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Formation and decay of resonance states in 9Be and 9B nuclei:
Microscopic three-cluster model investigations
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We study the nature of the low-lying resonance states in mirror nuclei 9Be and 9B. Investigations are performed
within a three-cluster model. The model makes use of the hyperspherical harmonics, which provides a convenient
description of the three-cluster continuum. The dominant three-cluster configurations α + α + n and α + α + p

in 9Be and 9B, respectively, are taken into account. Dominant decay channels for all resonance states in 9Be
and 9B are explored. Much attention is paid to the controversial 1/2+ resonance states in both nuclei. We study
effects of the Coulomb interaction on the energy and width of three-cluster resonances in the mirror nuclei 9Be
and 9B. We also search for the Hoyle-analog state, which is a key step for alternative ways to synthesize 9Be and
9B in triple collisions of clusters in a stellar environment.
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I. INTRODUCTION

The resonance state is one of the challenging problems
for theoretical physics, as well as for nuclear physics. There
are common features of resonance states observed in a few-
or many-channel systems. However, there are some specific
features related to ways of the excitation or generation of
resonance states and to ways of the decay of nuclear resonance
states. It is well known that some resonance states are observed
in one set of reactions and do not manifest themselves in
another set of reactions. Special attention is attracted to the
resonance states formed by three interacting clusters, i.e.,
resonance states embedded in the three-cluster continuum.
Such resonance states have been repeatedly observed in nuclei
that have well-determined three-cluster structures. This result
suggests that bound states and many resonance states lie below
and above, respectively, the threshold of the three-cluster
continuum. In other words, bound states and a large part of
resonance states in three-cluster nuclei are generated by an
interaction of three clusters. As examples of such nuclei, we
mention 5H, 6He, 6Be, 9Be, 9B, and so on.

In the present paper, a microscopic three-cluster model will
be used to study the nature of resonance states in 9Be and
9B. The dominant three-cluster configurations α + α + n and
α + α + p are selected to describe the low-excitation energy
region in these nuclei. The microscopic model formulated
in Ref. [1] makes use of harmonic oscillator functions to
describe the intercluster motion. The model is called AM
HHB, which stands for the algebraic three-cluster model with
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the hyperspherical harmonics basis. The first application of this
model to study the resonance structure of 9Be and 9B was made
in Ref. [2]. Results presented in Ref. [2] were obtained with
the Minnesota potential (MP). In the present paper, we use the
modified Hasegawa-Nagata potential (MHNP) [3,4] and will
show a very good correspondence between calculations and
experiments. Based on this successful result, we pay much
more attention to the 1/2+ resonance states and the Coulomb
effects on the resonance states in mirror nuclei. In addition,
we search for the Hoyle-analog states in 9Be and 9B.

There are many attempts to study the resonance structure
of 9Be and 9B within various methods and models [5–13].
Those investigations have been dominantly performed within
the cluster model and different variants of the resonating
group method. In some cases, the determination of resonance
parameters is carried out in the framework of models, where the
three-cluster problem is reduced to a many-channel two-body
system by representing 9Be (9B) as coupled-channel systems
of 8Be + n (8Be + p) and 5He + 4He (5Li + 4He). Other
groups of papers take into account that all resonance states
in 9Be and 9B belong to the three-cluster continuum. The
position of resonance states and their properties have been
determined by using the complex scaling methodology or
the hyperspherical harmonics basis. The latter allows one
to incorporate proper boundary conditions for decays of a
three-cluster system into three independent clusters, while the
former allows one to locate resonance states in the continuum
of many-channel and many-cluster systems.

A special attention is attracted by the 1/2+ excited states
in 9Be and 9B. This is stipulated by two factors. First,
the position of these resonances was obtained at different
energies in various experiments. Some experiments claimed
that there are no such resonances in 9Be or 9B. Second,
different theoretical investigations suggested different energies
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and the nature of the 1/2+ excited states in 9Be and 9B. Some
theoretical investigations stressed that there is no 1/2+ excited
states in 9Be and that the resonance peak in the reactions of
photodisintegration is associated with a virtual state. Other
groups of investigations detected the 1/2+ excited states in
9Be and 9B as resonance states in a two- or three-body
continuum. This dispute also encouraged us to perform the
present investigations.

In the last decade, light nuclei have been a subject for
ab initio calculations, by using modern nucleon-nucleon
potentials. These methods suggest a more advanced descrip-
tion of nuclear systems. The ab initio methods employing
fundamental and realistic nucleon-nucleon interactions are,
for instance, the no-core shell-model (NCSM) [14] and the
quantum Monte Carlo method (QMCM) [15]. The NCSM
employs a huge basis of oscillator functions to describe the
relative motion of nucleons in a compound nuclear system. In
Ref. [16], an advanced version of the model was formulated
which combines NCSM and the resonating group method (it
was called the NCSM/RGM model) to study the cluster-cluster
scattering or decay of a nucleus onto two clusters. Another
version of NCSM (NCSMC) was formulated in Ref. [17]
to study a decay of compound nuclei into three fragments
(clusters). NCSMC is similar to our model in respect of
representing the asymptotic part of the wave functions of
continuous spectrum states. The hyperspherical harmonics
were used in Ref. [17] to represent the asymptotic part of
wave functions and to implement proper boundary conditions.
This method was successfully used in Refs. [18–20] to study
the discrete and continuous spectra of 6He. However, the
nucleus 9Be was investigated with another version of NCSM
(NCSM/RGM), where the three-body continuum was modeled
by the two-body 8Be + n configuration (see Refs. [19,21,22] ).
The contribution of the three-nucleon forces and their effects
on the spectrum of the ground and resonance states in 9Be were
investigated in Ref. [23] in detail. Within QMCM in Ref. [23],
the resonance states in 9Be were treated as discrete states. It
was shown in Ref. [23] that the spectrum of excited states and
their relative position strongly depend on the shape of five
realistic nucleon-nucleon potentials.

We mention the numerous experimental investigations of
9Be and 9B in Refs. [24–31], where the structure and different
processes taking place in these nuclei have been investigated.

Our paper is organized in the following way. In Sec. II,
we explain the key elements of our model. Main results are
presented in Sec. III. A detailed discussion of the nature of
1/2+ resonance states is given in Sec. IV. In Sec. V, we study
effects of the Coulomb interaction on the energies and widths
of resonance states in 9Be and 9B. The quest for the Hoyle-
analog states is presented in Sec. VI. We close the paper by
summarizing the obtained results in Sec. VII.

