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Triaxial quadrupole dynamics and the inner fission barrier of some heavy even-even nuclei
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Background: Inner fission barriers of actinide nuclei have been known for a long time to be unstable with respect
to the axial symmetry. On the other hand, taking into account the effect of the relevant adiabatic mass parameter
reduces or even may wash out this instability. A proper treatment of the dynamics for both axial and triaxial
modes is thus crucial to accurately determine the corresponding fission barriers. This entails in particular an
accurate description of pairing correlations.
Purpose: We evaluate the potential energies, moments of inertia, and vibrational mass parameters in a two-
dimensional relevant deformation space (corresponding to the usual β and γ quadrupole deformation parameters)
for four actinide nuclei (236U, 240Pu, 248Cm, and 252Cf). We assess the relevance of our approach to describe
the dynamics for a triaxial mode by computing the low energy spectra (exploring thus mainly the equilibrium
deformation region). We evaluate the inner fission barrier heights releasing the axial symmetry constraint.
Method: Calculations within the Hartree-Fock plus BCS approach are performed using the SkM* Skyrme
effective interaction in the particle-hole channel and a seniority force in the particle-particle channel. The
intensity of this residual interaction has been fixed to allow a good reproduction of some odd-even mass
differences in the actinide region. Adiabatic mass parameters for the rotational and vibrational modes are
calculated using the Inglis-Belyaev formula supplemented by a global renormalization factor taking into account
the so-called Thouless-Valatin corrections. Spectra are obtained through the diagonalization of the corresponding
Bohr collective Hamiltonian.
Results: The experimental low energy spectra are qualitatively well reproduced by our calculations for the
considered nuclei. Inner fission barrier heights are calculated and compared with available estimates from
various experimental data. The reproduction of the data is better for 236U and 240Pu (up to about 300 keV) than
for 248Cm and 252Cf (up to about one MeV).
Conclusions: While these results are encouraging, they call for, in particular, a better treatment of pairing
correlations, especially as far as the particle number conservation is concerned. Besides, these results could
provide a basis for the determination of the least action trajectories which would generate better grounds for the
evaluation of fission half lives.

DOI: 10.1103/PhysRevC.96.034320

I. INTRODUCTION

It has long been known [1] that static calculations yield
solutions around the inner fission saddle point which break
the axial symmetry. However, in approaches determining the
least action trajectory in the classical mechanical sense, it
has appeared that a tendency towards a restoration of the
axial symmetry could be found. This was first advocated in
calculations of fission barriers for some superheavy nuclei [2].
Recently, the same trend has been found in more elaborate
approaches including pairing correlations as collective modes
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for 240Pu in Ref. [3] and for 250,264Fm in Ref. [4]. Nevertheless,
it is clear that such results are strongly contingent upon
a correct static description of the potential energy surface
(PES) as well as of a relevant assessment of the collective
kinetic energy parameters along and around the preferred
trajectory. It seems therefore relevant to check, as a useful
starting point for microscopic evaluations of fission barrier
heights, to what extent they are able to reasonably describe the
dynamics associated with the triaxial degree of freedom. This
will be assessed in what follows by evaluating the low energy
spectroscopy for the full (five-dimensional) quadrupole modes
in the ground state well, within the same framework as the one
used to determine the potential energy surface (PES) in the
vicinity of the inner fission saddle point.
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Moreover, as is well known, PES results, hence in particular
fission barrier heights, may be considered even in purely
microscopic approaches to depend ultimately on two underly-
ing ingredients: bulk (liquid drop or semiclassical) properties
associated to the effective interaction in use and the averaged
single-particle level densities at the Fermi surface g̃(λ) which
are produced within a mean-field approach. For the former
ingredient, let us recall that the SkM∗ parametrization of the
Skyrme interaction [5] has been used here. Indeed, it has been
explicitly fitted from its original SkM version [6] to reproduce
supposedly good liquid drop barriers. The second factor
impacting the reproduction of the experimental barriers is
strongly associated with the quality of calculated pairing corre-
lations. Obtaining them adequately reflects good level density
properties and has a very important effect on relative energies,
particularly on fission barrier heights. It is clear (as exhibited
from the first Strutinsky’s type calculations) that shell effects
are partially damped by pair correlations. Increasing these
correlations acts in opposite directions near local minima and
around local extrema. As a result it diminishes fission barrier
heights. In this context, we emphasize that the intensities of
the residual interaction in use here were carefully determined
in Ref. [7] so as to reproduce reasonably well data on odd-even
mass differences (taken here from Ref. [8]) in the considered
region of the nuclear chart. This prescription is allegedly
the usual procedure to parametrize it or, at least, doing so
is generally advocated. But, in practice, it is implemented
merely through a fit of lowest quasiparticle energies. In our
case, such a reproduction has been demonstrated, at least
roughly, from explicit mass calculations for both even-even
and even-odd neighboring nuclei within Hartree-Fock plus
BCS calculations with self-consistent blocking in the latter
case.

