistic effects [2].

For E < 0, Kc
l has to be used. It is real and satisfies

Kc
l (EB) = 2wl

l!2a2l+1
N

h

∣∣∣∣∣
η=ηB

, (10)

for the bound-state energy EB = h̄2

2μ
k2
B and the imaginary

parameter ηB = 1/(aNkB) [13,31]. This means that �c
l , the

analytic continuation of �l , vanishes at k = kB ,

�c
l (EB) = 0, (11)

a much simpler condition than the corresponding one for the
usual ERF (10). As expected, this zero of �c

l corresponds to
a pole of the modified K matrix (6); the properties of the
K-matrix poles then imply that these zeros of �c

l are simple.
Moreover, similarly to resonance widths, bound-state ANCs
have a simple expression in terms of �c

l : the usual ERF formula
of Ref. [13] reads

ANC = 	(l + 1 + |ηB |)
|ηB |l

[
−wl(ηB)

d�c
l

dk2

]−1/2

k=kB

, (12)
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which, again, does not depend on h. Let us stress at this point
that �c

l has to be a decreasing function of the energy for the
ANC to be a real quantity, showing the continuity between
positive-energy resonances and negative-energy bound states.
However, in the following, we will discuss the possible interest
of negative-energy “echo poles”, corresponding to increasing
�c

l , i.e., to imaginary ANCs.
Altogether, we thus expect �c

l to be well approximated in
the whole complex-E plane by the Padé approximant

�c
l ≈

∑N
i=0 piE

i∑M
i=0 qiEi

×

NB∏
n=1

(
1 − E

EB,n

) N0∏
j=1

(
1 − E

E0,j

)

N∞∏
j=1

(
1 − E

E∞,j

) , (13)

with pi and qi real parameters, N � 0, and

M = N + N0 − N∞ − 1 + NB � 0. (14)

Note that without loss of generality we can choose p0 = 1,
which implies q0 ≈ −al/ l!2a2l

N .
We can corroborate hypothesis (13) by fitting the sets {pi}

and {qi} to collectively describe the details of the experimental
phase shifts, via Eq. (3) and with values of N and M as small
as possible. Resonance energies Er and widths 	 can then be
computed by finding the complex poles Epole = Er − i

2	 of
the scattering matrix (4), which is a more general method than
the one based on phase shifts only.

Regarding bound-state ANCs, they can be computed
analytically by combining Eqs. (12) and (13). For a weakly
bound state, we expect the following linear approximation to
be precise between E = 0 and EB :

�l(E) ≈
E∈[EB,0]

l!2a2l
N

−al

(
1 − E

EB

)
. (15)

From there and Eq. (12), we deduce an approximate expression
for the ANC in terms of the scattering length,

ANC ≈ 	(l + 1 + |ηB |)
l!

|kB |l+1
√

al

wl(ηB)
. (16)

These equations show that the presence of a standard sub-
threshold bound state corresponds to a (possibly large) positive
scattering length. A subthreshold “echo pole”, on the other
hand, would correspond to a negative scattering length.

III. FITS OF 12C + α PHASE SHIFTS

As a first application, we consider the important 12C +
α system, for which h̄2/2μ ≈ 6.9635 MeV fm2 and aN ≈
0.80598 fm. A convenient feature of this system, in addition to
the quality of the available experimental data, is the existence
of simple potential models allowing a theoretical check of our
method.

A. d-wave potential model

To test the method, we first apply it to the 12C + α d-wave
potential of Refs. [11,14], which has three bound states (NB =
3) and no narrow resonance. The most weakly bound state

FIG. 1. Simplified effective-range function �2 (red solid line)
and renormalized inverse of the modified K matrix (green dashed
line) deduced from the elastic-scattering phase shift of the d-wave
12C + α potential model of Refs. [11,14]. The y-axis scale changes
at 1.1 MeV.