II. MODEL FORMULATION

In this section, we shortly outline the main ideas of the
model. We start with the wave function of a nucleus consisting
of three clusters, as a key element of the model formulation. To
describe a three-cluster system, one has to construct a three-

cluster function,

�JMJ
=

∑
L,S

Â{
[[�1(A1,s1)�2(A2,s2)]�3(A3,s3)]S

× f
(J )
L,S(x,y)

}
JMJ

. (1)

By solving a many-body Schrödinger equation, we have to
determine the intercluster wave function f

(J )
L,S(x,y) and the

energies of bound states or S matrix for states of the continuous
spectrum. The Jacobi vectors x and y determine the relative
position of clusters. The wave functions �α(Aα,sα) (α = 1,
2, 3) describing the internal motion of the cluster consisted
of Aα nucleons and with the spin sα are assumed to be
fixed, and they possess some very important features—for
instance, they are antisymmetric and translation invariant. The
adiabaticity related to a fixed form of the wave functions
�α(Aα,sα), is the main assumption of the method, which
is well known as the resonating group method [32]. In fact,
the wave function (1) provides a projection operator, which
reduces the many-particle problem to an effective three-body
problem with a nonlocal energy-dependent potential (see
details in Ref. [32]). For the amplitudes

f
(J )
L,S(x,y) =

∑
l1,l2

f
(J )
l1,l2;L,S(x,y)

{
Yl1 (̂x)Yl2 (̂y)

}
LML

, (2)

one can deduce an infinite set of two-dimensional integrodif-
ferential equations (with respect to the variables x and y). This
set of equations can be further simplified. If we introduce the
hyperspherical coordinates

x = ρ cos θ, y = ρ sin θ,

� = {θ,̂x,̂y} (3)

and construct a full set of orthonormal hyperspherical
harmonics

YK,l1,l2,LML
(�) = χK,l1,l2 (θ ){Yl1 (̂x)Yl2 (̂y)}LML

(4)

(see the definition of hyperspherical harmonics, e.g., in [1,33]),
then the wave function (1) takes the form

�JMJ
= Â

⎧⎨⎩ ∑
c={K,l1,l2;L,S}

[[[�1(A1,s1)�2(A2,s2)]�3(A3,s3)]S

× YK,l1,l2;L(�)]JMJ
ψK,l1,l2;L,S(ρ)

⎫⎬⎭, (5)

where the hyper-radial components ψK,l1,l2;L,S(ρ) of the wave
function obey an infinite set of integrodifferential equations.
The last step toward a simplification of the numerical
solutions of such a system of equations is to expand the
hyper-radial amplitudes {ψK,l1,l2;L,S(ρ)} in the basis of the
hyper-radial part of oscillator functions in the six-dimensional
space as

ψK,l1,l2;L,S(ρ) =
∑
nρ

CnρK,l1,l2;L,S(b)Rnρ,K (ρ,b), (6)
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where Rnρ,K (ρ,b) is an oscillator function,

Rnρ,K (ρ,b) = (−1)nρNnρ,KrK exp

{
−1

2
r2

}
LK+3

nρ
(r2),

r = ρ/b, Nnρ,K = b−3

√
2
(nρ + 1)


(nρ + K + 3)
, (7)

and b is the oscillator length.
The expansion of �JMJ

in the oscillator basis reduces the set
of integrodifferential equations to a system of linear algebraic
equations for the expansion coefficients∑

ñρ ,̃c

{〈nρ,c|Ĥ |̃nρ,̃c〉 − E〈nρ,c|̃nρ,̃c〉}Cñρ ,̃c = 0, (8)

where the multiple index c denotes a channel of the hyperspher-
ical basis c = {K,l1,l2,L,S}. This system is relevant to bound
states and to continuous spectrum states. To obtain a spectrum
of bound states, one can use the diagonalization procedure for
the reduced set of Eqs. (8). However, to find the wave functions
and elements of the scattering S matrix, one has to implement
proper boundary conditions for the expansion coefficients
in Eq. (8). These conditions were thoroughly discussed in
Ref. [1].

The completeness relations for hyperspherical harmonics
and oscillator functions are∑

K,l1,l2,LM

YK,l1,l2,LM (�)YK,l1,l2,LM (�̃) = δ(� − �̃),

∑
nρ

Rnρ,K (ρ,b)Rnρ,K (ρ̃,b) = δ(ρ − ρ̃),

where the δ function δ(� − �̃) stands for the product
of five δ functions for each of the hyperspherical angles
{θ,̂x,̂y} = {θ,θx,ϕx,θy,ϕy}. The completeness relations ensure
that, up to now, we made no restrictions or approximations.
Approximations will be formulated later, when we proceed to
numerical solutions of the system of Eq. (8).

Note that hyperspherical angles determine the shape and
orientation in the space of a triangle connecting the centers-
of-mass of interacting clusters. Thus, the hyperspherical
harmonics describe all possible rotations and all possible
deformations of the triangle. Each hyperspherical harmonic
YK,l1,l2,LM (�) (similar to the solid harmonics) predetermines
one or several dominant shapes of the three-cluster triangles
(see some illustrations for this statement in Refs. [34,35]).

As for the functions ψK,l1,l2;L,S(ρ) and Rnρ,K (ρ,b), they
describe radial excitations or the monopole or breathing
mode excitations. Besides, the wave functions ψK,l1,l2;L,S(ρ)
describe all elastic and inelastic processes in the three-cluster
continuum and, thus, contain elements of the scattering S
matrix:

ψK,l1,l2;L,S(ρ) ⇒ δc0,cψ
(−)
c (kρ,ηc) − Sc0,cψ

(+)
c (kρ,ηc), (9)

where c0 and c denote the incoming and present or outgoing
channels, respectively; in general, they involve five quan-
tum numbers c = {K,l1,l2,L,S}. Six-dimensional incoming
ψ (−)

c (kρ,ηc) and outgoing ψ (+)
c (kρ,ηc) waves are determined

as follows:

ψ (±)
c (kρ,ηc) = W±iηc,K+2(2ikρ)/ρ5/2, (10)

where Wν,μ(z) is the Whittaker function (see Chap. 13 of
Ref. [36]), and ηc is the Sommerfeld parameter

ηc = m

h̄2

Zc,ce
2

k
.

The wave functions ψ (±)
c (kρ,ηc) are solutions of the differen-

tial equations{
− h̄2

2m

[
d2

dρ2
+ 5

ρ

d

dρ
− K(K + 3)

ρ2

]
+ Zc,ce

2

ρ
− E

}
×ψ (±)

c (kρ,ηc) = 0, (11)

where Zc,ce
2/ρ represents the effective Coulomb interaction in

hyperspherical coordinates. It should be stressed that Eq. (11)
and the Coulomb interaction in this equation represent the
asymptotic form of the microscopic three-cluster Hamiltonian,
when the distances between interacting clusters are large. The
effective charge Zc,c was determined in Ref. [1], and the
explicit values of the effective charge for 6Be and 12C can
be found in Refs. [34] and [37], respectively.

The asymptotic behavior of wave functions presented in
Eq. (9) is formulated for the so-called 3-to-3 scattering. This
approximation is valid if there are no bound states in any
two-cluster subsystem. That is the case for nuclei 9Be and 9B
we are going to study.

In closing this section, we consider possible values of
the quantum numbers of hyperspherical harmonics. First, we
consider possible values of the partial angular orbital momenta
l1 and l2. They determine the total parity of a three-cluster state;
π = (−1)l1+l2 . This is the first restriction on possible values of
l1 and l2. Next, the total orbital momentum L is a vector sum
of the partial angular orbital momenta l1 and l2: L = l2 + l2
and thus

L = |l1 − l2|,|l1 − l2| + 1, . . . ,l1 + l2.

This is the second restriction. The last restriction is connected
with peculiarities of the hyperspherical harmonics. For a fixed
value of the hypermomentum K , a sum l1 + l2 takes the values

l1 + l2 = Kmin,Kmin + 2, . . . ,K,

where Kmin = L is for the normal parity state π = (−1)L, and
Kmin = L + 1 is for the abnormal parity state π = (−1)L+1.
Combing the first and third restrictions, we conclude that the
hyperspherical harmonics with even values of K describe
positive parity states, while the harmonics with odd values
of K describe only negative parity states.