More specifically, PESs have been evaluated through self-
consistent Hartree-Fock plus BCS calculations under two
constraints: on the intrinsic values of the Q20 and Q22 usual
quadrupole moments. While the SkM∗ Skyrme interaction
has been used as already mentioned for the particle-hole
channel, a seniority interaction has been considered to solve
the gap equations. The three moments of inertia and the
three vibrational mass parameters have been evaluated within
the Inglis-Belyaev [9] approximation of the adiabatic time-
dependent Hartree-Fock-Bogoliubov (ATDHFB) approach
(see [10] and [11]) supplemented by a rough estimate of
the momentum operator [11] as well as of the missing self-
consistent terms dubbed Thouless-Valatin [12] corrections.
The latter have been taken care of as in Ref. [13] (see the
extended discussion of Sec. II B). This has provided us with
a microscopically determined quadrupole Bohr Hamiltonian
[14] valid in particular for the ground state well, thus yielding
eigensolutions describing the low energy quadrupole dynamics
of the nuclei under consideration.

This paper will be organized as follows. In Sec. II, the
formalism in use will be briefly sketched together with some
relevant calculational details and approximations. Section III
will be devoted to the presentation and discussion of the
obtained results for the ground state well and the inner fission
barrier region. Finally, some conclusions and directions for
further studies will be detailed in Sec. IV.

II. THEORETICAL FRAMEWORK, APPROXIMATIONS,
AND SOME CALCULATIONAL DETAILS

A. Solving the constrained Hartree-Fock plus BCS equations

The essentials of the solution of the constrained Hartree-
Fock plus BCS (HF + BCS) equations, as performed here,
were described at length a long time ago for axially symmetric
solutions in Ref. [15] and in Ref. [16] whenever axial
symmetry is broken. In both references, the codes in use
preserve the intrinsic parity symmetry.

Calculations are performed under constraints on the
quadrupole moments corresponding to the two operators Q̂02

and Q̂22 given by

Q̂20 = 2ẑ2 − x̂2 − ŷ2, Q̂22 = ŷ2 − x̂2. (1)

From the corresponding expectation values, one deduces, as
usual, some β and γ quadrupole shape parameters defined as

β = π

5

√
〈Q̂20〉2 + 3〈Q̂22〉2

A〈̂r2〉 , tan γ =
√

3〈Q̂22〉
〈Q̂20〉

(2)

involving the expectation value of the r̂2, Q̂02, and Q̂22

operators and where A is the total number of nucleons. As
is well known, in the (β,γ ) plane the radial coordinate β is an
A-independent measure of the global quadrupole deformation
while the angle γ determines the triaxiality of the nuclear
distribution.

The expansion of canonical basis states on axially symmet-
ric harmonic oscillator states can be made, in a first stage, in
the coordinate representation in terms of normalized Hermite
and associated Laguerre polynomials Hnz

(ξ ) and L
|�|
nr

(η) (see
[17]) as

ϕμ(r,θ,z) =
√

βzβ
2
⊥

pi
e−(ξ 2+η)/2ei�θη|�/2|Hnz

(ξ )L|�|
nr

(η), (3)

where μ represents the set (nr,nz,�) of the harmonic oscillator
basis quantum numbers, while βz and β⊥ are the usual
oscillator constants, and finally ξ and η are given in terms
of the cylindrical coordinates r and z by ξ = zβz η = r2β2

⊥.
Then, the above states are combined to provide a basis

where both the x signature and the intrinsic parity are
conserved quantum numbers (see Ref. [16]), so that

|μ,s〉 =
√

2

2
(φμχ1/2 + s(−1)nzφμχ−1/2), s = ±1. (4)

Here we have introduced μ = (nr,nz,−�) and χ± 1
2

as one-half
spinors.

As a consequence of Eqs. (3) and (4), local densities
and other observables can be represented as finite Fourier
series in the angular variable θ so that the integrals over θ ,
needed in the calculation of various matrix elements, can
be done analytically [16]. The remaining integrations (over
the r and z variables) are performed by Gauss-Laguerre and
Gauss-Hermite quadratures (with respectively 16 and twice
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25 (for positive and negative z values) mesh points. The
so-obtained real symmetric matrices are diagonalized using
standard numerical methods.

In practice, the basis set must, of course, be truncated. It has
been done upon using the deformation dependent prescription
of Ref. [15],

h̄ω⊥(n⊥ + 1) + h̄ωz

(
nz + 1

2

)
� h̄ω0(N0 + 2). (5)

We have chosen N0 = 16. It is a reasonable compromise
between accuracy and feasibility to describe the whole fission
barriers of actinide nuclei (see Ref. [18]). The usual axial
harmonic oscillator parameters b = √

mω0/h̄ and q = ω⊥/ωz,
where m is the nucleon mass (which is approximated as being
equal for neutron and proton, with h̄2/2m = 20.7355 MeV
fm2), are determined by energy minimization.