occurs at the experimental energy EB = −244.85 keV below
the 12C + α threshold, with an ANC of 138.4 × 105 fm−1/2.
It is expected to qualitatively describe the cluster structure
of this subthreshold state. The absence of narrow resonances,
on the other hand, physically corresponds to the absence of
low-energy 2+ states with a marked 12C + α structure in the
16O spectrum. The two other bound states occur at much
lower energies and are physically forbidden, simulating the
Pauli exclusion principle between nucleons of the 12C and α
nuclei. All three bound states have to be taken into account
in the Levinson theorem, which implies that the phase shift
continuously decreases from 3π at zero energy down to 0
at infinite energy. Consequently, it crosses twice an integer
multiple of π and thrice a half-integer multiple of π on the
whole positive-energy semi-axis, hence N0 = 3 and N∞ = 2
for this potential. Let us stress that the corresponding three
zeros of the �2 function are associated with positive slopes for
�2 and negative slopes for the phase shift, hence with negative
“widths” and with imaginary reduced-width amplitudes [see
Eq. (9)]. These are “echo poles” describing the phase-shift
background behavior.

On this potential model, we first checked that a Padé
approximant of the �2 function is a very efficient way of
parametrizing phase shifts over large energy ranges [32]. For
instance, with N = 1,M = 4 in Eq. (13), one can fit the
phase shifts up to 2.4 GeV. This confirms that, with Padé
approximants, effective-range expansions are not restricted to
low energies anymore.

On the other hand, we also checked that the low-energy
behavior of �2 can be used to deduce the subthreshold-bound-
state ANC from scattering phase shifts. This is illustrated
in Fig. 1, where �2 is shown to have an approximately
linear behavior at very low energies (i.e., below 300 keV).
Extrapolating this linear behavior at negative energies leads
to a rather precise bound-state-energy estimate: �2 crosses
the energy axis at −213 keV, which only differs by 13%
from the correct binding energy. A second-order extrapolation
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provides −229 keV (7% error). This confirms the validity
of our hypothesis that �2 can be continued from positive
to negative energies, linking low-energy phase shifts with
properties of the subthreshold bound state. The slope of this
�2 linear extrapolation being negative, Eq. (16) can be used
to evaluate the corresponding ANC. With a2 = 58 910 fm5 for
this potential, this provides an ANC ≈ 130.5 × 105 fm−1/2,
i.e., a 6% error. This is to be compared with the 11% error
obtained from Eq. (19) of Ref. [14], which is based on a
linear approximation of �2w2. Indeed, Fig. 1 also shows that
�2 has a weaker energy dependence than �2w2 = 4a4

N/K2

(both functions having the same value at zero energy), which
explains its more efficient analytical approximation. Finally,
a second-order extrapolation for �2 reproducing both the
scattering length and the effective range r2 = 0.1580 fm−3

for this potential leads to an ANC ≈ 137.0 × 105 fm−1/2, i.e.,
a 1% error.

In conclusion, this potential-model study shows that the
analytic continuation of the simplified effective-range function
�l is probably the best possible option to deduce bound-state
properties from elastic-scattering phase shifts. In particular,
it is much simpler and more efficient than the standard
effective-range function (see also below). It is related to the
inverse of the modified K matrix but is even simpler and more
precise. However, as illustrated by Fig. 1, the accuracy of
the extracted bound-state properties are expected to strongly
depend on the energy domain on which �l varies smoothly.
Equation (16) in particular assumes a linear dependence for
the simplified effective-range function, which might be valid
on a small energy interval only. Moreover, this equation can
only be used when the scattering length is known, which is the
case for a theoretical model only. Some difficulties are thus
expected if the method is used to analyze experimental data:
First, larger energy intervals might be required if experimental
data are not available at low energies. Consequently, a linear
approximation will not be sufficient and a larger number of
parameters will be required. Second, among these parameters,
the scattering length will have to be extracted from data
too. Binding energies, in contrast, will be available from
experiment and will not have to be deduced from phase shifts.
With this tool in hand and these restrictions in mind, let us now
switch to the analysis of experimental data for the 12C + α
system.