Let us consider a special case of positive parity states with
the zero total orbital momentum L. In this case, the partial
orbital momenta l1 = l2 = 0, 1,. . ., K/2. For a given value of
the hypermomentum K , we have got K/2 + 1 hyperspherical
functions. If we take all hyperspherical harmonics
with K = 0, 2,. . ., Kmax, we involve possible channels
c = 1, 2,. . ., Nch, where Nch = (Kmax + 2)(Kmax + 4)/8.
For an arbitrary value of the total orbital momentum
L, by taking all hyperspherical harmonics with K =

034322-3
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Kmin,Kmin + 2, . . . ,Kmax into account, we will involve Nch =
(Kmax − Kmin + 2)(Kmax − Kmin + 4)(L + 1)/8 channels.

As we deal with the oscillator functions describing the
three-cluster system, we will use the quantum number Nsh,
which enumerates oscillator shells for the state of the
compound system with the parity π and the total angular
momentum L. The oscillator function |nρ,c〉 with given values
of nρ and K belongs to the oscillator shell

Nsh = nρ + (K − Kmin)/2

provided that K � Kmin. This condition means that if nρ = 0,
the oscillator function with the hypermomentum K = Kmin

appears on the oscillator shell Nsh = 0, the oscillator function
with K = Kmin + 2 appears on the oscillator shell Nsh = 1,
and so on. If K = Kmin, then the number of the oscillator
shell Nsh coincides with the number of the hyper-radial exci-
tations nρ . On the oscillator shells Nsh � (Kmax − Kmin)/2,
we have got a fixed number of oscillator functions Nf =
(Kmax − Kmin)/2 + 1.

III. SPECTRUM OF RESONANCE STATES IN 9Be AND 9B

To perform numerical calculations, we need to fix a few
parameters and select the nucleon-nucleon (NN) potential.
We start with its selection. Here, we exploit the modified
Hasegawa-Nagata potential (MHNP) [3,4]. This is an effective
NN potential constructed from the realistic nuclear force, by
using the reaction matrix method, and it has been intensively
used for numerous many-cluster systems, as it provides a good
description of the internal structure of clusters and the inter-
action between clusters as well. After the NN potential was
selected, we need to fix four input parameters: the oscillator
length b, number of channels or number of hyperspherical
harmonics, and number of hyper-radial excitations.

We restrict ourselves with a finite set of hyperspherical
harmonics, which is determined by the maximal value of the
hyperspherical momentum Kmax. To describe the positive
parity states, we use all hyperspherical harmonics with the
hypermomentum K � Kmax = 14, and the negative parity
states are described by the hyperspherical harmonics with
K � Kmax = 13. These numbers of hyperspherical harmonics
account for many different scenarios of the three-cluster decay.
We also restrict ourselves with the number of hyper-radial
excitations nρ � 100. This allows us to reach the asymptotic
region, where all clusters are well separated, and the cluster-
cluster interaction induced by the NN potential becomes
negligibly small. In Table I, we collect information about the

TABLE I. Number of channels involved in calculations for
different states J π of 9Be and 9B. Nch(J−) and Nch(J+) are explained
in the text.

J π 1/2− 1/2+ 3/2− 3/2+ 5/2− 5/2+ 7/2− 7/2+ 9/2+

Kmax 13 14 13 14 13 14 13 14 14
Nch(J−) 21 28 12 21 44 42 30 54
Nch(J+) 29 12 21 44 42 30 30 54 36
Nch 29 33 49 56 63 74 72 84 90

number of total channels (Nch) involved in calculations for
different values of the total angular momentum J and parity π .
We also indicated the number of channels compatible with the
total orbital momentum L = J − 1/2 [Nch(J−)] and L = J +
1/2 [Nch(J+)]. Naturally, Nch = Nch(J−) + Nch(J+). Note that
the same set of hyperspherical harmonics was used in Ref. [2].

Since the total spin of nuclei 9Be and 9B equals S = 1/2, the
total orbital momentum L is not a good quantum number, and
the state with the total angular momentum J will be presented
by a combination of the states with L = J − 1/2 and L =
J + 1/2. One may expect that the spin-orbital forces play a
noticeable role in the formation of the ground and excited
states in 9Be and 9B.

We selected a tree of the Jacobi vectors, where the first
Jacobi vector x determines a distance between the centers-of-
mass of two α particles, while the second Jacobi vector y indi-
cates a distance of the valence nucleon to the center-of-mass of
two α particles. With such a choice of the tree, the partial orbital
momentum l1 of the relative rotation of two α particles has only
even values. As a consequence of that restriction, the number
of independent hyperspherical harmonics is reduced two times,
and the parity of the compound system is totally determined by
the partial orbital momentum l2, which is associated with the
rotation of the valence nucleon around 8Be as the two-cluster
α + α subsystem.

In the present paper, as in previous calculations [2], the
oscillator length b is selected to minimize the bound state
energy of an α particle, which is obtained with b = 1.317 fm.
This allows us to describe correctly the internal structure of the
α particle. If we take the original form of the MHNP, we obtain
the overbounded ground state in 9Be and the bound 3/2− state
in 9B. The latter contradicts the experiments with 9B. A similar
situation was observed for the MP. To avoid this unphysical
situation, we changed slightly the parameters of the MHNP in
order to reproduce the bound state energy of 9Be. We recall
that a modification of the Majorana parameter affects only the
odd components of the central part of the NN potential. This
modification does not affect the spin-orbital components of the
MHNP, which are taken in the original form. Within the present
model, the odd components determine the interaction between
clusters, but are not involved in determining the internal energy
of each cluster consisting of s-wave configurations. Thus, by
modifying the Majorana parameter, we obtain the correct value
of the binding energy of 9Be with m = 0.4389, which can be
compared to the original value m = 0.4057. With this value
of the Majorana parameter, the spectra of resonance states in
9Be and 9B are calculated.

A. Two-cluster subsystems

Before proceeding to the resonance states in 9Be and
9B, let us consider how the MHNP describes their two-
cluster subsystems. By using new and original parameters
of the MHNP, we calculate the spectra of resonance states
in two-cluster subsystems 8Be, 5He, and 5Li. The results
of these calculations are presented in Table II. One can see
that the MHNP with original parameters describes better the
spectrum of the resonance states in 8Be, especially the 2+
and 4+ resonance states. However, the NN potentials with
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TABLE II. Spectrum of resonance states in 8Be, 5He, and 5Li
calculated with original (O) and modified (M) parameters of the
MHNP. Energy E and width 
 are in MeV.