The (b,q) parameters are fitted on a mesh of points
separated by �β = 0.01 on the axial edges (prolate and oblate
shapes) of the (β,γ ) sextant.

Therefore, assuming that the basis parameters used for
triaxial calculations should be close to those obtained in the
axial calculation corresponding to the same β value, we have
performed all triaxial calculations using the values of b and
q retained in the axial cases by extrapolating them for a
given value of β as a function of the scalar invariant cos(3γ ).
The HF + BCS equations are solved iteratively, as usual. The
retained convergence criteria are 0.1 keV for the total energy
and 0.01 barn for both Q̂02 and Q̂22 quadrupole moments.

B. Moments of inertia and adiabatic mass parameters

Out of the seven scalar functions of (β,γ ) defining the Bohr
Hamiltonian, the potential energy surface is obtained from
the energy of the solutions yielded by the doubly constrained
HF + BCS calculations. As already stated in the Introduction,
the mass parameters for the rotational and vibrational modes
(which constitute the six other functions) are evaluated upon
using the Inglis-Belyaev formula (see Ref. [9]). This yields,
for the moment of inertia associated with a rotation whose axis
is perpendicular to the symmetry axis,

I⊥ =
(1)∑
k,l

|〈k|ĵ+|l〉|2
Ek + El

(ukvl − ulvk)2

+ 1

2

(2)∑
k,l

|〈k|ĵ+|l̄〉|2
Ek + El

(ukvl − ulvk)2 (6)

where the first sum, labeled as (1), is performed on the
members of all Kramers degenerate pairs of canonical basis
states while the second sum, labeled as (2), is restricted to states
such that |Kl| = |Kk| = 1/2 (where K is the third component
of the one-body angular momentum operator ĵz). The quantity
vi (ui) is the usual BCS occupancy (inoccupancy) factor of
the single-particle state i, and Ei represents the associated
quasiparticle energy. This expression for the moment of inertia
is, as is well known, an approximation of the ATDHFB
approach in that it ignores the time-odd response of the solution
to the time-odd self-consistent potential (see, e.g., Ref. [11]).

As for the vibrational mass parameter, we have made a
further approximation for the adiabatic masses within the

ATDFHB approach as discussed in Ref. [11] and dubbed
there the M(Q) mass approximation. This avoids the painful
numerical derivation of normal and abnormal densities needed
in the determination of the momentum operator P̂ associated
with the full adiabatic approach. It amounts to neglecting terms
beyond the dynamical rearrangement, the static polarization
effects produced upon changing the deformation. Hence, for
the modes implying the operators Q̂i and Q̂j , one writes the
corresponding mass parameters as

Bij = h̄2
M(−3)

ij

M(−1)
ij

2 , (7)

where the moments M(n)
ij are defined by

M(n)
ij =

(1)∑
k,l

(ukvl + ulvk)2〈k|Q̂i |l〉〈l|Q̂j |k〉(Ek + El)
n. (8)

Let us discuss now the approximation concerning the
neglected dynamical polarization effect. In the rotational case,
the corresponding correction can be evaluated by comparing
such results with those of Routhian calculations [12]. It was
found, within systematic Hartree-Fock-Bogoliubov calcula-
tions in Ref. [13], to yield an increase of the moment of inertia
through a multiplicative factor of 1.32 on average. We have
renormalized our moments of inertia accordingly.

In the vibrational case one does not enjoy such a straight-
forward point of comparison. This correction has been shown
in the more simple Skyrme-Hartree-Fock case (where an
exact approach can be somehow easily handled) for the axial
quadrupole mode to depend on the nuclear matter effective
mass associated with the considered effective interaction [10].
We have found, for an effective mass value in the expected
0.75 m range, that this mass parameter should be increased
by about 20%. Yet, the effect of pairing correlations on this
correction is unknown. This is why we have boldly taken here
the same correction for vibrational mass parameters as the one
used for moments of inertia.

From the above defined mass parameters associated with
the collective modes parametrized by the expectation values of
the operators Q̂20 and Q̂22 (noted with a transparent notation
as B00, B02, and B22), one gets readily those associated with
the β and γ deformation parameters according to

Bββ = 1

D2
[B00 cos2 γ + 2B02 cos γ sin γ + B22 sin2 γ ] (9)

Bβγ = 1

D2
[−B00 cos γ sin γ + B02(cos2 γ − sin2 γ )

+B22 cos γ sin γ ] (10)

Bγγ = 1

D2
[B00 sin2 γ − 2B02 cos γ sin γ + B22 cos2 γ ],

(11)

where D is defined, for a nucleus composed of A nucleons, by

D = 3
5 (r0A

1/3)2, (12)

using the usual radius parameter value r0 = 1.2 fm.

