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Ab initio electromagnetic observables with the in-medium similarity renormalization group
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We present the formalism for consistently transforming transition operators within the in-medium similarity
renormalization group framework. We implement the operator transformation in both the equations-of-motion
and valence-space variants, and present first results for electromagnetic transitions and moments in medium-
mass nuclei using consistently evolved operators, including the induced two-body parts. These results are
compared to experimental values, and—where possible—the results of no-core shell-model calculations using
the same input chiral interaction. We find good agreement between the equations-of-motion and valence-space
approaches. Magnetic dipole observables are generally in reasonable agreement with experiment, while the more
collective electric quadrupole and octupole observables are significantly underpredicted, often by over an order
of magnitude, indicating missing physics at the present level of truncation.
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I. INTRODUCTION

Understanding the observed properties of atomic nuclei
based upon the underlying hadronic degrees of freedom has
long been a major goal of nuclear structure theory. Achieving
this goal has become especially important as nuclei become
laboratories in the search for physics beyond the standard
model [1–5]. In the treatment of the nuclear physics relevant
for these searches, the more traditional phenomenological
approaches to nuclear physics—despite their tremendous
success in predicting and interpreting existing nuclear data
[6,7]—suffer from a lack of guidance as to how to incorporate
new physics and make meaningful predictions. This is largely
due to the fact that, by definition, there are no data for these
processes upon which to fix phenomenological parameters.
One promising path forward is to construct nuclei ab initio,
starting from the underlying degrees of freedom rooted in the
standard model. The two main tasks in this approach are the
formulation of appropriate interactions between nucleons, and
the solution of the resulting many-body problem with sufficient
accuracy. Substantial progress has been made on the former
difficulty by the application of chiral effective field theory
(EFT) [8–12], though much work certainly remains.

On the many-body front, methods such as the no-core
shell model (NCSM) [13–15] and quantum Monte Carlo
(QMC) [16] provide exact solutions for p-shell nuclei up to
finite basis effects and sampling errors. While the application
of renormalization group ideas [17–20] has helped extend
the reach of the NCSM, both of these methods encounter
prohibitive computational scaling for medium-mass nuclei.

Another class of approximate but systematically improv-
able many-body methods, namely coupled cluster (CC)
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[21–23], self-consistent Green’s functions (SCGFs) [24–27],
many-body perturbation theory (MBPT) [28–31], and
the in-medium similarity renormalization group (IMSRG)
[32–35], have enabled applications to nuclei beyond the fp
shell [31,36–40]. Each of these methods may be formulated in
terms of summed Goldstone diagrams (including some classes
of diagrams to all orders), and each employs normal ordering
with respect to a reference state in order to approximately treat
three- and higher-body terms. With these methods, immense
progress has been made in the calculation of nuclear binding
energies, radii, and excited-state spectra, where it is now
possible to calculate these observable quantities consistently
using two- and three-nucleon forces throughout the expanses
of the medium-mass nuclear landscape. At the present time, the
deficiencies in the nuclear interactions have become the main
source of error for many calculations, as opposed to truncation
errors in the solution of the many-body problem.

As alluded to above, a major advantage of ab initio
methods which start from chiral EFT is the possibility to
obtain transition operators consistent with a given interaction.
A consistent treatment of operators is essential to address
open questions in nuclear physics such as the source of
axial-vector quenching in-medium [41,42], and to do away
with phenomenological concepts such as effective charges
for E2 transitions. It will also be indispensable for reliably
calculating quantities relevant for searches for physics beyond
the standard model, such as neutrinoless double β decay [5].
Finally, it remains to be demonstrated that the success of
diagrammatic-expansion methods in calculating energies and
radii carries over to other observables.

The effort to obtain consistent effective operators for use
in nuclear structure calculations is certainly not new (see,
e.g., [43–47]), and has long been a difficult problem for
nuclear theory, though some progress has been made in
recent years [48–53]. The IMSRG presents a straightforward
framework for deriving consistent effective operators, because
it is formulated in terms of a series of unitary transformations.
In order to reduce the storage needed for calculations, the
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IMSRG, like the other diagrammatic expansion methods, is
generally formulated in an angular momentum coupled basis.
As a result, additional formal developments are required for
the treatment of spherical tensor operators—i.e., operators
that carry angular momentum—which are necessary for the
calculation of transition strengths, electromagnetic moments,
and response functions. In this work, we present a streamlined
effective operator formalism for spherical tensors, using the
recently developed equations-of-motion IMSRG [54] (EOM-
IMSRG) and valence-space IMSRG [34,55,56] (VS-IMSRG).
The two methods offer complementary approaches to the
problems of nuclear spectroscopy and decay, each with
different benefits and drawbacks: The EOM-IMSRG works
with large single-particle spaces, but limits the type of particle-
hole excitations, while VS-IMSRG treats all particle-hole
excitations in a small single-particle valence space exactly,
but relies on a truncated IMSRG decoupling to account for
excitations outside of that valence space. As we will discuss
in the following, operators that appear in the IMSRG flow
equations are truncated at the two-body level, and higher
induced operators are neglected. We will demonstrate that both
methods are capable of consistently describing excited states
and transitions for a certain class of states. In some cases we
find results consistent with experiment, while in others we
make note of discrepancies.

This work is organized as follows. In Sec. II, we give
the relevant commutator expressions for the calculation of
effective tensor operators, and lay out the formalism for the
EOM-IMSRG and VS-IMSRG. In Sec. III, we present results
of calculations of transitions and moments for several nuclei
ranging in mass from the deuteron to 60Ni, and we present
conclusions in Sec. IV.

II. FORMALISM

Here, we lay out the framework for evaluating matrix
elements of spherical tensor operators in the IMSRG. For a
review of the theory and formalism of IMSRG, we refer the
reader to Ref. [33].

A. Commutator expressions

The main new development required for the transformation
of tensor operators is the expression for the commutator
between an operator of spherical tensor rank λ with a scalar
operator (λ = 0). We truncate all operators at the two-body
level in the following discussion. We write a scalar operator S
in normal-ordered form as

S = S0b +
∑
pq

Spq{a†
paq} + 1

4

∑
pqrs

S̆J
pqrs{a†

pa†
qasar}. (1)

The braces {} indicate normal ordering with respect to the
reference state |�0〉. The zero-body term is given by S0b =
〈�0|S|�0〉. The coefficients Spq and S̆J

pqrs are defined by

Spq ≡ 〈p|S|q〉, (2)

S̆J
pqrs ≡ 〈(pq)J |S̆|(rs)J 〉. (3)

Our two-body states are antisymmetrized but unnormalized,
so that expressions may be written in terms of unrestricted

sums. The unnormalized two-body matrix elements, indicated
by a breve,˘,1 are related to conventional normalized matrix
elements via

S̆J
pqrs ≡ √

(1 + δpq)(1 + δrs)S
J
pqrs . (4)

We write a spherical tensor operator T λ
μ of rank λ and

projection μ as

T λ
μ = T λ

0b +
∑
pq

T λ
pq

[a†
p × ãq]λμ√
2λ + 1

+ 1

4

∑
pqrs

∑
J1J2

T̆ (J1J2)λ
pqrs

[
A

†J1
pq × ÃJ2

rs

]λ

μ√
2λ + 1

, (5)

where [×] indicates a tensor product. Note that a tensor
operator (λ �= 0) that is normal-ordered with respect to a
spherical reference state (as used in all calculations here) will
have a zero-body piece T λ

0b = 0. The tilde in Eq. (5) indicates
the usual transformation of the annihilation operator ap to a
spherical tensor operator [57,58]:

ãp ≡ ã(jp,mp) = (−1)jp+mpa(jp,−mp). (6)

A
†JM
pq is a creation operator for a two-particle state with total

angular momentum J and projection M:

A†JM
pq |0〉 ≡ [a†

p × a†
q]JM |0〉 = |(pq)JM〉, (7)

with a corresponding definition for ÃJM
rs ,

ÃJM
rs = [ãs × ãr ]JM = (−1)J−MAJ−M

rs . (8)

The coefficients T λ
pq and T̆ (J1J2)λ

pqrs are defined by the following
reduced matrix elements, using the convention of Edmonds
[58,59]:

T λ
pq ≡ 〈p‖T λ‖q〉, (9)

T̆ (J1J2)λ
pqrs ≡ 〈(pq)J1‖T̆ λ‖(rs)J2〉. (10)

The commutator Cλ
μ of the operators S and T λ

μ will be a
spherical-tensor operator of rank λ:

Cλ
μ ≡ [

S,T λ
μ

] = ST λ
μ − T λ

μ S. (11)

The coefficients Cλ
pq and C̆(J1J2)λ

pqrs are given by Eqs. (B2) and
(B3) in Appendix B.

B. Equations-of-motion IMSRG

In the equations-of-motion (EOM) formulation of the
IMSRG, we first perform a single reference ground-state
calculation, which maps the reference |�0〉 to the ground state
|�0〉 via a continuous sequence of unitary transformations
U (s) that are labeled by the flow parameter s. We then describe

1In previous works, we have indicated unnormalized two-body
matrix elements with a tilde (∼). However, to avoid confusion in
the present work we reserve the tilde to indicate spherical tensor
annihilation operators.

034324-2



Ab INITIO ELECTROMAGNETIC OBSERVABLES . . . PHYSICAL REVIEW C 96, 034324 (2017)

the excited states in the IMSRG-transformed frame using a
ladder operator X̄†

ν acting on the reference state,

U (∞)|�ν〉 = X̄†
ν(J�)|�0〉. (12)

Here the bar indicates that the ladder operator is expressed
in the transformed frame. The Schrödinger equation for the
IMSRG rotated Hamiltonian H̄ may then be written as

[H̄ ,X̄†
ν(J�)]|�0〉 = (Eν − E0)X̄†

ν(J�)|�0〉. (13)

As a result of the ground-state decoupling, there is no
correlation between the ground state and excited states in
the rotated frame, so X̄†

ν(J�) will consist only of excitation
operators of the form a

†
aa

†
b . . . aiaj . . . , where a,b,c, . . . and

i,j,k, . . . denote orbitals that are unoccupied and occupied,
respectively, in the reference state. Note that evaluating the
left-hand side of (13) requires a scalar-tensor commutator as
defined in Eq. (11).

Calculations of this type are subject to two sources of
systematically improvable error, namely truncations of the
IMSRG equations and truncations of the EOM ladder operator.
In this work, both truncations will be made at the two-
body level [EOM(2)-IMSRG(2) ≡ EOM-IMSRG(2,2)]. The
normal ordering with respect to the reference state is crucially
important to control the quality of these truncations, because
it allows us to retain in-medium contributions from 3N forces
in the normal ordered zero-, one-, and two-body pieces of
our operators. Beyond the IMSRG framework, the truncation
of input interactions and operators at the normal-ordered
two-body level is known as the normal-ordered two-body
(NO2B) approximation [37,60–62].

Our ladder operators are linear combinations of one- and
two-body excitation operators coupled to desired spin J�,

X̄†
ν(J�M) =

∑
ai

XJ
ai(ν)

[a†
a × ãi]JM√
2J + 1

+ 1

4

∑
abij

∑
J1J2

X̆
(J1J2)J
abij (ν)

[
A

†J2
ab × Ã

J1
ij

]J

M√
2J + 1

. (14)

The amplitudes XJ
ai(ν) and X̆

(J1J2)J
abij (ν), as well as excitation

energies, are obtained by solving the eigenvalue problem
(13). Note that this formulation is equivalent to configuration
interaction with singles and doubles (CISD), i.e., diagonalizing
the transformed Hamiltonian in the space of 1p1h and 2p2h
excitations out of |�0〉.