J π O M Expt. [38]

E 
 E 
 E 


8Be 0+ 0.360 0.032 0.859 0.958 0.092 5.57 × 10−6

2+ 3.196 1.716 4.138 4.809 3.12 1.513
4+ 11.576 2.569 14.461 6.386 11.44 ≈3.500

5He 3/2− −0.258 0.385 0.209 0.798 0.648
1/2− 2.307 10.195 2.335 11.927 2.068 5.57

5Li 3/2− 0.608 0.162 1.236 0.725 1.69 1.23
1/2− 3.194 11.986 3.235 13.903 3.18 6.60

the original and modified sets of parameters yield too wider
0+ resonance states with a larger energy. The MHNP with
the modified Majorana parameter describes better the spectra
of resonance states in 5He and 5Li than this potential with
the original value of m. However, the theoretical values of
energy and width of the lowest resonance states in 5He and
5Li differ noticeably from experimental values. Despite these
discrepancies between the calculated and experimental spectra
of resonance states in two-cluster systems 8Be, 5He, and 5Li,
we are going to use the MHNP with the modified value of the
parameter m to study the spectrum of three-cluster resonance
states in 9Be and 9B compound nuclei. As is well known
(see, e.g., Ref. [2] and references therein), it is impossible to
reproduce properly the spectra of 9Be and 9B with an effective
NN potential, which properly describes the structures of the
two-cluster subsystems 8Be, 5He, and 5Li.

B. Three-cluster systems

Now, we turn our attention to the spectra of 9Be and
9B nuclei. The results of calculations with the MHNP are
presented in Tables III and IV, where we compare our results
with the experimental data [39]. The results of our calculations
are in fairly good agreement with available experimental data.

TABLE III. Spectra of bound and resonance states of 9Be
calculated with the MHNP.

J π Expt. AM HHB, MHNP

E (MeV ± keV) 
 (MeV ± keV) E (MeV) 
 (MeV)

3/2− −1.5735 −1.5743
1/2+ 0.111 ± 7 0.217 ± 10 0.338 0.168
5/2− 0.8559 ± 1.3 0.00077 ± 0.15 0.897 2.363 × 10−5

1/2− 1.21 ± 120 1.080 ± 110 2.866 1.597
5/2+ 1.476 ± 9 0.282 ± 11 2.086 0.112
3/2+ 3.131 ± 25 0.743 ± 55 4.062 1.224
3/2−

2 4.02 ± 100 1.33 ± 360 2.704 2.534
7/2− 4.81 ± 60 1.21 ± 230 4.766 0.404
9/2+ 5.19 ± 60 1.33 ± 90 4.913 1.272
5/2−

2 6.37 ± 80 ∼1.0 5.365 4.384
7/2+ 5.791 3.479

TABLE IV. Experimental and theoretical spectra of resonance
states of 9B.

J π Expt. AM HHB, MHNP

E (MeV ± keV) 
 (MeV ± keV) E (MeV) 
 (MeV)

3/2− 0.277 0.000 54 ± 0.21 0.379 1.076 × 10−6

1/2+ (1.9) �0.7 0.636 0.477
5/2− 2.638 ± 5 0.081 ± 5 2.805 0.018
1/2− 3.11 3.130 ± 200 3.398 3.428
5/2+ 3.065 ± 30 0.550 ± 40 3.670 0.415
3/2+ 4.367 3.876
3/2−

2 3.420 3.361
7/2− 7.25 ± 60 2.0 ± 200 6.779 0.896
9/2+ 6.503 2.012
5/2−

2 12.670 ± 40 0.45 ± 20 5.697 5.146
7/2+ 7.100 4.462

The energy and width of some resonance states are rather close
to experimental data, for instance, parameters of the 5/2− and
9/2+ resonance states in 9Be and parameters of the 5/2−,
1/2−, and 5/2+ resonance states in 9B.

The spectra of the ground and excited states in 9Be and
9B, presented in Fig. 1, where the energy is displayed as a

FIG. 1. Spectra of rotational bands in 9Be and 9B.
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FIG. 2. Experimental (Exp) and calculated spectra of 9Be deter-
mined with the MHNP and MP.

function of J (J + 1), show that there are three rotational bands
in these nuclei. They can be marked in the standard manner as
Kπ = 3/2−, Kπ = 1/2−, and Kπ = 1/2+ rotational bands.
The main Kπ = 3/2− rotational bands are comprised of the
Jπ = 3/2−

1 , 5/2−
1 , and 7/2−

1 states and are represented by
almost straight lines in both nuclei. This means that the
effective moment of inertia is of the rigid-body type, since
it is independent of the total angular momentum J . This is
the first rotational band for negative parity states. The second
negative-parity rotational Kπ = 1/2− band involves also three
states Jπ = 1/2−, 3/2−

2 , and 5/2−
2 . A bent line connects these

states. However, that part of the line, which connects 3/2−
2 and

5/2−
2 states, is parallel to the line of the first rotational band.

Such shape of a line in the Kπ = 1/2− band indicates that the
Coriolis forces are strong in the 1/2− state and are very small
in the 3/2−

2 and 5/2−
2 states. The Coriolis forces, associated

with the interaction of the internal and collective degrees of
freedom, are rather strong in the states of the positive-parity
rotational Kπ = 1/2+ band. They are very strong especially
for the 3/2+ and 9/2+ states, since these states strongly bend
the line collecting the states of this band. For the Kπ = 1/2−
band, the line connecting the Jπ = 5/2+ and 7/2+ states is
also parallel to the line of the first rotational Kπ = 3/2− band.
It is worthwhile to note a close similarity in the structures of
rotational bands in 9Be and 9B nuclei.

In Figs. 2 and 3, we compare the results of our present cal-
culations (MHNP) with the results of previous investigations
(MP) presented in Ref. [2] and with available experimental
data [39].

There are two main differences between previous calcu-
lations with the MP and new ones with the MHNP. First,
the MHNP generates much less (approximately two times)
of resonance states within the considered region of energy.
Second, the MHNP does not create many narrow resonance
states. The common feature of these two calculations is that the
1/2+ resonance states in 9B and 9Be are observed close to the
three-cluster threshold α + α + N . It is worthwhile to recall
that parameters of the MP and MHNP potentials were adjusted
to reproduce the energy of the 3/2− ground state in 9Be. With
these parameters, we obtained the 3/2− resonance states of 9B

FIG. 3. Experimental and calculated spectra of 9B.

at the energy very close to the experimental one. This result
means that we found the correct interaction between clusters
in 9B and 9Be. From Figs. 2 and 3, we conclude that the MHNP
generates a more correct cluster-cluster interaction for many
sets of the Jπ states, than the MP. We also conclude that the
spectra of resonance states in 9B and 9Be strongly depend on
peculiarities of the NN potential.

FIG. 4. Comparison of some resonance states in 9Be and 9B
calculated with the MHNP and MP potentials and with experimental
data.
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FIG. 5. Phase shifts δcc and inelastic parameters ηcc for the 3 ⇒ 3
scattering for the J π = 1/2+ state in 9Be.

In Fig. 4, we provide a more detailed comparison of some
resonance states calculated with the MHNP and MP. As we see,
the positions of selected resonance states (namely 5/2− and
1/2+ in both nuclei, and 3/2− in 9B) are almost independent
of or slightly dependent on the shape of NN potentials.