034320-3



BENRABIA, MEDJADI, IMADALOU, AND QUENTIN PHYSICAL REVIEW C 96, 034320 (2017)

C. Treatment of the Coulomb exchange contributions
to the mean field and total energy

For the treatment of the exchange contribution of the
Coulomb interaction to the total energy and, consequently,
also to the mean field, the usual Slater approximation [19,20]
has been used. It has been shown (see Refs. [21–23]) to be a
very good approximation in absolute terms. Indeed, in the
actinide region, for instance, it does not exceed 3% [23].
Yet, the error pattern shows a systematic trend correlated
with the single-particle level density at the Fermi surface
g̃(λ). The absolute value of the error is larger for lower g̃(λ)
values.

This entails a systematic error on the fission barrier heights
since g̃(λ) values are always lower for the ground state than
they are near the top of a fission barrier This effect was
evaluated in Ref. [23] to lead to an underestimation of the
inner barrier height by 310 keV in 238U.

D. Choice of the intensity parameters of the seniority force

The intensities of the seniority residual interaction in use
to describe |Tz| = 1 pairing correlations have been separately
adjusted in the neutron-neutron and proton-proton cases. They
are parametrized for the charge state q as

gq = 〈kk̄|̂ṽresidual|ll̄〉 = Gq

11 + Nq

, (13)

where ̂̃v is the antisymmetrized version of the two-body
interaction v̂, Nq stands for the number of nucleons in
the charge state q, and the set (l,k) labels any set of two
single-particle states of the canonical basis.

To get realistic Gq values, we have calculated the following
mass differences, e.g., for neutrons:

�(3)
n (N,Z) = (−1)N

2
[Sn(N,Z) − Sn(N + 1,Z)], (14)

where Sn(N,Z) represents the neutron separation energy of
a nucleus having N neutrons and Z protons. This expression
could be easily modified to obtain the proton odd-even mass
differences in isotonic nuclei. As noted in Refs. [24,25], these
differences are mostly contingent upon pairing correlations for
odd values of N or Z. Such a theoretical evaluation implies
three microscopic calculations for the nuclei defined by the
nucleon numbers (N − 1,Z), (N,Z), and (N + 1,Z). They
have been performed for the relevant odd nuclei [26], within
axially symmetric Hartree-Fock-BCS calculations, with self-
consistent blocking, taking into account the genuine breaking
of the time-reversal symmetry. Some care should be exercised
in the choice of all the nuclei implied in such calculations. First
they should be rigidly deformed, to avoid too large quantal
shape fluctuations. They should also correspond to ground
state solutions exhibiting robust pairing correlations, since the
BCS approximation is known to be a poor representation of
pairing properties in the low correlation regime. Finally, in
odd-even or even-odd nuclei there is a priori an ambiguity in
the solution to be considered in terms of the choice of quantum
numbers. Here, these quantum numbers are the intrinsic parity
and the third projection of the angular momentum K , which
is well defined since our ground state solutions are axially

symmetric. The quantum number K is assumed to represent
the ground state angular momentum I within a Bohr-Mottelson
unified model description (assuming the absence of Coriolis
coupling). In Ref. [26] the authors retained the solutions
corresponding to the experimental quantum numbers.

The resulting values of the Gq intensities depend of course
on the effective interaction which is used to determine the mean
field properties. In Ref. [26], the authors found the optimal
set Gn = Gp = −16 MeV for the SkM* interaction in use
here. This set yields a very satisfactory reproduction of the
above discussed odd-even mass differences for the isotopes
considered in this study. Indeed, the rms energy errors for the
retained data are found to be 65 keV for neutrons and 130 keV
for protons [26].

E. Approximate extraction of the spurious rotational energy
content associated with the intrinsic wave function

It is well known that mean-field calculations corresponding
to non-spherically-symmetric solutions yields a spurious
rotational part in the corresponding total energy. This has been
approximately corrected here, within a Lipkin ansatz [27].
It consists of assuming that the energy spectrum obtained
by projecting the calculated intrinsic state on states having
a good angular momentum I has the character of an exact
rotor spectrum. This correction has been performed for axially
symmetric solutions. In the vicinity of the inner barrier, in
view of the relatively small value of the angle γ reached there,
we have assumed that the corrective energies are the same as
those obtained on the prolate edge of the (β,γ ) sextant for the
same value of β.