To quantify the importance of the EOM ladder operator
truncation, we compute the 1p1h partial norms,

nν(1p1h) =
√∑

ia

∣∣X̄J
ai(ν)

∣∣2
. (15)

For states with nν(1p1h) near 1, we expect small error in
the EOM portion of the calculation. A small 1p1h partial
norm indicates that the rotated wave function for the state in
question contains higher-order many-body excitations which
are not captured by the ladder operator in Eq. (14).

Operator matrix elements for transitions to the ground state
may be written

M0ν = 〈�0|
∣∣[Ōλ × X̄†

ν

(
J�

ν

)]0∣∣|�0〉

= δλJν
(−1)Jν

⎡
⎣∑

ai

Xai

(
ν,J�

ν

)
√

2J + 1
Oai(λ,�)

+ 1

4

∑
abij

∑
J1J2

X̆
J1J2
abij

(
ν,J�

ν

)
√

2J + 1
Ŏ

J1J2
abij (λ,�)

⎤
⎦, (16)

and for transitions between excited states, or expectation
values of excited states,

Mμν = 〈�0|
∣∣[X̄μ

(
J�

μ

) × [
Ōλ × X̄†

ν

(
J�

ν

)]Jμ
]0∣∣|�0〉. (17)

Equation (17) requires the calculation of the full tensor product

YJ
M ≡ [Ōλ × X̄†

ν(Jν)]JM =
∑
Mνμ

C
λJνJ
μMνM

Ōλ
μX̄†

ν(JνMν). (18)

The matrix elements of Y are given by Eqs. (B7) and (B8) in
Appendix B. In Eqs. (16)–(18), we use a transition operator
which is transformed consistently with the Hamiltonian. To
achieve this, we express the unitary transformation as the
exponential of an anti-Hermitian generator: U = e	, with
	† = −	 [63]. Any operator Oλ can then be consistently
transformed by

Ōλ = e	Oλe−	

= Oλ + [	,Oλ] + 1
2 [	,[	,Oλ]] + · · · , (19)

where we again use the scalar-tensor commutators of (11).
In the formulas presented in Appendix B, transition

operators are assumed to be normal-ordered with respect to
the reference |�0〉. If Oλ is initially a one-body operator
with λ �= 0, then this requires no additional work. If Oλ

has a two-body component—as is the case if we include
meson-exchange currents, or if the bare operator has been
SRG evolved in free space—then we need the formula for
obtaining the normal-ordered form (indicated N λ) of Oλ:

N λ
ij =Oλ

ij +
∑
aJJ ′

na(−1)ja+ji−J ′−λ

{
J J ′ λ
jj ji ja

}
OJJ ′λ

iaja ,

N JJ ′λ
ijkl =OJJ ′λ

ijkl . (20)

This may be obtained by beginning with the usual m-scheme
formula [33] and applying (C1). Here na is the occupation
fraction of orbit a, defined so that 0 � na � 1.

C. Valence-space IMSRG

In the valence-space (VS) formulation of the IMSRG,
the unitary transformation U decouples a valence-space
Hamiltonian HVS from the remainder of the Hilbert space
(the excluded space) Hexcl,

H̄ = UHU † = H̄VS + H̄excl. (21)

The eigenstates are obtained by a subsequent diagonalization
of H̄VS within the valence space.
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The expectation value of Oλ between initial state |ψi〉 and
final state |ψf 〉 may be obtained by combining the matrix
elements ofOλ with the one- and two-body transition densities
(working with the consistently transformed valence-space
operators and wave functions)

〈ψf ‖Oλ‖ψi〉 =O0bδf i +
∑
pq

Oλ
pqOBTDλ

pq(ψf ,ψi)

+ 1

4

∑
pqrs

∑
J1J2

ŎJ1J2λ
pqrs TBTDJ1J2λ

pqrs (ψf ,ψi).

(22)

The one-body transition densities are defined by

OBTDλ
pq(ψf ,ψi) ≡ 〈ψf ‖[a†

p × ãq]λ‖ψi〉√
2λ + 1

(23)

and the two-body transition densities are

TBTDJ1J2λ
pqrs (ψf ,ψi) ≡ 〈ψf ‖[A†J1

pq × ÃJ2
rs

]λ‖ψi〉√
2λ + 1

. (24)

There is a clear parallel between (22) and (16), due to the fact
that the amplitudes XJ

ai(ν) and X̆
(J1J2)J
abij (ν) correspond to the

one- and two-body transition densities, respectively, between
|�ν〉 and the ground state. For all the valence-space results
presented here, the diagonalizations were performed with the
shell-model code NuShellX@MSU [64]. As NuShellX does
not provide functionality to calculate the two-body transition
densities for spherical tensor operators, an additional code has
been developed [65].

For open-shell nuclei, we use the ensemble normal ordering
(ENO) approach presented in Ref. [56]. After the valence space
is decoupled, we change the normal ordering reference to be
the core of the valence space, which requires the use of (20).

We note that the only approximation made in this procedure
is the truncation to normal-ordered two-body operators. Of
course, the quality of this approximation depends on the choice
of reference and valence space.

III. RESULTS

For all of the calculations presented here, with the ex-
ception of the results in Sec. III E, we employ the chiral
NN interaction of Entem and Machleidt [66] at N3LO with
a cutoff �NN = 500 MeV, and the local 3N interaction of
Refs. [61,67,68] at N2LO with a cutoff �3N = 400 MeV.
We use an additional three-body energy truncation E3max ≡
e1 + e2 + e3 � 14, where ei = 2ni + li corresponds to the
ith single-particle shell in the harmonic oscillator basis. The
interactions are consistently SRG evolved [17,20] to a scale
λSRG = 2.0 fm−1. This interaction has been shown to give an
excellent reproduction of the binding energies in the vicinity
of the oxygen isotopes [24,26,69], but it produces radii which
are too small by roughly 10% [70]. Since we consider E2
transitions and moments, and the E2 operator goes as r2Y (2),
we might expect quadrupole moments and B(E2) strengths to
be too small by 20% and 35%, respectively. However, because
these observables are dominated by the particles near the Fermi

surface, while the radii are a bulk property, it is not obvious
that this naive scaling should actually apply.

In most of the figures presented in the following, we
present an observable calculated for various values of model
space truncation emax and basis frequency h̄ω. If the result is
converged with respect to the model space truncation, it should
not change as emax is increased, and it should be independent
of h̄ω, corresponding to a horizontal line in our figures.

A. Center-of-mass factorization

Before presenting results for electromagnetic moments and
transitions, we investigate the role of center-of-mass motion for
our calculations. The structure of self-bound nuclei is governed
by a translationally invariant Hamiltonian, which is why we
expect factorization of the intrinsic and center-of-mass (c.m.)
components of the wave function:

|�〉 = |ψ〉in ⊗ |ψ〉c.m.. (25)

This is particularly important for our current investigation
because we do not use translationally invariant transition
operators Oλ in order to avoid the inclusion of cumbersome
recoil corrections [71]. If the c.m. wave function has angular
momentum �c.m. = 0, then by the Wigner-Eckart theorem,

〈ψc.m.(�c.m. = 0)|Oλ
c.m.|ψc.m.(�c.m. = 0)〉 = 0, (26)

and there is no error incurred by including the c.m. part
of the operator. The IMSRG is formulated in a laboratory-
frame harmonic oscillator basis with a truncation on the
single-particle energies (2n + l � emax), and consequently we
cannot ensure rigorous factorization of the c.m. and intrinsic
wave functions. We seek instead to demonstrate approximate
factorization and, if necessary, project out spurious c.m.
contamination.

1. Calculation of Hc.m.

The form of the c.m. Hamiltonian is taken to be that of a
harmonic trap, with the zero-point energy removed:

Hc.m.(ω̃) = P2

2mA
+ 1

2
mAω̃2R2 − 3

2
h̄ω̃. (27)

We can compute properties of the c.m. wave function in a
manner similar to the discussion in Refs. [33,72,73]. If the
center-of-mass wave function is a Gaussian with oscillator
length b, then it will have

〈
R2

c.m.

〉 = 3

2
b2, and

〈
P 2

c.m.

〉 = 3

2

h̄2

b2
, (28)

which implies

ξc.m. ≡
√〈

R2
c.m.

〉〈
P 2

c.m.

〉
/h̄ − 3

2 = 0. (29)

The deviation of ξc.m. in Eq. (29) from zero indicates the
deviation of the c.m. wave function from a pure Gaussian.
Once the Gaussian form is confirmed, the appropriate trapping
frequency h̄ω̃ may be obtained from (28), with b2 = h̄/Amω̃
or, equivalently,

h̄ω̃ = 4
3 〈Tc.m.〉. (30)
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FIG. 1. The quantity ξc.m., which gives an indication of the degree
to which the c.m. wave function is a Gaussian (see text), calculated for
the ground state of 14C. Also plotted are two methods of estimating
the trapping frequency h̄ω̃ (MeV). Column (a) is without a c.m. trap,
while column (b) is with β = 3 at a frequency h̄ω̃ = 16 MeV.

Figure 1 shows ξc.m. results from IMSRG ground-state
calculations for 14C. Also shown are two ways of estimating
h̄ω̃ from the expectation values of Tc.m. and R2

c.m.. The right
column of Fig. 1 shows the same quantities, but with a
c.m. trap (as described in the next section) with β = 3 and
h̄ω̃ = 16 MeV. Clearly, the trap makes the c.m. wave function
more Gaussian, though not perfectly Gaussian, and it speeds
up the convergence of the c.m. wave function.

2. Treatment for excited states

Spurious excited states manifest as nearly degenerate
intrinsic states in nuclear spectra. These states can be removed
via the Lawson-Gloeckner method [74], where the intrinsic
Hamiltonian is augmented with a scaled center-of-mass trap
of the form of Eq. (27),

H = Hin + βHc.m.. (31)

Here, the scale factor β can be taken to arbitrarily large values
if sufficient factorization is achieved in calculations using Hin

only. This process effectively shifts spurious states out of the
spectrum by adding a large c.m. excitation energy.

Figure 2 demonstrates this procedure for 14C, for the ground
state, first 2+ excited state, and B(E2) value. Quantities are
calculated with the EOM-IMSRG(2,2) method. The energies
are approximately independent of β, which may be taken
naively as evidence of factorization for these states. However,
the B(E2) value undergoes a sudden downward shift as
the Lawson-Gloeckner term is introduced, but it saturates
eventually and displays β independence as we go to higher
β. Of course, the quadrupole operator is more sensitive to

FIG. 2. Ground state, 21
+ excitation energy, and B(E2) values (in

e2 fm4) calculated at several values of the Lawson-Gloeckner scaling
parameter β, for 14C with the EOM-IMSRG.

structural details of the wave function than the energy, and
since we do not use it in a translationally invariant form, it
is not surprising that the B(E2) value would be affected by
the imperfect factorization of the wave functions. The fact
that we eventually obtain a β-independent result suggests that
the Lawson-Gloeckner method is an adequate alternative to
explicitly including recoil corrections in the operator [71].