IV. PROPERTIES OF THE 1/2+ RESONANCE STATES

A. Resonance solutions in the hyperspherical
harmonics method

Now we turn our attention to the 1/2+ resonance states
in 9B and 9Be. In this section, we are going to present more
details about calculations of resonance states within the present
model. Numerical solutions of the dynamic equations (8) give
us Nch × Nch elements of the S matrix ‖Sc,̃c‖ and a set of wave
functions for a given value of energy. We analyze the behavior
of the diagonal matrix elements Sc,c of the S matrix, which are
represented as Sc,c = ηc,c exp {2iδc,c}, where δc,c is the phase
shift, and ηc,c is the inelastic parameter. This analysis helps us
to reveal resonance states and determine some of their physical
properties. However, the energy of a resonance state and its
total width are determined, by using the uncoupled channel or
eigenchannel representation, which is obtained by reducing the
scattering matrix ‖Sc,̃c‖ to the diagonal form. Details of such
transformations are explained in Ref. [40]. The representation
allows us to calculate partial widths, to discover dominant
decay channels, and thus to shed more light on the nature of
investigated resonance states.

In Figs. 5 and 6, we display the diagonal phase shifts and in-
elastic parameters of 3 ⇒ 3 scattering for the 1/2+ state in 9B
and 9Be, respectively. These results are obtained with Kmax =
14 and with the MHNP. With such a value of Kmax, 33 channels
are involved in calculations (see Table I) and only three of them
produce phase shifts, which are not very small in the energy

FIG. 6. Phase shifts δcc and inelastic parameters ηcc for the 3 ⇒ 3
scattering for the J π = 1/2+ state in 9B.

region 0 � E � 5 MeV. The phase shift connected with the
channel c = {K = 0, l1 = 0, l2 = 0, L = 0} of 9Be shows
the resonance behavior at the energies E = 0.338 MeV and
E = 1.432 MeV. The second resonance state is also reflected
in the second channel c = {K = 2, l1 = 0, l2 = 0, L = 0} as
a shadow resonance. We recall that the shadow resonance
appears in many-channel systems, when it is created in one
channel and manifests itself in other channels. The most
famous shadow resonance states are the 3/2+ resonance states
in 5He and 5Li, which were thoroughly discussed in [32]. These
resonance states are created by the Coulomb barrier in d + t
and d + 3He channels, respectively, and they are also reflected
in α + n and α + p channels. If one disconnects the coupling
between d + t and α + n channels or between d + 3He and
α + p channels, then one will observe the resonance state
only in the first d + t or d + 3He channel. See more detailed
discussions of the shadow resonance states in Refs. [41,42].

Phase shifts δcc for the 1/2+ state in 9B also exhibit
resonance states at two energies E = 0.636 MeV and E =
2.875 MeV. As in the case of 9Be, the 1/2+ resonance states
in 9B are related to only one channel,

c = {K = 0, l1 = 0, l2 = 0, L = 0}.
Due to the Coulomb interaction, the resonance states in 9B are
shifted to a higher energy region with respect to the position
of these resonance states in 9Be. It is worthwhile to note that
one observes only elastic processes around the first 1/2+
resonance state in both nuclei, as the inelastic parameters
ηcc = 1. Meanwhile, the elastic and inelastic processes are
quite intense around the second 1/2+ resonance state in 9B
and 9Be. These results mean that only one channel dominates
in the formation of the first 1/2+ resonance state, and that
more channels are involved in the formation and decay of the
second 1/2+ resonance state.
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Phase shifts δcc for the 1/2+ state in 9Be and 9B demonstrate
that the total orbital momentum L = 0 dominates in this state.
Can we neglect the total orbital momentum L = 1 to form
the 1/2+ state? What is a role of the value of the total orbital
momentum? To answer these questions, we make additional
calculations by neglecting the state with L = 1. As a result,
we obtain the 1/2+ resonance state in 9Be with parameters
E = 0.340 MeV and 
 = 0.171 MeV, which are close to
the results with L = 0 and L = 1: E = 0.338 MeV and

 = 0.168 MeV. For 9B, we obtain E = 0.649 MeV and 
 =
0.475 MeV, which have to be compared with E = 0.636 MeV
and 
 = 0.477 MeV. Thus, one can obtain quite correct values
of energies and total widths of the 1/2+ resonance states in
9Be and 9B by omitting the L = 1 state.

It is worthwhile to note that, with the MHNP, we obtain the
1/2+ resonance states in 9Be and 9B with energies of 0.338 and
0.636 MeV, respectively. These energies are smaller than the
energies of binary channel thresholds 8Be + n and 8Be + p,
if we take the energy of the 0+ resonance state as the “ground
state” of 8Be. As we can see from Table II, this energy equals
0.859 MeV. Thus, our model with the MHNP suggests that
the 1/2+ resonance state in 9Be and 9B is of the three-cluster
nature. Let us compare the present result with the previous
one obtained with the MP. The energies of the 1/2+ resonance
states in 9Be and 9B, calculated in Ref. [2] with the MP, are
equal to 0.25 and 0.59 MeV, respectively, which is higher than
the energy E = 0.17 MeV of binary thresholds 8Be + n and
8Be + p. Thus, the 0+ resonance state in 8Be may participate
in the formation of the 1/2+ resonance state in 9Be and 9B.

B. Resonance wave functions in the oscillator
shell representation

1. Convergence of resonance energy and width

To demonstrate that we involve a large set of the hyper-
spherical harmonics, which provides the convergent results
for energies and widths of resonance states, we consider how
they depend on the numbers of hyperspherical harmonics. In
Table V, we demonstrate the convergence of parameters of the
1/2+ resonance states in 9B and 9Be. As we see, the parameters
of the first 1/2+ resonance states in 9B and 9Be are quite stable,
when we increase the basis of hyperspherical harmonics from
Kmax = 4 to Kmax = 14. However, it is not the case for the
second 1/2

+
resonance states in 9B and 9Be, as a larger set

TABLE V. Convergence of parameters of the 1/2+ resonance
states in 9Be and 9B.

Nucleus Kmax 4 6 8 10 12 14

9Be E, MeV 0.338 0.338 0.338 0.338 0.338 0.338

, MeV 0.179 0.175 0.172 0.171 0.169 0.168
E, MeV 4.972 3.710 2.091 1.886 1.764 1.432

, MeV 3.827 3.869 1.194 0.641 0.634 0.233

9B E, MeV 0.629 0.631 0.633 0.634 0.636 0.636

, MeV 0.493 0.487 0.483 0.481 0.479 0.477
E, MeV 5.173 4.434 3.948 3.030 2.875

, MeV 3.287 3.001 3.350 1.978 1.235

TABLE VI. Total 
 and partial 
i widths for the second 1/2+

resonance states in 9Be and 9B.

9Be

E = 1.432 MeV, 
 = 0.2327 MeV

i K l1 l2 L 
i 
i/
 K l1 l2 L 
i 
i/


1 0 0 0 0 0.1858 79.82 0 0 0 0 0.1858 79.82
2 2 0 0 0 0.0458 19.67 2 0 0 0 0.0293 12.59
3 4 2 2 0 0.0009 0.39 2 1 1 0 0.0165 7.08
4 4 2 2 1 0.0001 0.08 4 1 1 0 0.0006 0.262
5 4 2 2 0 0.0004 0.17
6 4 2 2 1 0.0001 0.05
Tree n + 8Be 4He + 5He

9B

E = 2.871 MeV, 
 = 1.2355 MeV

i K l1 l2 L 
i 
i/
 K l1 l2 L 
i 
i/


1 0 0 0 0 1.1072 89.62 0 0 0 0 1.1072 89.62
2 2 0 0 0 0.1154 9.34 2 0 0 0 0.0739 5.98
3 4 0 0 0 0.0025 0.20 2 1 1 0 0.0416 3.36
4 4 2 2 0 0.0088 0.72 4 1 1 0 0.0084 0.68
5 4 2 2 1 0.0013 0.10 4 2 2 0 0.0030 0.24
6 4 1 1 1 0.0005 0.04
7 4 2 2 1 0.0008 0.07

Tree n + 8Be 4He + 5He

of hyperspherical harmonics participates in the formation of
these states.