In the case considered here, namely of a zero angular
momentum for the even-even fissioning nucleus (i.e., assuming
again for our axially symmetric solutions that K = I = 0, à la
Bohr-Mottelson ignoring any Coriolis coupling), one has

EI=0 = 〈�|Ĥ − h̄2

2I Ĵ2|�〉, (15)

where |�〉 is the intrinsic wave function and Ĵ2 is the square
of the total angular momentum operator. In the above, the
moment of inertia I corresponds to a rotation around an
axis perpendicular to the symmetry axis (I⊥) calculated
within the Inglis-Belyaev ansatz plus a crude Thouless-Valatin
correction, as above discussed.

As it turns out (see, e.g., [18]), upon increasing the defor-
mation, the expectation value of the Ĵ2 operator increases more
rapidly than the relevant moment of inertia. Consequently, this
spurious rotational energy is found to be an increasing function
of the elongation. In particular, it is thus larger at the top of the
inner barrier than at the ground state. It thus lowers the fission
barrier height from its intrinsic state value.

F. Solving the collective Bohr Hamiltonian
Schrödinger equation

The five quadrupole collective coordinates αμ, μ = −2,
−1, . . . ,2 that describe the surface of a deformed nucleus, R =
R0([αν])[1 + ∑

μ αμY ∗
2μ], are usually parametrized in terms

of the two above defined (intrinsic) deformation parameters β
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and γ , and three Euler angles (ϕ,θ,ψ) ≡ � which define the
orientation of the principal axes in the laboratory frame as

αμ = D2
μ,0(�)β cos γ + 1√

2

[D2
μ,2(�) + D2

μ,−2(�)
]
β sin γ,

(16)

where Dλ
μν is a usual Wigner function with the phase

conventions of, e.g., Refs. [28,29].
The Hermitian Bohr Hamiltonian [14] describing the

collective quadrupole dynamics, expressed in terms of the

intrinsic variables, is given by

Ĥcoll = T̂vib(β,γ ) + T̂rot(β,γ,�) + Vcoll(β,γ ). (17)

The rotational kinetic energy may be written as

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (18)

where Ik (with k = 1,2,3) are moments of inertia (for rotations
along the k axis) and Ĵk (with k = 1,2,3) intrinsic components
of the total angular momentum operator.

The arbitrary quantization of the intrinsic kinetic energy
operator acting on the collective wave functions is done as
follows:

T̂vib = − h̄2

2
√

ωb

{
1

β4

[
∂

∂β

(√
b

ω
β4Bγγ

∂

∂β

)
− ∂

∂β

(√
b

ω
β3Bβγ

∂

∂γ

)]

+ 1

β sin 3γ

[
− ∂

∂γ

(√
b

ω
sin 3γBβγ

∂

∂β

)
+ 1

β

∂

∂γ

(√
b

ω
sin 3γBββ

)
∂

∂γ

]}
. (19)

In the above, we have introduced two parameters ω and b,
defined as

ω = BββBγγ − B2
βγ , b = B1B2B3 (20)

The mass parameters (or vibrational inertial functions) Bββ ,
Bβγ , and Bγγ are, in general, functions of β and γ . The
integration measure in the collective space is given by

dτcoll = β4| sin 3γ |
√

ωb dβ dγ d�. (21)

The method used to solve the eigenvalue problem of the
most general collective Hamiltonian (17) has been described
in Refs. [29,30], where the eigenvalue problem is reduced
to a simple matrix diagonalization, after having built an
appropriate basis for each value of the angular momentum
quantum number. For each value I of the angular momentum,
one starts from a complete set of square integrable pairs of
functions as

φIM
Kmn(β,γ,�) = exp(−μ2β2/2)βn

{
cos mγ
sin mγ

}
DI ∗

MK (�).

(22)

For a given non-negative value of n, the allowed values of
m are m = n,n − 2, . . . ,0 or 1 (depending on the parity of
n). The introduction of the Gaussian function exp(−μ2β2/2)
ensures that the basis states generate wave functions that
vanish at large deformations (β → ∞). The basis parameter
μ has been adjusted for each nucleus individually, so that it
yields a minimum of the ground state nuclear energy. The
necessary symmetry conditions (see [28,31]) are fulfilled by
restricting the space spanned by the states (22) upon using
linear combinations of states

ξ IM
Lmn(β,γ,�) = e−μ2β2/2βn

∑
even K�0

f I
LmK (γ )�I

MK (�) (23)

which are invariant under the transformations of the octahedral
group. The analytical form of the functions f I

LmK (γ ) and the
restrictions of the above summation on K values are discussed
explicitly in Appendix A of Ref. [29]. The angular part
corresponds to linear combinations of the Wigner functions

�I
MK (�) =

√
2I + 1

16π2(1 + δK0)

[DI ∗
MK (�) + (−1)IDI ∗

M−K (�)
]
.