Table I gives the computed Ec.m. for calculations with and
without explicit inclusion of a center-of-mass trap via the
Lawson-Gloeckner term.

We expect a perfectly factorized wave function to have
Ec.m. = 0 MeV, since our choice of Hc.m. ensures that the c.m.
ground state has zero energy. For either case, the ground-
state wave function demonstrates limited contamination from
spurious c.m. excitations, with Ec.m. < 100 keV. The 2+
state of Hin does not exhibit this level of factorization, with

TABLE I. Ec.m. for intrinsic ground state and first 2+ state of 14C,
computed at emax = 14 and h̄ω = 20 MeV with EOM-IMSRG(2,2).
Values are given for calculations using Hin (β = 0), and Hin + βHc.m.

(β = 1).

β Ec.m.(0+
gs) (MeV) Ec.m.(2

+
1 ) (MeV)

0 0.099 1.298
1 0.068 0.046
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FIG. 3. Ground-state properties of the deuteron calculated with a
full diagonalization (labeled FCI), compared to the same properties
calculated in the 0s valence space using operators transformed with
the IMSRG. Also shown is the result obtained by diagonalizing in a
Jacobi basis with emax = 20 and 200, in order to gauge convergence.
Note that VS-IMSRG and FCI values are nearly the same.

Ec.m. = 1.298 MeV, indicating a small admixture of spurious
states. This level of contamination is ostensibly negligible
for excitation energies, but evidently has important effects
when the state is probed by the quadrupole operator. When
the c.m. trap is explicitly added, Ec.m.(21

+) is diminished to
below 100 keV and accordingly, we see a shift in the B(E2)
value which corresponds to a recoil correction. For the results
presented below, we have checked and found that 14C is the
only system where the c.m. trap has a noticeable effect.

B. The deuteron

As a first illustration, we consider ground-state properties of
the deuteron. This is useful for a few reasons. First, the system
consists of only two particles and so induced three-body
forces are irrelevant. Further, the reference is taken to be the
true vacuum, so the neglected three body forces do not feed
back into the two-body terms. We should therefore expect the
IMSRG(2) to be exact. Second, full configuration interaction
(FCI) calculations are easily performed for modest model
spaces, allowing a direct evaluation of the precision of the
IMSRG transformation. Finally, we may treat the deuteron in
the 0s valence space where the bare quadrupole moment is
identically zero. In this case, any nonzero quadrupole moment
we obtain is entirely due to effects of the IMSRG evolution.
Figure 3 shows the ground-state energy, root-mean-square
charge radius, quadrupole moment, and magnetic moment
of the deuteron, computed both with FCI and using the
IMSRG to decouple the 0s valence space, followed by a trivial
diagonalization. We can see that the IMSRG calculation indeed
reproduces the FCI.

Here again we see the effect of c.m. spuriosities in
the deuteron wave function. While the energy and dipole
moment converge to the exact values with little alteration
from c.m. contamination, the charge radius overshoots it
drastically. Although we have not reached convergence for
the charge radius, it is evident that Lawson-Gloeckner scaling

significantly reduces its value. To get a sense of the rate of
convergence for these observables in an oscillator basis, we
have performed calculations in a relative Jacobi basis, where
it is possible to go much higher in emax. We observe that the
charge radius converges slowly in the Jacobi basis as well.

C. p-shell nuclei: Comparison with NCSM

The deuteron is, of course, an exceptionally simple case,
due to the fact that there is not really a “medium”, and so the
IMSRG is really a free-space SRG evolution. Once additional
particles are considered, the NO2B approximation is used, and
the IMSRG is no longer exact. To test this approximation,
we consider p-shell nuclei which may also be treated in
the no-core shell model (NCSM). For these calculations,
we use the same input Hamiltonian and include the 3N
force completely, without using the NO2B approximation.2

The NCSM calculations are presented as a function of the
truncation parameter Nmax which limits the total number of
oscillator quanta allowed above the minimum value. For the
A = 14 systems, the Nmax = 8 results have been obtained
using an importance truncation [75]. We note that in the
NCSM, the c.m. factorization is exact for any Nmax truncation.

We begin by considering 6Li, which was previously studied
in Ref. [52] in the context of consistently transformed
electromagnetic transition operators using the Okubo-Lee-
Suzuki method. Figure 4 presents several observables for
6Li, calculated with the valence-space IMSRG, compared to
NCSM and experiment. We first observe that there is overall
good agreement between the VS-IMSRG and NCSM, as well
as with experiment, for the energy and quadrupole moment of
the ground state. In Ref. [79], where an effective p-shell E2 op-
erator was obtained via an Okubo-Lee-Suzuki transformation,
the small ground-state quadrupole moment was found to be the
result of cancellations between the one- and two-body pieces
of the effective E2 operator. We find a similar effect in this
work,3 though even greater in magnitude—for example, for
the emax = 12, h̄ω = 20 calculation we find Q1b = −0.454 eb
and Q2b = 0.301 eb. The results for observables involving
the unbound 3+ excited-state converge much more slowly in
the NCSM, indicating missing continuum effects. Such effects
could be included using the NCSM with continuum [80,81],
but for our present concerns, this is unnecessary. Despite the
importance of continuum effects, the VS-IMSRG(2) converges
rapidly for observables involving the 3+ state. This indicates
that errors incurred through the NO2B truncation hide the
effects of the continuum. This produces excellent convergence
properties by mistake; the VS-IMSRG(2) converges to an
incorrect result without continuum degrees of freedom.

2Errors from the NO2B approximation in NCSM calculations will
be different from those in IMSRG(2) calculations, as additional
NO2B errors accumulate during the IMSRG(2) flow due to induced
many-body forces.

3Since the IMSRG and Okubo-Lee-Suzuki transformations are not
identical, there is no requirement that the breakdown into one- and
two-body operators be the same in both approaches.
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FIG. 4. Convergence of the ground-state energy, first 3+ exci-
tation energy, quadrupole moments (in efm2), B(E2; 31

+ → 11
+)

(e2fm4), and B(M1; 01
+ → 11

+) (μ2
n) of 6Li. The VS-IMSRG method

[column (b)] is compared with NCSM results [column (a)] and
experiment [76–78].

A striking disagreement is found between experiment and
the calculations of the B(E2; 31

+ → 11
+) strength. As we will

see, this will be a recurring observation. Finally, we note that
the M1 transition strength displays reasonable convergence
and good agreement with experiment.

Another interesting case in the p shell is 6He, which in
the naive shell model consists of two neutrons outside a 4He
core. In this picture, any electric multipole observables are
identically zero because all valence particles are electrically
neutral. This problem has historically been addressed by the
introduction of an effective charge for the neutrons [57]. As
in the deuteron case, 6He therefore allows us to test how
the IMSRG evolution incorporates physics from outside of
the valence space into the evolved operator, building up an
effective charge in the process.

Figure 5 shows the results of VS-IMSRG and NCSM calcu-
lations for the ground-state energy, 2+ excitation energy, and
B(E2; 21

+ → 01
+) for 6He. Like 6Li, the excited states of this

nucleus are unbound, and in addition, the 6He ground state can
be characterized as a two-neutron halo [82], which is difficult

FIG. 5. Convergence of the ground-state energy, first 2+ excita-
tion energy, and B(E2) (in e2 fm4) to the ground state of 6He. Again,
VS-IMSRG [column (b)] is compared with NCSM [column (a)] and
experiment [78].

to describe in a truncated oscillator basis. Nevertheless, we
see that the ground-state energy displays excellent agreement
between the VS-IMSRG, NCSM, and experiment. There is
reasonable agreement as well for the energy of the 2+ state,
although the NCSM result is not converged with respect to
Nmax (again likely reflecting missing continuum effects). How-
ever, for the B(E2), there is serious disagreement between all
three. The NCSM result is much lower than the experimental
value, and shows no sign of convergence with respect to Nmax.
This is perhaps not surprising, as the E2 operator is of long
range, and therefore more sensitive to the halo effects. The
VS-IMSRG result appears converged with respect to emax, but
is smaller than the NCSM result as well as experiment—the
latter by a factor of approximately 15—indicating that the
NO2B approximation is insufficient in this case.

As a third test in the p shell, we consider 14C. Because this
is a closed-shell nucleus, we may employ the EOM-IMSRG
as well as the VS-IMSRG, and a system of 14 particles is
still feasible with the NCSM. Figure 6 displays results for
the 21

+ excitation energy and B(E2; 21
+ → 01

+) for 14C.
Here, we find excellent agreement between NCSM and both
variants of the IMSRG. We remind the reader that the IMSRG
calculations are performed with an explicit center-of-mass
trap, as in Eq. (31), using β = 1.0 for 14C. This treatment
only serves to remove spurious c.m. contamination of the 21

+
state.

Of note are the excellent convergence properties of the
IMSRG calculations. For the EOM-IMSRG, observables
are nearly independent of the specified h̄ω for the
single-particle basis. VS-IMSRG calculations have not
used the exhaustive model spaces of the EOM-IMSRG,
but they too demonstrate desirable convergence features.
The NCSM has begun to show convergence at Nmax = 8,
but extrapolation methods must be used to reveal fully
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FIG. 6. Convergence of the first 2+ excitation energy and B(E2)
(in e2 fm4) to ground state of 14C. VS- and EOM-IMSRG methods
[columns (b) and (c) respectively] are compared with NCSM [column
(a)] and experiment [78].

converged values. Hence the utility of the IMSRG:
For light nuclei such as 14C, convergence is obtainable
without extrapolation, and for heavier nuclei, we expect to
be able to identify convergence trends clearly enough to make
extrapolation procedures relatively painless compared to the
prohibitively large uncertainties one would incur when exact
methods such as NCSM are used. Of course, the effect of the
additional NO2B approximation must be fully investigated.

As a final test in the p shell, we analyze the isobaric
neighbor nucleus 14N. Here the EOM-IMSRG requires the use
of a charge-exchange formalism, i.e., ladder operators which
exchange one neutron for a proton. Figure 7 displays the 01

+

FIG. 7. Convergence of 01
+ excitation energy, B(M1) (in μ2

N ) to
ground state, and magnetic dipole moment of 14N. VS- and EOM-
IMSRG methods [columns (b) and (c) respectively] are compared
with NCSM [column (a)] and experiment [77,83].

FIG. 8. Results of EOM-IMSRG(2,2) and VS-IMSRG(2) calcu-
lations of the 21

+ excitation energy (a), and the B(E2; 21
+ → 01

+)
value (b) for several closed-shell nuclei in the sd and pf shells. Due
to experimental values that vary by several orders of magnitude, the
B(E2) values are scaled such that experiment is unity. Computations
are performed at h̄ω = 20 MeV and emax = 12. Experimental results
are taken from [78].

excitation energy for 14N, the ground-state magnetic dipole
moment, and the M1 transition strengths B(M1; 01

+ → 11
+)

and B(M1; 12
+ → 01

+). The agreement among methods is
moderate, with the exception of the transition B(M1; 01

+ →
11

+) to the ground state. We note that this relatively weak
transition, which is an analog of the Gamow-Teller β decay
of 14C, was found to result from a subtle cancellation between
various contributions [62,84], so that small errors on an
absolute scale appear large on a relative scale. Regardless,
the disagreement between VS-IMSRG and EOM-IMSRG will
be investigated in the future.