Our method allows one to reveal the dominant decay
channels by calculating the partial widths 
i (i = 1,2,. . .,
Nch, 
 = ∑Nch

i=1 
i) of each resonance state. An algorithm for
their determination is presented in Ref. [40]. We consider the
partial widths only of the second 1/2+ resonance states in 9Be
and 9B. In Table VI, we present the total and partial widths
of those channels, which make a noticeable contribution to
the total width of the resonance state. In this table, we also
show the ratio 
i/
 in percent (i = 1, 2,. . .), which explicitly
indicates the most probable decay channels of the considered
resonances. Note that the total contribution of the presented
channels exceeds 99.95%.

In Tables VII and VIII, we collect different experimental
and theoretical results concerning the parameters of the 1/2+
resonance states in 9Be and 9B. Here, the ACCCM stands for
the analytic continuation in the coupling constant method [43],
and GCM means the generator coordinate method [8]. Both
methods make use of the same part of the Hilbert space,
as we use in our model. In Ref. [8], the Volkov potential
N2 supplemented with the zero-range spin-orbital interaction
represents the NN potential, while the MP is involved in the
ACCCM calculations [43]. The ACCCM model generates the
very broad 1/2+ resonance states in both nuclei. The energy
of each of these resonances exceeds 2 MeV. Parameters of
the 1/2+ resonance states determined within the GCM are
close to experimental values, especially for 9Be. The GCM
implies that the 1/2+ resonance state in 9B is broad. Within
our model, we obtain the energy of the 1/2+ state in 9Be to
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TABLE VII. Parameters of the 1/2+ resonance state in 9Be
determined by different experimental and theoretical methods.

9Be

Method Source E, MeV 
, keV

(e,e′) [44] 1.684 ± 0.007 217 ± 10
(e,e′) [29] 1.68 ± 0.015 200 ± 20
(γ,n) [27] 1.750 ± 0.010 283 ± 42
(e,e′) [28] 1.732 270
β decay [45] 1.689 ± 0.010 224 ± 7
(e,e′) [25] 1.748 ± 0.006 274 ± 8
(γ,n) [46] 1.728 ± 0.001 214 ± 7

ACCCM [43] 2.52 2620
GCM [8] 1.55 360
AM HHB, MP [2] 1.802 15
AM HHB, MHNP present 1.912 168

be close to experimental data. However, its width is smaller
than the experimental one. The calculated width with the MP
is very small. In 9B, our model generates two resonance states,
one of which is close to the “ground state” (E ≈ 0.3 MeV),
and the second one has the excitation energy E > 2 MeV and
a width around 1 MeV.

2. Wave functions of resonance states

To understand the nature of 1/2
+

resonance states in 9B
and 9Be, we analyze their wave functions. As was mentioned
above, the wave function of the three-cluster system has many
components and is a huge object which is difficult to be
analyzed. The simplest way for analyzing the wave function of
a resonance state is to study the weights of oscillator shells. In
Fig. 7, we show the weights Wsh of different oscillator shells
Nsh (Nsh = 0, 1, 2,. . .) in the wave function of resonance states.
The weights are determined as follows:

Wsh = Wsh(Nsh) =
∑

nρ,c∈Nsh

∣∣Cnρ,c

∣∣2
.

TABLE VIII. Parameters of the 1/2+ resonance state in 9B
determined by different experimental and theoretical methods.

9B

Method Source E, MeV 
, MeV

Compilation [26] 1.0 1.8
6Li(6Li,t) [31] 0.73 ± 0.05 ≈0.3
10B(3He,α) [47] 1.8 ± 0.2 0.9 ± 0.3
6Li(6Li,d) [48] 0.8–1.0 ≈1.5

ACCCM [43] 2.0 2.7
GCM [8] 1.27 1.24
AM HHB, MP [2] 0.30 0.12
AM HHB, MP [2] 2.08 0.83
AM HHB, MHNP present 0.26 0.48
AM HHB, MHNP present 2.50 1.24

FIG. 7. Weights of different oscillator shells in the wave functions
of 1/2+ resonance states in 9Be and 9B.

We note that the oscillator wave functions with small values of
Nsh describe very compact configurations of the three-cluster
system, when the distances between interacting clusters are
very small. The oscillator functions with large values of Nsh

account for configurations of the three-cluster system with
large distances between all clusters, and/or if one cluster is
far away from two other clusters. These statements can be
deduced from the fact that the radius (or average size) of a
three-cluster system, described by an oscillator function from
the Nsh oscillator shell is approximately equal to b

√
4Nsh + 3.

We can see that the wave function of the first 1/2+
resonance in 9Be is similar to the wave function of the first
resonance state in 9B, and both of them are represented by the
oscillator functions with large values of the Nsh shell. Figure 7
displays the behavior of the wave function, which is typical of
low-energy wave functions. In the asymptotic region, which is
not shown here, these functions have an oscillatory behavior.
This statement is justified by the following considerations.
Like the two-body case with a sort-range interaction, the
position of the first node of the wave function shifts to larger
distances from the origin, as the energy decreases to zero. In
the oscillator space, we have approximately the same picture,
as it is seen in the coordinate space, because there is a simple
relation between the wave function in the coordinate space
and expansion coefficients in the oscillator representation (see
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details, e.g., in [1]). To make this point clear, we consider
a simple case. Suppose that we involve only one channel to
describe the 1/2+ states in 9B and 9Be. This channel has the
zero value of the hypermomentum. Thus, the partial orbital
momenta l1 = l2 = 0, and the total orbital momentum L = 0.
The asymptotic part of the single-channel wave function in the
hyperspherical harmonic formalism [49,50] is

ψK,=0(ρ) ≈ cos (kρ + δ0 − 5π/4)

ρ5/2
, ρ � 1,

while the expansion coefficients in the oscillator representation
are

CnρK=0(b) ≈
√

2R2
n · cos (kbRn + δ0 − 5π/4)

R
5/2
n

, nρ � 1,

(12)
where δ0 is the phase shift of the 3 ⇒ 3 scattering with the
hypermomentum K = 0 and

Rn = √
4nρ + 6,

k =
√

2mE

h̄2 .

For the sake of simplicity, we assume that there is no
Coulomb interaction in both 9Be and 9B nuclei. The expansion
coefficients (12) indicate that the weight of the oscillator shell
Nsh = nρ approximately equals

Wnρ
≈

∣∣∣∣cos (kbRn + δ0 − 5π/4)√
Rn

∣∣∣∣2

(13)

and tends to zero, as nρ goes to infinity due to the denominator
proportional to n

1/2
ρ . It is seen from (13) that the oscillator

shells that obey the conditions

kbRn + δ0 − 5π/4 = νπ/2, ν = 1,2, . . .

give a negligibly small contribution to the wave function in
the oscillator representation CnρK=0 and, consequently, to the
weight Wnρ

. One may expect a node of the wave function at
this point of the discrete coordinate nρ .