(24)

In practice of course, such a basis has to be truncated. This
has been done here by setting for n a maximum value nmax =
14. The diagonalization of the collective Hamiltonian yields
the energy spectrum EI

α and the corresponding collective
eigenfunctions

�IM
α (α,β,�) =

∑
K

ψI
αK (β,γ )�I

MK (�). (25)

By using these collective wave functions, various observ-
ables (e.g., quadrupole E2 reduced transition probabilities) can
be calculated and compared with experimental results. For our
purpose in this paper, we will restrict ourselves, however, to
discussing merely the collective spectra associated with the
quadrupole mode.

III. RESULTS AND DISCUSSION

A. Collective spectra in the ground state well

Calculations have been performed within the HF + BCS
approach for the four considered actinide nuclei (236U, 240Pu,
248Cm, and 252Cf) on a regular mesh of 170 points covering the
(0,0.65) × (0,60) sextant in the (β,γ ) plane. The mesh sizes
are equal to 0.05 (5) for the β(γ ) variables.
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FIG. 1. Potential energy surface of the 236U nucleus. The plotted
energies are relative to the energy of the equilibrium point (indicated
by the black dot) which is equal to −1778.23 MeV.

The seven scalar functions defining the Bohr collective
Hamiltonian for the quadrupole modes have been determined
as discussed above. The results obtained for the four PESs are
displayed in Figs. 1–4. In all cases, the equilibrium solution
(represented on the PES by a black dot) is located, as expected,
on the prolate axis. The corresponding calculated deformations
are quite consistent with the β deformation parameter values
extracted from B(E2) ground band data [32], as demonstrated
in Table I.

Through the diagonalization of the Bohr Hamiltonian, we
have obtained the low energy spectra of the four considered
nuclei. Given the absence in the present calculations of any
transition probability results, the energy levels are grouped
arbitrarily, to some extent, mostly on the basis of standard
patterns of well deformed nuclei in ground, β, and γ bands.
Such calculated energy spectra are compared in Figs. 5–8 with
experimental data [33–36] respectively.

FIG. 2. Same as Fig. 1 for the 240Pu nucleus. The energy of the
equilibrium point is equal to −1800.40 MeV.

FIG. 3. Same as Fig. 1 for the 248Cm nucleus. The energy of the
equilibrium point is equal to −1848.52 MeV.

As a general rule, the calculated ground band spectra are
decompressed with respect to the data. This is due to two
causes. First, the moments of inertia, calculated as discussed
above, are too small. This yields, for instance, energies of
the first 2+ state which are too high (see Table II). The
second reason for this global trend is related to the well-known
Coriolis antipairing (CAP) effect [37]. It is clear that Routhian
ATDHFB moments of inertia corresponding to low angular
velocities � are less and less able, upon increasing �, to
describe the quenching of the global rotational motion due to
the pairing-induced counter-rotating intrinsic vortical motion.

As shown in Table II, both effects combine at an almost
equal level to explain qualitatively the observed discrepancy,
e.g., for the 12+ energy level.

The effect of a bad reproduction of the rotational motion in
the low angular velocity regime is evaluated for the 12+ state
through the following quantity (where the differentiation of
the energy is performed around an energy averaged between

FIG. 4. Same as Fig. 1 for the 252Cf nucleus. The energy of the
equilibrium point is equal to −1867.30 MeV.

034320-6



TRIAXIAL QUADRUPOLE DYNAMICS AND THE INNER . . . PHYSICAL REVIEW C 96, 034320 (2017)

TABLE I. Experimental (calculated) values of the β deformation
parameter noted “Exp.” (noted “Calc.”) at equilibrium deformation.
Experimental data are taken from [32].

Nuclei 236U 240Pu 248Cm 252Cf

Exp. 0.282 0.289 0.297 0.304
Calc. 0.272 0.294 0.301 0.294

the experimental and calculated values):

�Elow � = Eexp(12+) + Ecalc(12+)

Eexp(2+) + Ecalc(2+)
[Ecalc(2+) − Eexp(2+)],

(26)

whereas the corresponding CAP energy correction is deter-
mined as

�ECAP = 78h̄2

[
1

Iexp(2+)
− 1

Iexp(12+)

]
, (27)

FIG. 5. Experimental (Exp.) [33] and calculated (Calc.) low
energy spectra in 236U.

FIG. 6. Same as Fig. 5 for 240Pu. The experimental spectrum is
taken from Ref. [34].

where the experimental moment of inertia is defined as usual
as

I = 4h̄2

Eexp(I − 2) − 2Eexp(I ) + Eexp(I + 2)
. (28)

Note that the attribution to the CAP effect only—of all
the experimentally observed variations of the moments of
inertia—is fully justified, for these nuclei in this angular
velocity range, by the pairing-induced intrinsic vortical mode
calculations of Refs. [38,39].