D. sd and f p shell systems

Ultimately, the power of IMSRG approaches to excited
states and effective operators will be the ability to describe
these properties in medium- to heavy-mass regions where
exact methods are not computationally tractable. In this section
we investigate the quality of these calculations for several
medium-mass nuclei, again using the electric quadrupole and
magnetic dipole operators as case studies.

1. Electric quadrupole observables

Figure 8 displays the first 2+ excitation energies and
B(E2; 21

+ → 01
+) strengths for several nuclei in the sd and

pf shells. We find excellent convergence properties, as we did
in the p shell, and we see reasonable agreement with experi-
ment for the excitation energies. However, transition strengths
are generally underpredicted by an order of magnitude. These
results are strikingly consistent between the two methods. A
tentative explanation for the diminished strength in 22O and
48Ca is provided by the lack of valence protons. In order to
describe the transition in these nuclei, valence neutrons must be
dressed consistently as quasineutrons possessing an effective
charge.
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TABLE II. E2 transition strengths from first excited 2+ state to
0+ ground state for even-even nuclei (in e2 fm4). Experiment [78] and
Weisskopf [85] single-particle estimates are compared with IMSRG
calculations.

Nucleus B(E2)expt B(E2)EOM B(E2)VS B(E2)W

6He 1.1(1) 0.07 0.6
14C 3.6(6) 4.1 3.9 2.0
22O 4.2(1.6) 0.5 0.4 3.7
32S 59(1) 7.2 11.3 6.0
48Ca 17(2) 2.6 2.0 10.4
56Ni 91(17) 30.7 12.7
60Ni 186(3) 16.2 14.0

The absence of any appreciable strength in the two IMSRG
calculations appears to be convincing evidence that IMSRG
evolutions, when restricted to the two-body operator level [i.e.,
VS-IMSRG(2) and EOM-IMSRG(2,2)], do not sufficiently
renormalize the neutron charges. However, this discrepancy is
evident in many nuclei, regardless of shell structure; we see the
same underpredictions in 32S, and 56,60Ni, which lie in middle
of their respective major shells, with plenty of valence protons
to model an electromagnetic transition.

Table II compiles the results from several of the calculations
presented here, where B(E2) corresponds to B(E2; 21

+ →
01

+). In the far right column, we include the the Weisskopf
estimate for the transition [85]. The Weisskopf estimate, given
by

B(E2)W = 9r4
0

100π
A4/3e2 fm4, (32)

models the transition as a single proton excitation from a core
with the empirical nuclear radius r0A

1/3, where r0 = 1.2 fm.
Excitations that are dominated by a single 1p1h transition will
yield experimental B(E2) values near the Weisskopf estimate.
This picture certainly falls short of describing those nuclei
with magic proton numbers, such as 22O, but it is nonetheless
instructive to consider what the single-particle estimates are for
even these nuclei, as they describe neutrons with an effective
charge in this case.

We find that computed B(E2) values track with Weisskopf
estimates rather than actual experimental values, except in the
case of a magic proton shell closure, where computations are
significantly smaller than the Weisskopf estimates, suggesting
that indeed the renormalization of neutron effective charges
may not be sufficient in our IMSRG calculations. Moreover,
the fact that many of the experimental B(E2) values are
significantly larger than the single-particle estimates indicates
that collectivity which is neglected by VS-IMSRG(2) and
EOM-IMSRG(2,2) calculations may be more critical to E2
transition strengths than it is to excitation energies.

As a further illustration, we present in Table III the
orbit-dependent effective charges for the one-body piece of
E2 operator, obtained in a VS-IMSRG(2) calculation of 17O.
Here, we define the effective charges so that

eπ = 1 + δeπ , eν = δeν. (33)

TABLE III. Effective charges for the E2 operator, obtained by
decoupling the sd shell with a reference of 17O for neutrons (δeν)
and 17F for protons (δeπ ), and taking the ratio with the bare matrix
elements for protons.

a b δeν δeπ

0d5/2 0d5/2 0.213 0.026
0d5/2 0d3/2 0.248 0.075
0d5/2 1s1/2 0.184 0.039
0d3/2 0d3/2 0.120 −0.003
0d3/2 1s1/2 0.111 −0.007

The values listed correspond to a model space truncation
emax = 12, and a basis frequency of h̄ω = 20 MeV. (The
bare matrix elements are evaluated in the Hartree-Fock
basis, so these results are essentially independent of the
basis frequency.) We obtain a neutron effective charge of
approximately 0.1–0.2, considerably smaller than the standard
phenomenological value of 0.5. We repeat the exercise for the
proton effective charge, using 17F as the reference, and we
obtain very small (and even negative) values of δeπ . This
discrepancy between proton and neutron effective charges is
similar to the effect seen in second order perturbation theory
in Ref. [86], and will be investigated in a future work.

Another possible explanation for diminished E2 observ-
ables is deficiencies in the input interactions. As previously
discussed, the NN+3N (400) interaction systematically under-
predicts nuclear radii, which is tied to its inability to reproduce
nuclear saturation. Since the electric quadrupole operator
has the same radial dependence as the point-nucleon radius
operator, we might naively expect an increase in predicted
B(E2) values when using an input interaction which properly
reproduces radii, such as N2LOsat [87]. We computed B(E2)s
for the nuclei shown in Fig. 8 with this interaction, using EOM-
IMSRG(2,2). We found that a small enhancement is indeed
observed (∼50% increase), but N2LOsat still systematically
underpredicts B(E2) values for these nuclei, indicating that
while the interaction does play an important role, missing
correlations are still likely to be a major source of error.

2. Magnetic dipole observables

We now turn to M1 observables, where the Weisskopf
estimate (1.79μ2

N ) is independent of A, and we therefore
expect the transition to have similar properties from nucleus to
nucleus, unlike E2 observables. We have calculated B(M1)
values in 14C and 22O, where we have observed excellent
consistency between VS- and EOM-IMSRG, as we did for E2
observables. Our predictions for B(M1; 11

+ → 01
+) are in the

vicinity of 1 μ2
N for both nuclei. The experimental value for 14C

is 0.3938 ± 0.0895μ2
N , a difference which could potentially

be accounted for by missing meson-exchange currents in our
dipole transition operators.

We also compute M1 observables for the 11
+ and 21

+ states
in 32S. Figure 9 shows results from these calculations. We
find good agreement between the methods for the magnetic
moment of the 2+ state, and with experiment, which is on
the order of the naive shell-model estimate. There is some
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FIG. 9. Convergence of the 11
+ excitation energy, B(M1; 11

+ →
01

+) (in μ2
N ) and 21

+ magnetic dipole moment (μN ) of 32S. VS-
IMSRG [column (a)] and EOM-IMSRG [column (b)] methods are
compared with experiment [77,88].

disagreement between the methods for the B(M1) transition
strength, which is three orders of magnitude smaller than the
Weisskopf estimate. As with the M1 transition in 14N, this
is likely due to subtle cancellations, and the apparent error is
amplified.

In addition, we investigate 32Cl, whose ground state can
be thought of as a charge-exchange excitation of 32S, where
a neutron is exchanged for a proton. Experimentally, 32Cl is
observed to have a 1+ ground state with a nearly degenerate
2+ state at 89.9 keV [89]. Both IMSRG methods fail to
properly order these states with the employed interaction,
instead producing a 2+ ground state with a 1+ excited state at
660 and 430 keV for VS- and EOM-IMSRG, respectively.

Figure 10 shows convergence of the energy and magnetic
dipole moment of the 1+ state, as well as predictions for the
M1 transition strength between the 1+ and 2+ states. The
energy is given here as an excitation from the 32S ground state,
as it is calculated in the EOM-IMSRG as an excited state of
32S with a charge-exchange excitation operator. Disagreement
between EOM- and VS-IMSRG is more notable here than for
other nuclei, though both methods show qualitative agreement
with experiment where available. Particularly troubling is
the disagreement in the B(M1) value, which suggests a
large discrepancy in the way higher-order correlations are
incorporated into the 2+ state by the two methods.

To investigate this discrepancy, we attempt to approxi-
mately reconcile the different approximations made. First,
we restrict the VS-IMSRG calculation to allow only one
proton and no neutrons in the 0d3/2 orbit, corresponding to
the 1p1h part of the EOM-IMSRG ladder operator, and we
obtain B(M1) = 1.35μ2

N . Next, we allow two protons and
one neutron in the 0d3/2 orbit, which incorporates all 2p2h
EOM configurations in the sd shell, as well as some 3p3h
configurations, and we obtain B(M1) = 0.41μ2

N . Finally,
we restrict the EOM-IMSRG calculation to only allow sd-
shell configurations, and we obtain a minor suppression of

FIG. 10. Energy and magnetic dipole moment (in μN ) of the 11
+

state, and B(M1) to the 21
+ state (μ2

N ) of 32Cl. VS-IMSRG [column
(a)] and EOM-IMSRG [column (b)] methods are compared with
experiment [77], where available.

B(M1) = 1.08μ2
N . From this, we conclude that the structure

of the 2+ state is sensitive to configuration mixing effects that
are not sufficiently captured with 1p1h and 2p2h excitations
out of 32S.

We have computed the magnetic dipole properties of several
nuclei, seeing reasonable consistency between EOM- and VS-
IMSRG for most observables considered. Limiting ourselves
to closed shell cases only, this corresponds to what is seen
for E2 observables. In order to compare more precisely with
experiment, we should also include the effects of mesonic
currents which occur within the nucleus during the transition.
Work in that direction is underway.

E. Electric octupole transitions

The electric octupole transition offers an additional test of
the EOM-IMSRG. (The VS-IMSRG is not currently able to
decouple multishell valence spaces, and consequently cannot
treat parity-changing operators.) We investigate the transition
strengths from the first 3− state to ground state for the doubly
magic nuclei 16O and 40Ca. Figure 11 shows the convergence of
this calculation for 16O. This is an interesting case study, as the
31

− excitation energy has been shown to correlate with the 16O
charge radius and thus depends on saturation properties of the
interaction [87]. For this reason, we compare calculations with
the NN+3N (400) interaction to those using N2LOsat, which
is fit to the 16O charge radius [87]. We see an improvement
of the excitation energy when using N2LOsat, moving from
9.03 MeV with the NN+3N (400) interaction to 6.90 MeV, in
significantly better agreement with the experimental value at
6.13 MeV. Both interactions underpredict the B(E3) value for
the transition to the ground state, with the saturating interaction
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FIG. 11. Excitation energies of the first 3− state of 16O, along
with corresponding B(E3) strength (in e2 fm6) for the transition to
ground state. These values are computed using the EOM-IMSRG(2,2)
with N2LOsat [column (b)] and the Entem and Machleidt NN(500)-
3N (400) interaction [column (a)], and are compared with experiment
[91].

showing greater strength than the NN+3N (400) interaction.
Despite EOM partial norms indicating 90% 1p1h content in
the 31

− wave-function, higher order correlations may play a
significant role in the structure pertinent to the E3 transition,
as α clustering may be important to the structure of the 31

−
state [90]. If this were true, EOM-IMSRG(2,2) would not be an
appropriate approximation for such a state, and the suppressed
E3 strength would be an expected result owing to the missing
collectivity.