In a more complicated case where a large number of
hyperspherical harmonics are involved in calculations, one
expects an oscillatory behavior of the wave functions and
weights Wsh of the oscillator shells for any state of the
continuous spectrum. For the states with large energies, more
nodes of a wave function in the oscillator representation can
be observed within a finite range of oscillator shells.

Such behavior of resonance wave functions may explain
why these resonances are difficult to be detected by alternative
methods.

It is worthwhile to note that such shape of the resonance
wave function is observed not only for the 1/2+ resonance
states in 9Be and 9B, but also for the low-lying 1/2+ resonances
in 11B and 11C, as shown in Ref. [51]. These resonance states
were considered as candidates for the Hoyle-analog states in
11B and 11C. They are narrower (
 = 12 and 
 = 163 keV for
A = 11 comparing to 
 = 168 and 
 = 477 keV for A = 9)
than the 1/2+ resonance states in 9Be and 9B. However, the
behavior of shell weights is very similar.

FIG. 8. Structure of the wave function of the 3/2− resonance state
in 9B.

In Fig. 8, we show the weights Wsh for the narrow 3/2−
resonance state in 9B. This is a typical picture for very narrow
resonance states in light nuclei. There are two main features
of the wave functions of narrow resonance states. First, the
wave function is represented by the oscillator shells with small
values of Nsh. Second, it has very large values of the weights
Wsh for resonance states.

It should be stressed that all wave functions of continuous
spectrum states are normalized by the standard condition

〈�E,Jπ |�Ẽ,Jπ 〉 = δ(k − k̃),

where

k =
√

2mE

h̄2 , k̃ =
√

2mẼ

h̄2 .

By analyzing the total and partial widths, we determine
the dominant decay channels of a three-cluster resonance
state. This analysis help us to shed some light on the nature
of a resonance channel in many-channel systems. It can be
performed for two different trees of the Jacobi vectors, which
were denoted as n + 8Be and 4He + 5He in Ref. [2]. The 1/2+
resonance states in 9Be and 9B have only dominant channel.
In the first tree n + 8Be, the resonance prefers to decay into
the dominant channel, where the relative orbital momentum
of two α particles and the orbital momentum of the valence
neutron (with respect to the center-of-mass of two α particles)
are equal to zero. The partial width of this channel almost
coincides with the total width. The same situation is observed
in the second tree, 4He + 5He. There is also only one dominant
channel with partial orbital momenta l1 = 0 and l2 = 0. The
first orbital momentum l1 represents the relative motion of
the neutron around the first α particle and the second one l2
represents the relative motion of the second α particle with
respect to the center-of-mass of the subsystem α + n. These
properties of the 1/2+ resonance states in 9Be and 9B are based
on two important facts. The first fact is that the resonance wave
functions have the dominant configuration with K = 0. The
second fact is that the K = 0 hyperspherical harmonic has
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FIG. 9. Spectra of bound and resonance states in 9Be and 9B
calculated with the MHNP.

the essential property of l1 = 0 and l2 = 0 independently of
the Jacobi tree.

V. EFFECTS OF COULOMB FORCES

Within the present model, the differences in the positions
and total widths of resonance states in mirror nuclei 9Be and
9B arise from the Coulomb interaction solely, which is stronger
in 9B, as compared with 9Be.

Effects of the Coulomb interaction on mirror or isobaric
nuclei have been repeatedly investigated by many researchers.
Very often, the influence of the Coulomb potential on the
spectra of such nuclei is associated with the Thomas-Erhman
effect or shift (see, e.g., [52] and references therein), which
is connected with a shift of the energy of single-particle
levels in mirror nuclei due to the Coulomb interaction. By
considering the mirror nuclei in the isotopic spin formalism,
one can suggest twofold effects of the Coulomb forces on the
parameters of resonance states. First, increasing the Coulomb
interaction leads to decreasing the attractive interaction in
each channel of a many-channel system. It can shift up the
energies of resonance states and can also increase the widths
of resonance states. Second, the Coulomb interaction makes
the effective barrier wider, which can decrease both energies
and widths of resonance states. What scenario is realized in
nuclei 9Be and 9B, and how does it depend on the total angular
momentum J ?

A first effect of the Coulomb forces in the mirror nuclei 9Be
and 9B can be seen in Fig. 9, where the spectra of these nuclei
are shown. Five dashed lines connecting levels with the same
total angular momentum J and parity π in 9Be and 9B show
that the Coulomb forces significantly shift up levels (Jπ =
3/2−, 5/2−, 5/2+, 7/2−, and 9/2−), and four dashed lines
indicate a moderate shift up of the energies of the resonance
states (Jπ = 1/2+, 3/2−, 1/2− and 3/2+) in 9B comparing
with the corresponding states in 9Be.

In Fig. 10, we see how the Coulomb forces affect both
energy E and width 
 of a resonance state. In this figure,
the resonance states of 9Be are marked by triangles up, while
the resonance states of 9B in the plane E-
 are indicated by

FIG. 10. Displacement of resonance states due to the Coulomb
interaction.

triangles down. The dashed line indicates the case 
 = E, i.e.,
the width of a resonance state equals its energy. As one can
see from Tables III and IV and from Fig. 10, the energy of
the resonance state of 9Be with given total angular momentum
J and parity π is lower than the analogous resonance state
in 9B. All resonance states in 9Be are narrower than the
corresponding resonance states in 9B.

The results presented in Tables III and IV and in Figs. 9
and 10 indicate that just the first scenario is realized in mirror
nuclei 9Be and 9B. The Coulomb force leads to the increase in
both energies and widths of resonance states. We can separate
all resonance states into three categories depending on effects
of the Coulomb interaction. For this aim, we calculate the
“Coulomb shift angle”

θC = arctan

(
E(9B) − E(9Be)


(9B) − 
(9Be)

)
for each pair of resonance states in 9Be and 9B with given
values of the total momentum J and parity π . The first category
consists of resonance states with the Coulomb shift angle 40 �
θC � 50◦. We refer to this category as a category with the
moderate Coulomb effects. There are several resonance states,
when the Coulomb forces increase the energy and the width
in the same proportion. This leads to the case where the line
connecting analogous resonance states is parallel or almost
parallel to the line 
 = E. These are 1/2+ and 3/2−

2 resonance
states. The second category of resonance states consists of
those with the Coulomb shift angle θC < 37◦. We refer to it as
a category of weak Coulomb effects. In this case, the Coulomb
interaction changes strongly the energy and weakly changes
the resonance width. This category includes 5/2−

1 , 5/2+
1 , 7/2−,

7/2+, and 9/2+ resonance states. The third category includes
the resonance states with slightly changed energy, but with
strongly increased width. The Coulomb shift angle for this
category θC > 66◦. This category consists of four resonance
states: 1/2−, 3/2+, 5/2−

2 , and 5/2+
2 .

034322-11
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Thus, the Coulomb interaction has weak, moderate, or
strong influences on the parameters of resonance states in
mirror nuclei 9Be and 9B.