Regarding the β and γ vibrational modes, one may propose,
at least qualitatively, the following explanation for part of
their too high calculated phonon energies, beyond possible bad
pairing force intensities. Note en passant that this is a usual
feature of similar calculations (see, e.g., [40–42]). Indeed,
in the considered one-phonon states, one should observe a
pairing quenching due to the Pauli blocking of pair transfers
on orbits partially filled by particle-hole excitations generating
the vibrational correlations.

Yet it is particularly significant that, in all considered cases,
the calculated relative order of β and γ band heads is consistent
with the data (β band heads lower than γ ones for 236U and
240Pu and conversely for 248Cm).
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FIG. 7. Same as Fig. 5 for 248Cm. The experimental spectrum is
taken from Ref. [35].

It is interesting to compare in detail our results with those of
Ref. [42]. There, the calculations have been performed within
the same approach as ours (up to minor details: our angular
mesh size is slightly smaller—5 degrees instead of 6—and our
estimate of the so-called Thouless-Valatin correction differs
by 0.02) and up to one isotope (236U) our calculated nuclei
have also been calculated there. The main difference lies
in the intensity of the pairing interaction in use. In our
case it has been fitted, as already mentioned, by performing
explicitly what is generally claimed to be done; namely, by a
fit to odd-even mass differences (not through some minimal
quasiparticle approximate consideration but by just getting,
as one should, odd-even mass differences from consistently
calculated solutions). As a result, our residual interaction
appears to be significantly more intense than in the considered
paper. This is clearly visible from the too high inner fission
barrier which the other paper displays (it is obtained to be about
12 MeV in 242Pu for an axially symmetric solution without
rotational correction using the same SkM* interaction).

A large part of the discrepancies between data and our
results for the spectra are inherent, as above discussed,
to the Bohr Hamiltonian approach. This clearly prevents
drawing conclusions beyond qualitative statements from such
calculations. Another part of the loose description of the energy

FIG. 8. Same as Fig. 5 for 252Cf. The experimental spectrum is
taken from Ref. [36].

levels is due to a description of pairing correlations at low
� regimes which is not accurate enough. This may result
from various causes: a poor analytical form for the residual
interaction in use, an inaccurate determination of its intensity
parameters, the crude handling of Thouless-Valatin corrective
terms, the BCS (or HFB) approximation itself–in particular in

TABLE II. Experimental energies Eexp(2+) and Eexp(12+) of
the 2+ and 12+ states of the ground band in comparison with
their calculated counterparts Ecalc(2+) and Ecalc(12+). The corrective
energies �Elow � for the 12+ states due to our bad reproduction
of low-� rotational properties are also displayed together with the
correction energy �ECAP for these states due to the neglect of the
CAP effect in Bohr Hamiltonian calculations. The energies �Elow �

and �ECAP are defined in the text. All energies are expressed in
keV. Note the absence of data concerning the 12+ state for the 252Cf
nucleus.

Nucleus Eexp(2+) Ecalc(2+) Eexp(12+) Ecalc(12+) �Elow � �ECAP

236U 45 58 1085 1704 352 429
240Pu 43 55 1041 1700 336 312
248Cm 43 49 1064 1260 177 332
252Cf 46 53 1357
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FIG. 9. Section of the potential energy surface of 236U as a
function of Q22 (in barns), for a given value of Q20 (in barns), in
the inner saddle point region. Energies are given in MeV.

its inherent nonconservation of the particle numbers—or the
purely static character of our pairing treatment. Regarding the
last point, it is our contention that, while it is a priori better to
enlarge the space of collective variables, a fair assessment of
the importance of doing so requires first that the other points
be carefully considered.

FIG. 10. Same as Fig. 9 for 240Pu.

FIG. 11. Same as Fig. 9 for 248Cm.

B. Potential energy landscape around the inner barrier

As already discussed, various static calculations of PESs
in heavy nuclei (see, e.g., [1,18,43]) have demonstrated the
existence of a triaxial instability in the vicinity of the inner
barrier. As a consequence, the total nuclear energy is lowered
at the first saddle point when allowing triaxial shapes for the
nucleus undergoing fission. This is illustrated on Figs. 9–12
where, Q20 being fixed at its value obtained for the axial
saddle point, we display the total energy as a function of Q22.

FIG. 12. Same as Fig. 9 for 252Cf.
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TABLE III. Deformation parameter β values corresponding to the
axial inner barrier solution (βaxial

IB ) together with the corresponding
triaxial values β triax

IB along with the associated γ values (γ triax
IB ).

Nuclei 236U 240Pu 248Cm 252Cf

βaxial
IB 0.510 0.562 0.547 0.567

β triax
IB 0.526 0.560 0.540 0.580

γ triax
IB 10.9 10.1 11.9 12.3

Of course, the value of the axial quadrupole deformation
parameter β may vary between what one obtains for the axial
inner barrier solution and the triaxial one. However, these
differences are small as demonstrated in Table III. The γ values
corresponding to the triaxial saddle point are found in the
10–12 range, as seen also in Table III.