A similar picture presents itself for 40Ca in Fig. 12,
where again, N2LOsat improves the excitation energy but
underpredicts the B(E3) strength. For either interaction,
the discrepancy is less striking than that seen in 16O, but
the deviation is significant nonetheless. Notable is the poor
convergence features exhibited by N2LOsat, where results are
seemingly dependent on the basis frequency h̄ω for both
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FIG. 12. Excitation energies of the first 3− state of 40Ca, along
with corresponding B(E3) strength (in 102 e2 fm6) for the transition to
ground state. These values are computed using the EOM-IMSRG(2,2)
with N2LOsat [column (b)] and the Entem and Machleidt NN(500)-
3N (400) interaction [column (a)], and are compared with experiment
[91].

energy and B(E3) value. For pf -shell nuclei and beyond,
the E3max truncation has been shown to be a significant source
of errors in many-body calculations [39]. This is certainly
the case here (we note the 3− state of 40Ca is composed of
excitations into the pf shell in a naive shell-model picture),
where varying E3max between 12 and 14 produces shifts in
the excitation energy by 2–4 MeV, and shifts in the B(E3)
value by several hundred e2 fm6 for N2LOsat. However, these
errors are not as dramatic for the NN+3N (400) interaction,
where the corresponding shifts are on the order of 10 keV and
10 e2 fm6, for energies and B(E3) values respectively, hence
the more desirable convergence features.

Computed E3 strengths suffer from largely the same
shortcomings as E2 strengths, where we see a significant
reduction of the strength from that of experiment. The
Weisskopf single-particle estimates for 16O and 40Ca are
15.2 and 95.0 e2 fm6 respectively. The immense size of the
experimental values compared with these estimates indicates
a strong level of collectivity in these 31

− states, which is
apparently missing in our calculations, although computed E3
strengths are indeed larger than the single-particle estimates.

F. Comparing and contrasting methods

While we have seen remarkable agreement between the
VS-IMSRG(2) and EOM-IMSRG(2,2), there are some dis-
crepancies in the predictions made by either method. These
discrepancies are the result of some combination of two
sources of error: The two methods decouple different sets
of orbits—the EOM-IMSRG decouples a single reference
determinant, while the VS-IMSRG decouples the valence
space and core, i.e., multiple states at once—and this leads
to different errors incurred by the NO2B approximation.
Typically, the VS-IMSRG requires a more substantial rotation
and therefore is more susceptible to error, though in cases with
a small gap above the Fermi surface the opposite may be true.
On the other hand, the EOM-IMSRG(2,2) lacks the ability to
describe higher-order correlations in states with minimal 1p1h
character. This underscores the fact that the two methods are
complementary, and different classes of states fall into the sets
that are best described by either method.

The VS-IMSRG takes into account all possible valence-
particle configurations within the specified valence space.
States that are described well by phenomenological shell-
model approaches should then be described appropriately by
the VS-IMSRG. As the shell model can describe collective
properties such as deformation, states of this character are
well described by this method, provided that their collectivity
is restricted to the VS-IMSRG(2) decoupled valence space.
On the other hand, states with significant contributions from
multiple major shells, in particular unnatural parity states, are
unreachable by this method in its current state. Methods to de-
couple a multishell valence space are still under investigation.

The EOM-IMSRG is not restricted by the core/valence
space paradigm, but rather derives its computational simplicity
from a restriction of the configurations included in the diag-
onalization. Natural- and unnatural-parity states are therefore
treated on the same footing; however, any state will be poorly
described if it is dominated by particle-hole excitations that
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are left out of the definition of the ladder operators. For
the EOM-IMSRG(2,2), we work with a space of 1p1h and
2p2h configurations. In this case, states with strong 1p1h
content with respect to the fully decoupled reference state
are best described by the method. States with 2p2h dominant
wave functions are accessible, but the ground-state-decoupled
Hamiltonian still introduces strong correlations between these
states and 3p3h excitations. For states with a relatively small
admixture of 3p3h configurations, we expect that perturbative
corrections will be sufficient for the inclusion of missing
triples content [54]. However, if the state couples strongly
to triple excitations, a full EOM-IMSRG(3,2) treatment is
required. Any state which has significant 4p4h or higher
correlations in its transformed wave function would require
EOM-IMSRG(4,2), and so on.

It is difficult to clearly determine a priori which method
will perform best for any given state because, at present, there
is no prescription to assign accurate theoretical error bars to
these calculations. However, one can make inferences about
which method will perform best based on parity arguments,
the number of valence nucleons, and the “magnitude” of
the IMSRG transformation, indicated by the norm ‖	‖ [cf.
Eq. (19)]. Here it will be important to develop a reliable
measure of unitarity to quantify IMSRG(2) truncation errors
associated with the aggressiveness of the decoupling scheme,
e.g., targeting single or multiple states, enforcing additional
block diagonality for the Hamiltonian, etc.

G. The effects of consistent operator evolution

It is worth assessing the impact of consistently applying
the IMSRG transformation to the operators discussed thus
far; if the bare operators give essentially the same results,
then this extra effort is unnecessary. By bare operators, we
mean operators expressed in the Hartree-Fock basis, which
have not been consistently evolved along with free-space SRG
softening. Because the interaction has been softened with
the free-space SRG, the operator evolution is not exactly
consistent in the first place. Despite that caveat, free-space
softening transformations are understood to have little effect
on long-range operators such as the electromagnetic multipole
operators discussed here, since the principal effect of SRG
softening is to renormalize short-range physics. Nonetheless,
the problem is being given increasing attention in the nuclear
physics community [48,50,53,92].

The IMSRG transformation is expected to have a noticeable
effect on transition operators, as it renormalizes dynamic
correlations in the nucleus, which are crucial to transition
behavior. Figure 13 presents a few examples of transition
matrix elements computed with and without consistent evo-
lution of the operator. M1b

bare refers to the reduced matrix
element of the operator expressed in the Hartree-Fock basis
without consistent evolution, (using wave functions computed
with the evolved Hamiltonian), and M

1b,2b
dressed refer to the same

calculation with consistently evolved operators. It is evident
from these values that IMSRG evolution transforms a bare
one-body operator into a many-body operator.

For EOM-IMSRG(2,2) calculations, the induced two-body
term generally contributes less than 10% of the total magni-

FIG. 13. Transition matrix elements 〈01
+‖E2‖21

+〉 and
〈01

+‖M1‖11
+〉 computed for select nuclei using EOM-IMSRG(2,2).

Calculations are performed for bare operators (orange bars) and
operators dressed by consistent IMSRG evolution, both the one-body
part (green single-hashed bars) and the one-body plus two-body part
(blue double-hashed bars). Values are expressed in e fm2 and μN for
E2 and M1 operators, respectively.

tude, suggesting that induced three-body terms (neglected in
this work) should have an even smaller effect in many cases.
Consistently evolved M1 transition matrix elements exhibit
a 10–20% decrease in magnitude compared with the bare
operator, and the equivalent comparison for E2 transitions
show an increase in magnitude of ∼20%, except in the case of
22O, where the magnitude increases by 77.5%.

As the decoupling schemes of the VS- and EOM-IMSRG
are different, we include results for both methods. We note
that the VS-IMSRG(2), despite employing a more substantial
decoupling, produces a smaller two-body contribution to the
matrix elements for all cases studied here. In several cases,
the two-body contributions in the VS-IMSRG destructively
interfere with the one-body contributions, although the one-
body part dominates. The VS-IMSRG results demonstrate the
critical effect of charge renormalization in 22O, which has no
sd-shell protons, and thus vanishing strength when using the
bare operator.

From the results shown here, it is evident that consistent
operator evolution is indeed important in ab initio nuclear
structure calculations. The details of the operator evolution will
of course depend on the system under consideration, and on
the correlations a given solution method is able to describe. For
example, if a given transition is dominated by shell-model-like
configurations, then the effect of operator evolution should
be small in the VS-IMSRG. A similar argument applies for
the EOM-IMSRG for transitions that are dominated by 1p1h
contributions. On the other hand, in some cases—such as 22O
in the VS-IMSRG—the bare operator will give no contribution
at all and the effects of operator evolution are indispensable.

IV. SUMMARY AND OUTLOOK

In this work we have compared and contrasted two
recently developed methods for the computation of excited-
state properties and related observables. The VS-IMSRG
uses IMSRG decoupling to create an effective Hamiltonian
for shell-model diagonalization, while the EOM-IMSRG per-
forms an approximate, particle-hole truncated diagonalization
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of the ground-state-decoupled Hamiltonian. We applied both
methods to computations of electromagnetic moments and
transition strengths.

It was observed that IMSRG ground-state decoupling
approximately factorizes the center of mass (c.m.) component
of excited-state wave functions such that the effect of contam-
ination on the energies is usually negligible. This factorization
is not always sufficient for excited states and electromagnetic
strengths, which are sensitive to c.m. contamination due to
the operators being expressed in laboratory coordinates. We
confirmed that the factorization can be improved by placing
the system in a harmonic oscillator trap which only acts on the
c.m. coordinate.

The EOM-IMSRG and VS-IMSRG give consistent results
in the majority of cases analyzed. While theoretical error
bars are necessary for rigorous comparison, the methods
qualitatively agree with each other and also with the NCSM,
with a few noted exceptions. This latter fact affords us
confidence in the results of IMSRG excited-state calculations
in heavier nuclei, for instance in the sd and pf shells.

Notably, experimental E2 observables were underpredicted
by roughly an order of magnitude in all nuclei except 14C.
Results of our calculations instead tracked with Weisskopf
single-particle estimates, indicating that the inclusion of
higher-order collective excitations will be critical for a proper
description of E2 observables. A thorough investigation
of the treatment of these observables will be forthcoming.
E3 observables were computed for doubly magic nuclei,
where a similar pattern was observed. M1 observables, while
consistent between employed methods, showed differences
from experiment that could potentially be accounted for by the
inclusion of meson exchange currents [93] in future works.