B. p-wave experimental data

We apply our method to the phase shifts of Refs. [9,10],
which have been obtained through an R-matrix fit of high-
precision cross sections measured on the energy interval
[1.955, 4.965] MeV. For the 1− phase shifts [see Fig. 2(a)],
the resonance at 2.4 MeV is clearly seen and a threshold
effect or the tail of a higher-energy resonance can be guessed
above 4.1 MeV. To simplify the following discussion and
since we are interested in low-energy extrapolation towards
the subthreshold bound-state energy at EB = −0.045 MeV,
we do not take data above 4.1 MeV into account (we have
checked that our conclusions are essentially unaffected by
keeping them). The corresponding �1 function behaves like
−6.6929 × 10−5(E − Eres) fm−1 for E ≈ Eres = 2.442 MeV.

As expected, it displays a zero at the resonance energy and
a negative slope, which leads to the width estimate 	 ≈
360 keV using Eq. (9). By dividing �1 by 1 − E/Eres, one
gets the “no res.” data of Fig. 2(b), which are approximately
linear below 4.5 MeV.

Remarkably, extrapolating these data towards negative
energy leads to a zero close to EB , as shown by our [2/0] fit
(detailed below). This suggests that �1 relates the subthreshold
bound state to the experimental phase shifts in a very simple
way, despite a 2-MeV gap between the lowest elastic-scattering
measurement and the bound state. This is not the case for K−1

1 ,
also represented in Fig. 2(b): it depends more strongly on the
energy, and a linear fit does not provide the correct binding
energy. The K-matrix Mittag-Leffler fit of Ref. [4] (adjusted
using older data) is also represented in Figs. 2(a) and 2(b);
although the phase shifts are satisfactory, 1/K1 presents a
complicated structure, due to the background description and
to an imposed real reduced-width amplitude for the bound
state, which leads to a negative slope of 1/K1 at the bound-state
energy and to a pole of 1/K1 (and a zero of δ1) at low
positive energy. A similar picture is obtained for the more
recent R-matrix fit of Refs. [9,10], which also corresponds to
a real reduced-width amplitude for the bound state.

In contrast, our Padé fit is much simpler but it corresponds
to a small but positive slope of �1 at the bound-state energy,
and hence to an imaginary reduced-width amplitude and an
imaginary ANC, according to Eq. (12). This seems to disagree
with usual properties of “echo poles”, which generally occur
at high energies, and with general results from the R-matrix
theory [23], where only real reduced-width amplitudes are
used. In Ref. [21], a general theoretical discussion of the sign
of these widths is made, where they are indeed shown to be
generally positive for low-energy states. However, a negative
sign is also proved to be possible (see Eq. (8.4) and Sec.
IX of Ref. [21]) when the state has a structure dominated
by other channels, in particular neutral ones. The present
state indeed has a structure dominated by a single-particle
mean-field configuration rather than by a 12C + α cluster
structure. This is the reason why it does not show up in a simple
12C + α potential model, contrary to the d-wave subthreshold
state. However, the closest neutral channel being the 15O + n
channel, with a threshold energy lying 8.5 MeV above the
12C + α one, it is unclear whether it is sufficient to justify
the use of a low-energy “echo pole”. This hypothesis should
be tested, e.g., in an R-matrix model coupling charged and
neutral channels, a project we defer to a future work. In the
meanwhile, we choose here to further explore the fits obtained
with a single-channel imaginary ANC, as the simplicity of the
corresponding �1 function is quite appealing. Moreover, we
will see below that, except for its phase, the deduced ANC
agrees with totally independent measurements, a fact which
seems hard to consider as a simple coincidence.