VI. HOYLE-ANALOG STATES

We recall that the Hoyle state is a very narrow resonance
state in 12C. It lies not far from the three-cluster threshold
(E = 0.38 MeV) and has a very small width, 
 = 8.5 eV.
One of the main features of the Hoyle resonance state is that
it is a very long-lived resonance state (on the nuclear scale).
The Hoyle state plays an important role in the nucleosynthesis
of carbon in helium-burning red giant stars, which are rich
of α particles. The present AM HHB model was successfully
used in Ref. [37] to study the spectra of bound and resonance
states in 12C. It was obtained that the Hoyle state is generated
by the triple collision of three α particles. (It should be
stressed that the present model accounts for both sequential
and simultaneous decays or excitations of a three-cluster
resonance state. Technically, it is very difficult to distinguish
a sequential decay from a simultaneous one in the present
approach. Thus, in our notation, the term “the triple collision”
stands for both types of processes.) These results of the present
model encouraged us to search the Hoyle-analog states in
9Be. There is a quest for the Hoyle-analog states in light
nuclei by different theoretical methods. Here, we are going to
find the Hoyle-analog state(s) in 9Be, by using the AM HHB
model.

If we look at Table III, we find that 9Be has two resonance
states (1/2+ and 5/2−), which lie close to the three-cluster
threshold α + α + n. However, the 1/2+ resonance state is
not a narrow one, as the ratio 
/E is large (
/E ≈ 0.5).
Meanwhile, the 5/2− resonance state is indeed a narrow
resonance state, because its width is small 
 = 23.6 eV,
and, in addition, the ratio 
/E is also very small. It equals

/E ≈ 2.63 × 10−5 in our model, whereas the experimental
ratio is 
/E ≈ 9.0 × 10−4. One can compare this ratio with
the experimental ratio 
/E ≈ 2.24 × 10−7 for the Hoyle state.

FIG. 11. Weights of different oscillator shells in the wave function
of the 5/2− resonance state in 9Be.

Our calculation indicates that the 5/2− resonance state is the
Hoyle-analog state. This state has a quite large half-life time,
could emit quadrupole γ quanta, and transit to the ground state
of 9Be. This is one of the possible ways for the synthesis of 9Be.
We assume that, in stars with large densities of α particles and
neutrons, this is a very plausible way of creating 9Be nuclei.

The present model indicates also that the 1/2+ resonance
state, being a too wide or too short-lived one, has very small
chance to participate in the synthesis of 9Be.

Let us consider the structure of the 5/2− resonance state in
9Be. In Fig. 11, we demonstrate the weights Wsh of different
shells in the wave function of the 5/2− resonance state. It
can be concluded from this figure that the 5/2− resonance
state is a compact object, as it is mainly represented by the
oscillator shells with small numbers of Nsh. The structure of
the wave function of the 5/2− resonance is similar to that of
the 9Be ground-state wave function, which was displayed in
Fig. 3 of Ref. [2]. In both cases, the main contribution to the
wave functions of bound and resonance states comes from the
oscillator shells Nsh � 15. In addition, the wave function of
the resonance state has a very large amplitude in the internal
region (Wsh � 106). Such behavior of the wave function of the
5/2− resonance state in 9Be is very similar to the behavior of
the wave function of the Hoyle state in 12C (see, for instance,
Refs. [51,53,54]).

By comparing Figs. 8 and 11 for the resonance states 3/2−
in 9B and 5/2− in 9Be, respectively, we came to the conclusion
that these figures represent the standard behavior of the wave
functions for narrow resonance states. This means that the
wave function of a “standard” resonance state has a very
large amplitude in the internal region, and this amplitude is
much larger than the oscillating amplitude in the asymptotic
region. This also means that three clusters spend a long time
in the region, where the intercluster distances are small, and
the interaction between them is strong.

Let us consider candidates to the Hoyle-analog states in 9B.
This nucleus, as was mentioned above, has no bound state.
Thus, there is no way for creating a stable state in the triple

FIG. 12. Structure of the wave function of the 5/2− resonance
state in 9B. The result is obtained with the MHNP.
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TABLE IX. Average distances R1 = R(N − αα) and R2 =
R(α − α) (in fm) for a few states of 9Be and 9B.

9Be

J π E 
 R1 R2

3/2− −1.574 3.71 3.38
5/2− 0.897 2.363 × 10−5 4.75 3.52
1/2+ 0.338 0.168 14.02 7.37

9B

J π E 
 R1 R2

3/2− 0.378 1.076 × 10−6 3.96 3.50
5/2− 2.805 0.017 5.01 3.87
1/2+ 0.636 0.477 14.33 7.44

collision of two α particles and proton. However, one may
consider the creation of a narrow resonance state in 9B, which
can be then transformed into a bound state of 9Be by emitting
a β particle or in a combination of the β and γ decays. This
cascade of decays can be considered as an alternative way for
the synthesis of 9Be nuclei. As we see from Table IV, there
are two very narrow resonance states in 9B. They are the 3/2−
resonance state with the ratio 
/E ≈ 2.8 × 10−6 and the 5/2−
resonance state having the ratio 
/E ≈ 6 × 10−3. The first
resonance state, as was shown in Fig. 8, is a very compact
narrow three-cluster state. The 5/2− resonance state in 9B is
not so narrow as the 3/2− state. However, it has the wave
function with features which are typical of narrow resonance
states (see Fig. 12).

Having calculated the wave function of a bound or
resonance state, we can evaluate the shape of a triangle
connecting the centers-of-mass of interacting clusters. In
Table IX, we display the average distances R2 = R(α − α)
and R1 = R(N − αα) between clusters. The quantity
R(α − α) is the average distance between α particles, and
R1 = R(n − αα) [or R(p − αα)] determines the average
distance between the neutron (proton) and the center of mass
of two α particles. It is worthwhile to note that, to calculate
the average distances for resonance states, we make use of the
internal part of the wave functions, which are normalized to
unity (see more details in Refs. [2,51] about the definition of
average distances between clusters).

The narrow resonance states indicated in Table IX have
approximately the same size of the triangle as a bound state
in 9Be. Meanwhile, the 1/2+ resonance states in 9Be and
9B are represented by a very large triangle. We assume that
such dispersed (even in the internal region) resonance states
have a very small probability (comparing to the very narrow
resonance states) to be transformed into a bound state.

VII. CONCLUSIONS

A three-cluster microscopic model has been applied to
the studies of resonance states in mirror nuclei 9Be and
9B. The model makes use of the hyperspherical harmonics
to enumerate the channels of three-cluster continua and to
simplify the method of solution of the Schrödinger equation for
many-particle many-channel systems. The MHNP is employed
as the NN interaction. It is shown that the model with such NN
interaction provides a fairly good description of the parameters
of the known resonance states. This potential provides a
much better description of the spectra of resonance states in
9Be and 9B than the MP, which was used in the previous
paper [2]. It is shown that, within the present model, the
excited 1/2+ states in 9Be and 9B are described as resonance
states. It is also established that only one channel with the
hypermomentum K = 0 dominates in the formation and decay
of these 1/2+ resonance states. By analyzing effects of the
Coulomb interaction, we have discovered three groups of
resonance states, which reveal weak, medium, and strong
impacts of the interaction on the energies and widths of
resonance states. Our analysis leads us to the conclusion that
the very narrow 5/2− resonance state in 9Be can be considered
as the Hoyle-analog state. We assume that this state is a key
resonance state for the synthesis of 9Be in triple collisions of
α particles and neutron in a stellar environment.
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