In general, electromagnetic observables are well converged
with respect to the size of the model space. The main source
of error in many of these calculations is evidently truncation
errors associated with the NO2B approximation. IMSRG
applications to excited states will continue to improve as
technical developments are made regarding truncation errors
and decoupling strategies. For example, the EOM-IMSRG
can be improved significantly by the perturbative inclusion
of 3p3h excitations [54], and the range of applicability of
this method will be extended greatly upon extension to mul-
tireference formalism. VS-IMSRG methods will continue to
improve as strategies for decoupling cross-shell valence spaces
are developed, enabling an explicit treatment of important

degrees of freedom. Results should also improve as we devise
strategies for the inclusion of neglected three-body operators
that are induced by the IMSRG evolution.
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APPENDIX A: COMMUTATOR RELATIONS
IN M SCHEME

In m scheme, the commutation relations for tensor operators
are identical to those for scalar operators. For completeness,
we give them here. We seek to compute the commutator
Z = [X,Y ], where X, Y , and Z have zero-, one-, and two-
body parts. Z will also have a three-body part, which we
neglect in the present discussion, in keeping with the NO2B
approximation. The components of Z are broken up into
various contributions based on the particle rank of the terms in
X and Y . For example, (A1) below indicates the contribution
to the zero-body piece of Z by the one-body pieces of X
and Y . Additionally, to facilitate the later angular momentum
coupling, (A8) and (A9) are broken up into contributions
involving particle-particle and hole-hole intermediates, as
opposed to particle-hole intermediates,

Z0(11 → 0) =
∑
pq

(np − nq)XpqYqp, (A1)

Z0(22 → 0) = 1

2

∑
pqrs

(npnqn̄r n̄s)XpqrsYsrpq, (A2)

Zpq(11 → 1) =
∑

r

(XprYrq − YprXrq), (A3)

Zpq(12 → 1) =
∑
rs

(nr − ns)(XrsYsprq − YrsXsprq ), (A4)
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Zpq(22 → 1) =
∑
rst

(nrnsn̄t + n̄r n̄snt )(XtprsYrstq − YtprsXrstq ), (A5)

Zpqrs(12 → 2) =
∑

t

(XptYtqrs + XqtYptrs − XtrYpqts − XpsYpqrt ), (A6)

Zpqrs(21 → 2) = −
∑

t

(YptXtqrs + YqtXptrs − YtrXpqts − YpsXpqrt ), (A7)

Zpqrs(22 → 2; pp/hh) = 1

2

∑
tu

(1 − nt − nu)(XpqtuYturs − YpqtuXturs), (A8)

Zpqrs(22 → 2; ph) = −
∑
tu

(nt − nu)(1 − Ppq)(1 − Prs)XputsYtqru. (A9)

APPENDIX B: EXPRESSIONS FOR TENSOR-SCALAR COMMUTATOR AND TENSOR-TENSOR PRODUCT

The consistent evolution of effective spherical tensor operators, along with the computation of excited states using EOM-
IMSRG formalism require expressions for the commutator of a scalar operator and a spherical tensor operator of arbitrary rank
λ, given by

Cλ
μ ≡ ST λ

μ − T λ
μ S, (B1)

where

Cλ
pq =

∑
a

(
SpaT

λ
aq − T λ

paSaq

) −
∑
ab

(na − nb)
(
S̄λ

pq̄ab̄
T λ

ab − ĵaT̄
(λ0)λ
pq̄ab̄

Sab

)

+ 1

2

∑
abc
J1J2

(nanbn̄c + n̄an̄bnc)Ĵ1Ĵ2(−1)jp+jc+J1+λ

{
J1 J2 λ
jq jp jc

}(
S̆

J1
cpabT̆

(J1J2)λ
abcq − T̆

(J1J2)λ
cpab S̆

J2
abcq

)
(B2)

and

C̆(J1J2)λ
pqrs =

∑
a

(
SpaT̆

(J1J2)λ
aqrs + SqaT̆

(J1J2)λ
pars − T̆ (J1J2)λ

pqas Sar − T̆ (J1J2)λ
pqra Sas

)

− Ĵ1Ĵ2(−1)λ
∑

a

[
[1 − Ppq(J1)](−1)jp+jq+J2

{
J2 J1 λ
jp ja jq

}
T λ

paS̆
J2
aqrs

− [1 − Prs(J2)](−1)jr+js−J1

{
J1 J2 λ
js ja jr

}
S̆J1

pqraT
λ
as

]
+ 1

2

∑
ab

(1 − na − nb)
(
S̆

J1
pqabT̆

(J1J2)λ
abrs − T̆

(J1J2)λ
pqab S̆

J2
abrs

)

+
∑

abJ3J4

Ĵ1Ĵ2Ĵ3Ĵ4(na − nb)

⎡
⎣[1 − Ppq(J1)][1 − Prs(J2)](−1)jq+js+J2+J4

⎧⎨
⎩

jp js J3

jq jr J4

J1 J2 λ

⎫⎬
⎭S̄

J3

ps̄ab̄
T̄

(J3J4)λ
ab̄rq̄

⎤
⎦. (B3)

In Eqs. (B2) and (B3), Ĵ ≡ √
2J + 1, na is the occupancy of orbit a, with 0 � na � 1, and n̄a ≡ (1 − na), and Ppq(J ) ≡

(−1)jp+jq−J Ppq is the spherical-basis permutation operator. We have also employed the Pandya-transformed operators defined
by

S̄
J1
pq̄rs̄ = −

∑
J2

Ĵ2

{
jp jq J1

jr js J2

}
S̆J2

psrq , (B4)

T̄
(J1J2)λ
pq̄rs̄ = −

∑
J3J4

Ĵ1Ĵ2Ĵ3Ĵ4(−1)jq+js+J2+J4

⎧⎨
⎩

jp js J3

jq jr J4

J1 J2 λ

⎫⎬
⎭T̆ (J3J4)λ

psrq . (B5)

For computation of electromagnetic moments with EOM-IMSRG or transitions between multiple EOM excited states,
expressions for the product of two spherical tensors of arbitrary rank are needed. The tensor product is given by

YJ
M ≡ [Oλ × X†

ν(Jν)]JM =
∑
Mνμ

C
λJνJ
μMνM

Oλ
μX†

ν(JνMν), (B6)
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where

Y J
pq = Ĵ (−1)(jp+jq )

∑
a

(
Oλ

paX
Jν
aq(−1)J

{
λ Jν J
jq jp ja

}
n̄a − XJν

paO
λ
aq(−1)(λ+Jν )

{
λ Jν J
jp jq ja

}
na

)

+
∑
ab

(
1

λ̂
Oλ

baX̄
(Jλ)Jν

pq̄bā + (−1)(λ+Jν+J )

Ĵν

Ō
(JJν )λ
pq̄ab̄

X
Jν

ab

)
nbn̄a − 1

2

∑
abc

∑
J1J2J3

Ĵ Ĵ1Ĵ3

{
jp jq J
J3 J1 jc

}{
λ Jν J
J3 J1 J2

}

× Ŏ
(J1J2)λ
cpab X̆

(J2J3)Jν

abqc n̄an̄bnc + 1

2
(−1)(λ+Jν+J )

∑
abc

∑
J1J2J3

Ĵ Ĵ1Ĵ3

{
jp jq J
J3 J1 jc

}{
Jν λ J
J3 J1 J2

}
X̆

(J1J2)Jν

cpab Ŏ
(J2J3)λ
abqc nanbn̄c

(B7)

and

Y̆ (J1J2)λ
pqrs = [1 − Ppq(J1)][1 − Prs(J2)]λ̂λ̂1λ̂2

⎧⎨
⎩

jp jr λ1

jq js λ2

J1 J2 λ

⎫⎬
⎭Oλ1

prX̆
λ2
qs

+ [1 − Ppq(J1)]λ̂Ĵ1

∑
a

∑
J3

Ĵ3(−1)(jp+jq+J1+J2+J3+λ1+λ)

{
jp jq J1

J3 λ1 ja

}{
λ1 λ2 λ
J2 J1 J3

}
Oλ1

paX̆
(J3J2)λ2
aqrs n̄a

+ [1 − Prs(J2)]λ̂Ĵ2

∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2)

{
jr js J2

J3 λ1 ja

}{
λ1 λ2 λ
J1 J2 J3

}
Oλ1

ar X̆
(J1J3)λ2
pqsa na

− [1 − Prs(J2)]λ̂Ĵ2

∑
a

∑
J3

Ĵ3(−1)(J1+J3+λ2+λ)

{
jr js J2

J3 λ2 ja

}{
λ1 λ2 λ
J2 J1 J3

}
Xλ2

ar Ŏ
(J1J3)λ1
pqsa n̄a

− [1 − Ppq(J1)]λ̂Ĵ1

∑
a

∑
J3

Ĵ3(−1)(jp+jq+J1+J2+J3+λ1)

{
jp jq J1

J3 λ2 ja

}{
λ1 λ2 λ
J1 J2 J3

}
Xλ2

paŎ
(J3J2)λ2
aqrs na

+ 1

2
λ̂

∑
ab

∑
J3

(−1)(J1+J2+λ)

{
λ1 λ2 λ
J2 J1 J3

}
Ŏ

(J1J3)λ1
pqab X̆

(J3J2)λ2
abrs n̄an̄b

+ 1

2
λ̂

∑
ab

∑
J3

(−1)(J1+J2+λ1+λ2)

{
λ1 λ2 λ
J1 J2 J3

}
X̆

(J1J3)λ2
pqab Ŏ

(J3J2)λ1
abrs nanb + [1 − Ppq(J1)][1 − Prs(J2)]λ̂Ĵ1Ĵ2

×
∑

J3J4J5

Ĵ3Ĵ5(−1)(js−jq+J3+λ)

⎧⎨
⎩

jp jr J3

jq js J5

J1 J2 λ

⎫⎬
⎭

{
λ1 λ2 λ
J5 J3 J4

}∑
ab

Ō
(J3J4)λ1

pr̄ab̄
X̄

(J4J5)λ2

ab̄sq̄
n̄anb. (B8)

APPENDIX C: ANGULAR MOMENTUM COUPLING IDENTITIES

The following identities are helpful in deriving the equations in Appendix B.

∑
m1M1M2

C
j1j2J1
m1m2M1

C
j1j3J2
m1m3M2

C
J2J3J1
M2M3M1

= Ĵ 2
1 Ĵ2

ĵ1
(−1)j1+j3+J1+J3

{
J1 J2 J3

j3 j2 j1

}
C

j3J3j2
m3M3m2

, (C1)

∑
m1m2M1

C
j1j2J1
m1m2M1

C
j3j4J1
m3m4M1

C
j1J2j3
m1M2m3

= Ĵ 2
1 ĵ3

ĵ2
(−1)j1+j2+J1

{
j3 j1 J2

j2 j4 J1

}
C

j4J2j1
m4M2m2

, (C2)

∑
m1

C
j1J1j2
m1M1m2

C
j1j3J2
m1m3M2

= (−1)j2+j3+J1+J2 ×
∑
J3M3

Ĵ2ĵ2

{
J2 J3 J1

j2 j1 j3

}
C

J2J1J3
M2M1M3

C
j2j3J3
m2m3M3

, (C3)

∑
M1

C
j1j2J1
m1−m2M1

C
j3j4J1
m3−m4M1

=
∑
J2M2

Ĵ 2
2

{
j1 j4 J2

j3 j2 J1

}
C

j1j4J2
m1m4M2

C
j3j2J1
m3m2M1

, (C4)

∑
M1M2

C
j1j2J1
m1−m2M1

C
j3j4J2
m3−m4M2

C
J2J3J1
M2M3M1

=
∑
J4J5

M4M5

Ĵ 2
1 Ĵ2Ĵ4(−1)j2+j4+J1+J4

⎧⎨
⎩

j1 j2 J1

j4 j3 J2

J4 J5 J3

⎫⎬
⎭ × C

j1j4J4
m1m4M4

C
j3j2J5
m3m2M5

C
J5J3J4
M5M3M4

. (C5)

034324-15



N. M. PARZUCHOWSKI et al. PHYSICAL REVIEW C 96, 034324 (2017)

[1] J. Engel, S. Pittel, and P. Vogel, Int. J. Mod. Phys. E 1, 1 (1992).
[2] F. T. Avignone, S. R. Elliott, and J. Engel, Rev. Mod. Phys. 80,

481 (2008).
[3] J. Menéndez, D. Gazit, and A. Schwenk, Phys. Rev. D 86,

103511 (2012).
[4] A. Gando, Y. Gando, T. Hachiya, A. Hayashi, S. Hayashida,

H. Ikeda, K. Inoue, K. Ishidoshiro, Y. Karino, M. Koga, S.
Matsuda, T. Mitsui, K. Nakamura, S. Obara, T. Oura, H. Ozaki,
I. Shimizu, Y. Shirahata, J. Shirai, A. Suzuki, T. Takai, K. Tamae,
Y. Teraoka, K. Ueshima, H. Watanabe, A. Kozlov, Y. Takemoto,
S. Yoshida, K. Fushimi, T. I. Banks, B. E. Berger, B. K. Fujikawa,
T. O ’donnell, L. A. Winslow, Y. Efremenko, H. J. Karwowski,
D. M. Markoff, W. Tornow, J. A. Detwiler, S. Enomoto, and
M. P. Decowski, Phys. Rev. Lett. 117, 082503 (2016).