Also represented in Figs. 2(a) and 2(b) are the δ1 and
nonresonant �1 corresponding to the three-term effective-
range expansion of Ref. [19]; they are clearly unsatisfactory.
Interestingly, all these fits correspond to practically indis-
tinguishable K1, as shown in Fig. 2(c), where all curves
superimpose. This illustrates the lack of sensitivity of the usual
effective-range function to low-energy physical quantities, due
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FIG. 2. 12C + α elastic-scattering p-wave (a) phase shifts δ1, (b) simplified effective-range function (ERF) with resonance zero removed,
�1/(1 − E/Eres), (c) usual ERF K1, (d) simplified ERF with resonance and bound-state zeros removed, �1/(1 − E/Eres)(1 − E/EB ), compared
with the value (black point with error bar) deduced from the transfer-reaction ANC of Ref. [6] (after a sign change; see text). The experimental
data (gray crosses) are from Ref. [9,10] and the [Nfit/Mfit] Padé approximants are detailed in the text. In (a), (b), and (c), the standard ERF
fit of Ref. [19] and the modified K-matrix fit of Ref. [4] are also shown. In (c), the three theoretical curves are indistinguishable from the
experimental data.

to the second (h) term in Eq. (2), which strongly dominates
the first term here.

Since the slope of �1 at the bound-state energy directly
provides the ANC (12) and since the bound-state energy
is precisely known experimentally, we again divide �1 by
1 − E/EB , which leads to the “no res. no b.s.” data of Fig. 2(d).
This reveals even more details. Ideally, the resulting curve
should be a constant directly providing the ANC. However, the
situation is not that simple. Except for a rather fast variation
above 4.1 MeV (much more clearly seen on �1 than on δ1),
the background �1 function is only approximately constant:
it varies between 2.8 and 3.7 × 10−6, which corresponds to
an ANC of i 214(6) × 1012 fm−1/2. Except for the phase
factor, this is in perfect agreement and already thrice more
accurate than the value of Ref. [6], 208(20) × 1012 fm−1/2,
which corresponds to the black dot of Fig. 2(d). Since the
error bars on the phase shifts are very small, a better accuracy
on the ANC might even be in reach, but this requires fitting
the bell-shaped structure that appears on the experimen-
tal background �1 function, with a maximum reached at

3.7 MeV. In the following, we assume this structure is physical.
However, it would probably be wise to revisit experimental
data, e.g., using Eq. (13) for a multienergy phase-shift analysis,
to confirm that this structure is not due to an underestimate of
the phase-shift error bars.

Figure 2(d) presents several fits of the data, obtained by
a two-step procedure. First we solve a linear-algebra system
providing the coefficients of an [Nfit,Mfit] Padé expansion of
�1 (the resonance and bound-state energies are allowed to
slightly vary), without taking error bars into account. The
total number of free parameters is Nfit + Mfit + 1; they can
be formulated as Nfit = N0 + NB + N zeros, Mfit = N∞ + M
poles (possibly complex), and the scattering length al . Condi-
tion (14) is relaxed, as we fit data on a small energy interval.
Second, we start from the obtained parameters to perform a
least-squares minimization, applied on the randomized data of
Refs. [9,10]. An estimate of the ANC error bar σANC can then
be obtained from Eq. (16), and it reads

σANC

|ANC| ≈ 1

2

σal

|al| , (17)
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where σal
is the uncertainty on the scattering length. As

expected from the size of the error bars in Fig. 2(d), each
of these fits provides a very accurate ANC, which shows
the power of our method. For instance, a [2/0] fit (solid
magenta curves in Fig. 2) on the reduced energy interval
[1.955, 2.48] MeV (to get a χ2 per point smaller than 1)
leads to an ANC = i 215(1) × 1012 fm−1/2, which corresponds
to the low-energy plateau of the background �1 function.
However, a [2/1] fit on [1.955, 3.88] MeV, which has a stronger
slope, leads to the incompatible value i 226(1) × 1012 fm−1/2.
The [2/2], [5/0], and [4/2] fits on [1.995, 4.1] MeV bring
i 258(2), i 194(8), i 223(4) × 1012 fm−1/2 respectively. Most
fits with other orders lead to unphysical or merging poles and
zeros.