[5] J. Engel and J. Menéndez, Rep. Prog. Phys. 80, 046301 (2017).
[6] B. A. Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006).
[7] E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, and A. P.

Zuker, Rev. Mod. Phys. 77, 427 (2005).
[8] E. Epelbaum, H.-W. Hammer, and U.-G. Meißner, Rev. Mod.

Phys. 81, 1773 (2009).
[9] R. Machleidt and D. Entem, Phys. Rep. 503, 1 (2011).

[10] E. Epelbaum, H. Krebs, and U.-G. Meißner, Phys. Rev. Lett.
115, 122301 (2015).

[11] D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev.
C 91, 014002 (2015).

[12] D. R. Entem, N. Kaiser, R. Machleidt, and Y. Nosyk, Phys. Rev.
C 92, 064001 (2015).

[13] P. Navrátil, V. G. Gueorguiev, J. P. Vary, W. E. Ormand, and
A. Nogga, Phys. Rev. Lett. 99, 042501 (2007).

[14] P. Navrátil, S. Quaglioni, I. Stetcu, and B. R. Barrett, J. Phys. G:
Nucl. Part. Phys. 36, 083101 (2009).

[15] B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys.
69, 131 (2013).

[16] J. Carlson, S. Gandolfi, F. Pederiva, S. C. Pieper, R. Schiavilla,
K. E. E. Schmidt, and R. B. B. Wiringa, Rev. Mod. Phys. 87,
1067 (2015).

[17] S. K. Bogner, R. J. Furnstahl, and R. J. Perry, Phys. Rev. C 75,
061001 (2007).

[18] E. D. Jurgenson, P. Navrátil, and R. J. Furnstahl, Phys. Rev. Lett.
103, 082501 (2009).

[19] S. K. Bogner, R. J. Furnstahl, and A. Schwenk, Prog. Part. Nucl.
Phys. 65, 94 (2010).

[20] R. Roth, A. Calci, J. Langhammer, and S. Binder, Phys. Rev. C
90, 024325 (2014).

[21] G. Hagen, T. Papenbrock, M. Hjorth-Jensen, and D. J. Dean,
Rep. Prog. Phys. 77, 096302 (2014).

[22] G. R. Jansen, M. Hjorth-Jensen, G. Hagen, and T. Papenbrock,
Phys. Rev. C 83, 054306 (2011).

[23] S. Binder, P. Piecuch, A. Calci, J. Langhammer, P. Navrátil, and
R. Roth, Phys. Rev. C 88, 054319 (2013).

[24] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. Lett. 111,
062501 (2013).

[25] V. Somà, A. Cipollone, C. Barbieri, P. Navrátil, and T. Duguet,
Phys. Rev. C 89, 061301 (2014).

[26] A. Cipollone, C. Barbieri, and P. Navrátil, Phys. Rev. C 92,
014306 (2015).

[27] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 89, 024323
(2014).

[28] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261,
125 (1995).

[29] N. Tsunoda, K. Takayanagi, M. Hjorth-Jensen, and T. Otsuka,
Phys. Rev. C 89, 024313 (2014).

[30] J. Simonis, K. Hebeler, J. D. Holt, J. Menéndez, and A. Schwenk,
Phys. Rev. C 93, 011302 (2016).

[31] A. Tichai, J. Langhammer, S. Binder, and R. Roth, Phys. Lett.
B 756, 283 (2016).

[32] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. Lett.
106, 222502 (2011).

[33] H. Hergert, S. K. Bogner, T. D. Morris, A. Schwenk, and K.
Tsukiyama, Phys. Rep. 621, 165 (2016).

[34] S. K. Bogner, H. Hergert, J. D. Holt, A. Schwenk, S. Binder,
A. Calci, J. Langhammer, and R. Roth, Phys. Rev. Lett. 113,
142501 (2014).

[35] H. Hergert, Phys. Scr. 92, 023002 (2016).
[36] V. Somà, C. Barbieri, and T. Duguet, Phys. Rev. C 87, 011303

(2013).
[37] S. Binder, J. Langhammer, A. Calci, and R. Roth, Phys. Lett. B

736, 119 (2014).
[38] H. Hergert, S. K. Bogner, T. D. Morris, S. Binder, A. Calci, J.

Langhammer, and R. Roth, Phys. Rev. C 90, 041302 (2014).
[39] G. Hagen, G. R. Jansen, and T. Papenbrock, Phys. Rev. Lett.

117, 172501 (2016).
[40] J. Simonis, S. R. Stroberg, K. Hebeler, J. D. Holt, and A.

Schwenk, Phys. Rev. C 96, 014303 (2017).
[41] B. H. Wildenthal, M. S. Curtin, and B. A. Brown, Phys. Rev. C

28, 1343 (1983).
[42] G. Martínez-Pinedo, A. Poves, E. Caurier, and A. P. Zuker,

Phys. Rev. C 53, R2602 (1996).
[43] J. Da Providencia and C. Shakin, Ann. Phys. 30, 95 (1964).
[44] B. H. Brandow, Rev. Mod. Phys. 39, 771 (1967).
[45] N. Lo Iudice, D. Rowe, and S. Wong, Phys. Lett. B 37, 44 (1971).
[46] Proceedings of the Tucson International Topical Conference on

Effective Interactions and Operators in Nuclei, edited by B.
Barrett (Springer, Berlin, 1975).

[47] P. J. Ellis and E. Osnes, Rev. Mod. Phys. 49, 777 (1977).
[48] E. R. Anderson, S. K. Bogner, R. J. Furnstahl, and R. J. Perry,

Phys. Rev. C 82, 054001 (2010).
[49] N. Paar, P. Papakonstantinou, H. Hergert, and R. Roth, Phys.

Rev. C 74, 014318 (2006).
[50] M. D. Schuster, S. Quaglioni, C. W. Johnson, E. D. Jurgenson,

and P. Navrátil, Phys. Rev. C 90, 011301 (2014).
[51] I. Stetcu, B. R. Barrett, P. Navrátil, and J. P. Vary, Phys. Rev. C

71, 044325 (2005).
[52] P. Navrátil, M. Thoresen, and B. R. Barrett, Phys. Rev. C 55,

R573 (1997).
[53] S. N. More, S. König, R. J. Furnstahl, and K. Hebeler, Phys.

Rev. C 92, 064002 (2015).
[54] N. M. Parzuchowski, T. D. Morris, and S. K. Bogner, Phys. Rev.

C 95, 044304 (2017).
[55] K. Tsukiyama, S. K. Bogner, and A. Schwenk, Phys. Rev. C 85,

061304 (2012).
[56] S. R. R. Stroberg, A. Calci, H. Hergert, J. D. D. Holt, S. K. K.

Bogner, R. Roth, and A. Schwenk, Phys. Rev. Lett. 118, 032502
(2017).

[57] A. Bohr and B. R. Mottleson, Nuclear Structure Vol. I,
1st ed. (W. A. Benjamin, Inc., New York, 1969).

[58] J. Suhonen, From Nucleons to Nucleus (Springer-Verlag, Berlin,
Heidelberg, 2007).

[59] A. R. Edmonds, Angular Momentum in Quantum Mechanics,
2nd ed. (Princeton University Press, Princeton, NJ, 1960).

034324-16

https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1142/S0218301392000023
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1103/RevModPhys.80.481
https://doi.org/10.1103/PhysRevD.86.103511
https://doi.org/10.1103/PhysRevD.86.103511
https://doi.org/10.1103/PhysRevD.86.103511
https://doi.org/10.1103/PhysRevD.86.103511
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1103/PhysRevLett.117.082503
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1088/1361-6633/aa5bc5
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/PhysRevC.74.034315
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/RevModPhys.77.427
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1016/j.physrep.2011.02.001
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevLett.115.122301
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.91.014002
https://doi.org/10.1103/PhysRevC.92.064001
https://doi.org/10.1103/PhysRevC.92.064001
https://doi.org/10.1103/PhysRevC.92.064001
https://doi.org/10.1103/PhysRevC.92.064001
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1103/PhysRevLett.99.042501
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1088/0954-3899/36/8/083101
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/RevModPhys.87.1067
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevC.75.061001
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1103/PhysRevLett.103.082501
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1016/j.ppnp.2010.03.001
https://doi.org/10.1103/PhysRevC.90.024325
https://doi.org/10.1103/PhysRevC.90.024325
https://doi.org/10.1103/PhysRevC.90.024325
https://doi.org/10.1103/PhysRevC.90.024325
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1088/0034-4885/77/9/096302
https://doi.org/10.1103/PhysRevC.83.054306
https://doi.org/10.1103/PhysRevC.83.054306
https://doi.org/10.1103/PhysRevC.83.054306
https://doi.org/10.1103/PhysRevC.83.054306
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevC.88.054319
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevLett.111.062501
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.89.061301
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.92.014306
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1103/PhysRevC.89.024323
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1016/0370-1573(95)00012-6
https://doi.org/10.1103/PhysRevC.89.024313
https://doi.org/10.1103/PhysRevC.89.024313
https://doi.org/10.1103/PhysRevC.89.024313
https://doi.org/10.1103/PhysRevC.89.024313
https://doi.org/10.1103/PhysRevC.93.011302
https://doi.org/10.1103/PhysRevC.93.011302
https://doi.org/10.1103/PhysRevC.93.011302
https://doi.org/10.1103/PhysRevC.93.011302
https://doi.org/10.1016/j.physletb.2016.03.029
https://doi.org/10.1016/j.physletb.2016.03.029
https://doi.org/10.1016/j.physletb.2016.03.029
https://doi.org/10.1016/j.physletb.2016.03.029
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1103/PhysRevLett.106.222502
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1016/j.physrep.2015.12.007
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1103/PhysRevLett.113.142501
https://doi.org/10.1088/1402-4896/92/2/023002
https://doi.org/10.1088/1402-4896/92/2/023002
https://doi.org/10.1088/1402-4896/92/2/023002
https://doi.org/10.1088/1402-4896/92/2/023002
https://doi.org/10.1103/PhysRevC.87.011303
https://doi.org/10.1103/PhysRevC.87.011303
https://doi.org/10.1103/PhysRevC.87.011303
https://doi.org/10.1103/PhysRevC.87.011303
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1016/j.physletb.2014.07.010
https://doi.org/10.1103/PhysRevC.90.041302
https://doi.org/10.1103/PhysRevC.90.041302
https://doi.org/10.1103/PhysRevC.90.041302
https://doi.org/10.1103/PhysRevC.90.041302
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevLett.117.172501
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.96.014303
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.28.1343
https://doi.org/10.1103/PhysRevC.53.R2602
https://doi.org/10.1103/PhysRevC.53.R2602
https://doi.org/10.1103/PhysRevC.53.R2602
https://doi.org/10.1103/PhysRevC.53.R2602
https://doi.org/10.1016/0003-4916(64)90304-5
https://doi.org/10.1016/0003-4916(64)90304-5
https://doi.org/10.1016/0003-4916(64)90304-5
https://doi.org/10.1016/0003-4916(64)90304-5
https://doi.org/10.1103/RevModPhys.39.771
https://doi.org/10.1103/RevModPhys.39.771
https://doi.org/10.1103/RevModPhys.39.771
https://doi.org/10.1103/RevModPhys.39.771
https://doi.org/10.1016/0370-2693(71)90565-X
https://doi.org/10.1016/0370-2693(71)90565-X
https://doi.org/10.1016/0370-2693(71)90565-X
https://doi.org/10.1016/0370-2693(71)90565-X
https://doi.org/10.1103/RevModPhys.49.777
https://doi.org/10.1103/RevModPhys.49.777
https://doi.org/10.1103/RevModPhys.49.777
https://doi.org/10.1103/RevModPhys.49.777
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.82.054001
https://doi.org/10.1103/PhysRevC.74.014318
https://doi.org/10.1103/PhysRevC.74.014318
https://doi.org/10.1103/PhysRevC.74.014318
https://doi.org/10.1103/PhysRevC.74.014318
https://doi.org/10.1103/PhysRevC.90.011301
https://doi.org/10.1103/PhysRevC.90.011301
https://doi.org/10.1103/PhysRevC.90.011301
https://doi.org/10.1103/PhysRevC.90.011301
https://doi.org/10.1103/PhysRevC.71.044325
https://doi.org/10.1103/PhysRevC.71.044325
https://doi.org/10.1103/PhysRevC.71.044325
https://doi.org/10.1103/PhysRevC.71.044325
https://doi.org/10.1103/PhysRevC.55.R573
https://doi.org/10.1103/PhysRevC.55.R573
https://doi.org/10.1103/PhysRevC.55.R573
https://doi.org/10.1103/PhysRevC.55.R573
https://doi.org/10.1103/PhysRevC.92.064002
https://doi.org/10.1103/PhysRevC.92.064002
https://doi.org/10.1103/PhysRevC.92.064002
https://doi.org/10.1103/PhysRevC.92.064002
https://doi.org/10.1103/PhysRevC.95.044304
https://doi.org/10.1103/PhysRevC.95.044304
https://doi.org/10.1103/PhysRevC.95.044304
https://doi.org/10.1103/PhysRevC.95.044304
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevC.85.061304
https://doi.org/10.1103/PhysRevLett.118.032502
https://doi.org/10.1103/PhysRevLett.118.032502
https://doi.org/10.1103/PhysRevLett.118.032502
https://doi.org/10.1103/PhysRevLett.118.032502


Ab INITIO ELECTROMAGNETIC OBSERVABLES . . . PHYSICAL REVIEW C 96, 034324 (2017)

[60] G. Hagen, T. Papenbrock, D. J. Dean, A. Schwenk, A. Nogga,
M. Włoch, and P. Piecuch, Phys. Rev. C 76, 034302 (2007).

[61] R. Roth, S. Binder, K. Vobig, A. Calci, J. Langhammer, and
P. Navrátil, Phys. Rev. Lett. 109, 052501 (2012).

[62] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.
Papenbrock, S. Bacca, B. Carlsson, and D. Gazit, Phys. Rev.
Lett. 113, 262504 (2014).

[63] T. D. Morris, N. M. Parzuchowski, and S. K. Bogner, Phys. Rev.
C 92, 034331 (2015).

[64] B. A. Brown and W. D. M. Rae, Nucl. Data Sheets 120, 115
(2014).

[65] S. R. Stroberg, https://github.com/ragnarstroberg/nutbar (2017).
[66] D. R. Entem and R. Machleidt, Phys. Rev. C 68, 041001

(2003).
[67] P. Navrátil, Few-Body Syst. 41, 117 (2007).
[68] D. Gazit, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett. 103,

102502 (2009).
[69] H. Hergert, S. Binder, A. Calci, J. Langhammer, and R. Roth,

Phys. Rev. Lett. 110, 242501 (2013).
[70] V. Lapoux, V. Somà, C. Barbieri, H. Hergert, J. D. Holt, and

S. R. Stroberg, Phys. Rev. Lett. 117, 052501 (2016).
[71] J. Eisenberg and W. Greiner, Excitation Mechanism of the

Nucleus (North-Holland, Amsterdam, 1970).
[72] G. Hagen, T. Papenbrock, and D. J. Dean, Phys. Rev. Lett. 103,

062503 (2009).
[73] G. Hagen, T. Papenbrock, D. J. Dean, and M. Hjorth-Jensen,

Phys. Rev. C 82, 034330 (2010).
[74] D. H. Gloeckner and R. D. Lawson, Phys. Lett. B 53, 313 (1974).
[75] R. Roth and P. Navrátil, Phys. Rev. Lett. 99, 092501 (2007).
[76] F. Ajzenberg-Selove, Nucl. Phys. A 413, 1 (1984).
[77] N. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
[78] B. Pritychenko, M. Birch, B. Singh, and M. Horoi, At. Data

Nucl. Data Tables 107, 1 (2016).
[79] A. F. Lisetskiy, M. K. G. Kruse, B. R. Barrett, P. Navrátil,

I. Stetcu, and J. P. Vary, Phys. Rev. C 80, 024315 (2009).

[80] G. Hupin, S. Quaglioni, and P. Navrátil, Phys. Rev. Lett. 114,
212502 (2015).

[81] C. Romero-Redondo, S. Quaglioni, P. Navrátil, and G. Hupin,
Phys. Rev. Lett. 117, 222501 (2016).

[82] M. Zhukov, B. Danilin, D. Fedorov, J. Bang, I. Thompson, and
J. Vaagen, Phys. Rep. 231, 151 (1993).

[83] F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).
[84] P. Maris, J. P. Vary, P. Navrátil, W. E. Ormand, H. Nam, and

D. J. Dean, Phys. Rev. Lett. 106, 202502 (2011).
[85] J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear Physics

(Springer-Verlag, New York, 1979).
[86] M. Thoresen, P. Navrátil, and B. R. Barrett, Phys. Rev. C 57,

3108 (1998).
[87] A. Ekström, G. R. Jansen, K. A. Wendt, G. Hagen, T.

Papenbrock, B. D. Carlsson, C. Forssén, M. Hjorth-Jensen,
P. Navrátil, and W. Nazarewicz, Phys. Rev. C 91, 051301
(2015).

[88] A. Kangasmäki, P. Tikkanen, J. Keinonen, W. E. Ormand, S.
Raman, Z. Fülöp, A. Z. Kiss, and E. Somorjai, Phys. Rev. C 58,
699 (1998).

[89] A. Gade, D. Bazin, B. A. Brown, C. M. Campbell, J. A. Church,
D. C. Dinca, J. Enders, T. Glasmacher, P. G. Hansen, Z. Hu,
K. W. Kemper, W. F. Mueller, H. Olliver, B. C. Perry, L. A.
Riley, B. T. Roeder, B. M. Sherrill, J. R. Terry, J. A. Tostevin,
and K. L. Yurkewicz, Phys. Rev. C 69, 034311 (2004).

[90] Y. Kanada-En’yo and Y. Hidaka, arXiv:1608.03642.
[91] T. Kibedi and R. H. Spear, At. Data Nucl. Data Tables 80, 35

(2002).
[92] M. D. Schuster, S. Quaglioni, C. W. Johnson, E. D. Jurgenson,

and P. Navrátil, Phys. Rev. C 92, 014320 (2015).
[93] S. Pastore, S. C. Pieper, R. Schiavilla, and R. B. Wiringa,

Phys. Rev. C 87, 035503 (2013).
[94] P. E. Wormer and J. Paldus, Adv. Quantum Chem. 51, 59 (2006).
[95] S. R. Stroberg, https://github.com/ragnarstroberg/imsrg (2017).
[96] C. Sanderson and R. Curtin, J. Open Source Software, (2016).

034324-17

https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevC.76.034302
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.109.052501
https://doi.org/10.1103/PhysRevLett.113.262504
https://doi.org/10.1103/PhysRevLett.113.262504
https://doi.org/10.1103/PhysRevLett.113.262504
https://doi.org/10.1103/PhysRevLett.113.262504
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1103/PhysRevC.92.034331
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.nds.2014.07.022
https://doi.org/10.1016/j.nds.2014.07.022
https://github.com/ragnarstroberg/nutbar
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1103/PhysRevC.68.041001
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1007/s00601-007-0193-3
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.103.102502
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.110.242501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.117.052501
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevLett.103.062503
https://doi.org/10.1103/PhysRevC.82.034330
https://doi.org/10.1103/PhysRevC.82.034330
https://doi.org/10.1103/PhysRevC.82.034330
https://doi.org/10.1103/PhysRevC.82.034330
https://doi.org/10.1016/0370-2693(74)90390-6
https://doi.org/10.1016/0370-2693(74)90390-6
https://doi.org/10.1016/0370-2693(74)90390-6
https://doi.org/10.1016/0370-2693(74)90390-6
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1103/PhysRevLett.99.092501
https://doi.org/10.1016/0375-9474(84)90650-X
https://doi.org/10.1016/0375-9474(84)90650-X
https://doi.org/10.1016/0375-9474(84)90650-X
https://doi.org/10.1016/0375-9474(84)90650-X
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1016/j.adt.2015.10.001
https://doi.org/10.1103/PhysRevC.80.024315
https://doi.org/10.1103/PhysRevC.80.024315
https://doi.org/10.1103/PhysRevC.80.024315
https://doi.org/10.1103/PhysRevC.80.024315
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.114.212502
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1103/PhysRevLett.117.222501
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0370-1573(93)90141-Y
https://doi.org/10.1016/0375-9474(91)90446-D
https://doi.org/10.1016/0375-9474(91)90446-D
https://doi.org/10.1016/0375-9474(91)90446-D
https://doi.org/10.1016/0375-9474(91)90446-D
https://doi.org/10.1103/PhysRevLett.106.202502
https://doi.org/10.1103/PhysRevLett.106.202502
https://doi.org/10.1103/PhysRevLett.106.202502
https://doi.org/10.1103/PhysRevLett.106.202502
https://doi.org/10.1103/PhysRevC.57.3108
https://doi.org/10.1103/PhysRevC.57.3108
https://doi.org/10.1103/PhysRevC.57.3108
https://doi.org/10.1103/PhysRevC.57.3108
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.91.051301
https://doi.org/10.1103/PhysRevC.58.699
https://doi.org/10.1103/PhysRevC.58.699
https://doi.org/10.1103/PhysRevC.58.699
https://doi.org/10.1103/PhysRevC.58.699
https://doi.org/10.1103/PhysRevC.69.034311
https://doi.org/10.1103/PhysRevC.69.034311
https://doi.org/10.1103/PhysRevC.69.034311
https://doi.org/10.1103/PhysRevC.69.034311
http://arxiv.org/abs/arXiv:1608.03642
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1103/PhysRevC.92.014320
https://doi.org/10.1103/PhysRevC.92.014320
https://doi.org/10.1103/PhysRevC.92.014320
https://doi.org/10.1103/PhysRevC.92.014320
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1103/PhysRevC.87.035503
https://doi.org/10.1016/S0065-3276(06)51002-0
https://doi.org/10.1016/S0065-3276(06)51002-0
https://doi.org/10.1016/S0065-3276(06)51002-0
https://doi.org/10.1016/S0065-3276(06)51002-0
https://github.com/ragnarstroberg/imsrg