This illustrates a difficulty of our method: since it requires
an extrapolation on a rather large energy interval, different
orders can lead to incompatible ANC values. In the present
case, we choose to combine the ANC estimates of the [2/0],
[2/1], and [4/2] fits to get what we consider to be the most
plausible estimate,

C1 = i 220.5(6.5) × 1012fm−1/2. (18)

This excludes the [2/2] fit, which is accurate but incompatible
with the transfer-reaction data, and the less accurate [5/0] fit.
Let us also stress that these two fits display a very strong
decrease above 4.1 MeV, which does not follow the trend of
the experimental data. The [4/2] fit, in contrast, is probably
the most satisfactory, as it displays a plateau at low and at high
energies, in agreement with the trend shown by experimental
data. It is also close to the very simple [2/0] fit but with a much
better χ2; in particular, on the scale of Figs. 2(a)–2(c), curves
based on this [4/2] fit would be practically indistinguishable
from the [2/0] ones, hence the solid lines used for both in
Fig. 2(d).

Estimate (18) should thus be taken with caution, as both
the imaginary phase and the error estimate are still subject to
discussions. However, let us stress that, for the 1− subthreshold
state, (i) the R-matrix fit itself did not bring any useful
information on the ANC [10]; (ii) in particular, this fit was
compatible with a vanishing reduced-width amplitude for the
subthreshold state, which could be related to the imaginary
amplitude obtained here; (iii) our fits favor a slightly larger
value of the ANC than that of Ref. [6], which in turn is
marginally compatible but also larger than the values deduced
from the β decay of 16N [4]. However, a new measurement
of the relevant βα branching ratio [5] suggests that the
estimates of Ref. [4] were indeed underestimated; with the new
branching ratio value, the β decay data agree very well with
the transfer-reaction ones, and hence with our new estimate
from scattering phase shifts.

In conclusion, we consider this first application of our
method to experimental data to be promising; some discussions
are still open but they suggest interesting future research,
both experimentally [confirming the structure revealed by
Fig. 2(d)] and theoretically (confirming the imaginary phase of
the ANC). Let us finally remark that a Padé approximant of the
�1 function allows a direct computation of the complex-plane
S1 pole using Eq. (4). All the above approximants lead to
a resonance energy 2.3657(4) MeV and width 351(2) keV,

FIG. 3. Same as Fig. 2(a) and 2(d) for the d wave, with two
resonances (N0 = N∞ = 2) and one subthreshold bound state (NB =
1) removed. The y axis changes at 4.1 MeV in (a).

in excellent agreement with the similar method developed in
Ref. [33] and with the rough estimates given above, based on
a linear approximation of �1.

C. d-wave experimental data

Let us now turn back to the 2+ wave, for which we
follow the same steps as those just followed for the p wave.
For the d wave, there is a bound state at EB = −244.85
keV, as discussed above. In addition, from the experimental
phase shifts δ2 we find E0,j = {2.683, 4.357} MeV and
E∞,j = {2.667, 3.981} MeV, which correspond to the two
well-known resonances visible on the experimental phase
shifts δ2 [Fig. 3(a)]. Let us stress that these two resonances
do not have a 12C + α structure, which is why they did not
appear in the simple potential model of Sec. III A. Building
the corresponding �2 function and removing these three zeros
and two poles leads to the function plotted in Fig. 3(b).
Comparing this figure with the corresponding one for the p
wave [Fig. 2(d)] shows that the situation is much less favorable
here, except for the sign which is now negative, as expected
from Eq. (12). First, the background �2 function is strongly
energy dependent on the experimental energy range. Actually,
the best fits obtained for this function favor an additional zero
around the threshold energy, which would correspond to an
additional bound or resonant 2+ state in this region. This
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is illustrated for instance by the [4/3] fit of Fig. 3, which
displays an excellent χ2 per point of 0.49 on the whole energy
range, with only three parameters for the background: one zero
close to (or degenerate with) the subthreshold bound state, one
pole at about 6.3 MeV, and the scattering length. Although
the existence of a degenerate subthreshold state is unlikely,
testing this hypothesis might be interesting, both from the
experimental and theoretical points of view.

Second, despite their good accuracy, the phase shifts of
Ref. [10] lead to rather large error bars on the background
�2 function [gray area of Fig. 3(b)]. Hence, the extrapolation
of this function towards low energies is inaccurate and the
prediction for the ANC is not expected to improve on the
one of Ref. [6], ANC = 114(10) × 103 fm−1/2 [black dot of
Fig. 3(b)]. Indeed, rather different values for the ANC can be
obtained with different fit orders. For instance, the [3/3] and
[3/4] fits of Fig. 3, which present no degenerate bound state
because N = 0, lead to ANCs of 110(11) × 103 fm−1/2 and
131(15) × 103 fm−1/2 respectively. The [3/3] fit has a χ2 per
point of 0.54 but is limited to energies lower than 4.3 MeV,
as it fails to reproduce high- and low-energy data together.
Moreover, it reaches the upper end of the phase-shift error
bars at low energies; choosing a larger energy interval brings
the fit outside these error bars and hence leads to an even
smaller value for the ANC. Similar results are obtained for the
[4/3] fit, forcing the additional zero to stay at large positive
energies [32]. The [3/4] fit, in contrast, is able to fit the data
on the whole interval, again with three parameters for the
background. The corresponding ANC is compatible with the
values of both Refs. [10] and [11], hence making any definite
conclusion hazardous. Fits with N = 0 and larger M lead to
larger values for the ANC but with even larger error bars. Let
us mention a final difficulty of our method in a case like this,
with rather large error bars: by construction, we only explore
one small region of the parameter space at a time. Hence,
only local minima are considered and they are determined
by the initial values chosen for the parameters. These initial
values are deduced from the (smooth) R-matrix phase shifts.
We have checked that a more sophisticated method, based on
a direct calculation of the Padé-approximant coefficients from
randomized data, leads to essentially the same results for the
d-wave fits just presented [32].

IV. CONCLUSIONS

To sum up, our new phase-shift analysis method, based on
a simplified effective-range expansion �l given by Eq. (3),
allows one to describe δl in a wide energy range and directly

provides ANC estimates for subthreshold bound states. It relies
on two sets of parameters: one fixed {E0, E∞, EB} with a direct
physical meaning and another free {pi, qi} with a minimal
number of parameters, among which is the scattering length.
We have tested it on a 12C + α d-wave potential model and
shown that it is more efficient than methods based on the
traditional effective-range function, or even on the modified
K matrix. In particular, the analytic continuation of �l at
negative energies was shown to be very useful. This should still
be fully justified from the mathematical point of view, as up to
now only the traditional effective-range function is proved to
have the necessary analyticity properties on the whole complex
wave-number plane. We expect the proof to be related to the
one developed for the modified K matrix [21].

When used for the analysis of experimental 12C + α phase
shifts, the method leads to better and simpler constraints on the
subthreshold bound-state ANCs than the R matrix, modified
K matrix, or traditional effective-range function. For the d
wave, an accuracy similar to the best ones available today
is obtained, but no improvement can be reached because
of the still relatively large error bars and because of the
complicated functional dependence of �2 between the lowest-
energy experimental phase shift and the subthreshold bound
state. For the p wave, a structure hidden up to now is
revealed from the data, which deserves further experimental
study, and a simple linear behavior seems to connect the
experimental data with the subthreshold bound state. However,
this simple behavior is associated with an imaginary ANC
or reduced-width amplitude, the meaning of which should
still be clarified from the theoretical point of view, probably
through coupled-channel effects. Regarding accuracy, the new
p-wave ANC estimate is promising, showing a factor-3 is gain
with respect to existing results, and a factor-10 improvement
could be in reach. However, the order choice for the Padé
approximants of �1 is delicate, as different choices lead to
accurate but incompatible values for the ANC.

In the future, we plan to apply our method to other systems
and to extend it to coupled channels and to capture reactions.
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