Upon releasing the axial symmetry one lowers the inner
saddle point energy by a quantity �Etriax

IB defined, with an
obvious notation, as

�Etriax
IB = E

(
β triax.

IB ,γ triax.
IB

) − E
(
βaxial

IB ,0
)

(29)

As seen in Table IV and already noticed (see, e.g., [18]),
this energy correction is an increasing function of the nucleon
number A: from 1.14 MeV for 236U to 2.47 for 252Cf.

C. Inner barrier heights

Starting from the results of axially symmetric HF + BCS
calculations, we evaluate the inner barrier heights by adding
various corrections.

First, we have assumed that for all the considered nuclei the
basis size is sufficient to obtain the convergence of the energy
difference between the ground state and the axial inner barrier
solutions. This takes stock of the results of [18] for the 252Cf
nucleus obtained with the same Skyrme force and almost the
same seniority force parametrization (see Table I in Ref. [18]).

As discussed in Sec. II C, the use of the Slater approxima-
tion for the treatment of the Coulomb exchange contribution
to the total energy and the Hartree-Fock mean field yields
an underestimation of the inner barrier. It is found to be
given by �ESlater = 310 keV in the 238U nucleus [23]. Owing
to the systematic character of such an underestimation, as
discussed in Ref. [23], and to the numerically heavy character

TABLE V. Rotational energies (in MeV) at the ground state
deformation (Erot

GS) and at the axial saddle point (Erot
IB ) along with

the deduced rotational energy correction to the axial inner barrier
(� Erot).

Nucleus Erot
GS Erot

IB �Erot

236U 1.67 2.31 −0.64
240Pu 1.57 2.42 −0.85
248Cm 1.81 2.24 −0.43
252Cf 1.68 2.22 −0.54

of such exact Coulomb exchange calculations, we have simply
assumed here that it takes the same value for the four nuclei
under study.

The spurious rotational energy correction �Erot for an
even-even fissioning nucleus with I+ = 0+ has been evaluated
à la Lipkin as discussed in Sec. II E [see Eq. (15)]. As seen
in Table V, it lowers the inner barrier height by about half a
MeV.

As shown in Table IV, by adding these corrections one
obtains inner barrier heights Eaxial

IB which are significantly
too high with respect to experimental estimates when axial
symmetry is imposed. This leaves room for a decrease due to
the release of the axial symmetry constraint as discussed now.

Finally, we add to these Eaxial
IB energies the gain in energy

�Etriax obtained when considering the triaxial saddle point
for the inner barrier. The resulting inner barrier heights
Ecalc

IB compare reasonably well with the recommended values
deduced from experimental data of Ref. [44] for the two
lightest nuclei calculated nuclei (236U, 240Pu). The calculated
barrier heights of the two other considered nuclei (248Pu, 252Cf)
are too high by about 1 MeV.

In a previous similar study [18] using the same SkM*
Skyrme parametrization, the authors had considered intensities
of the residual interaction which were significantly lower than
what is in use here. Expectedly, the calculated heights of the
inner fission barrier were considerably overestimated. Making
appropriate comparisons—namely neglecting in our case the
correction due to the Slater approximation—their inner barrier
heights (for triaxial solutions with rotational correction) are
found to be higher than ours by about 1.3 MeV in the 236U,
240Pu, and 252Cf nuclei where the comparison can be made.

TABLE IV. Inner fission barrier heights and associated corrective terms (in MeV) for the 236U, 240Pu, 248Cm, and 252Cf nuclei. The following
quantities are listed: axially symmetric HF + BCS inner barrier heights Eaxial

IB (uncorr.), rotational energy corrections �Erot, Coulomb exchange
corrections �ESlater (MeV), inner barrier heights corrected for the spurious rotational energy content, assuming axial symmetry Eaxial

IB (corr.),
energy corrections due to the triaxiality of the solutions �Etriax, resulting calculated inner barrier heights Ecalc

IB , and finally E
exp
IB , the estimated

inner barrier heights from experimental data taken from Ref. [44].

Nucleus Eaxial
IB (uncorr.) �Erot �ESlater Eaxial

IB (corr.) �Etriax Ecalc
IB E

exp
IB

236U 6.77 −0.64 0.31 6.44 −1.14 5.30 5.0(3)
240Pu 8.02 −0.85 0.31 7.48 −1.43 6.05 5.8(3)
248Cm 9.21 −0.43 0.31 9.09 −2.27 6.82 5.9(3)
252Cf 8.82 −0.54 0.31 8.59 −2.47 6.12 5.3(3)
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IV. CONCLUSIONS

Our HF+BCS microscopic approach of the collective
dynamics (corresponding to the usual β and γ degrees of free-
dom) yields low energy spectra which reproduce qualitatively
the data for the four considered nuclei. However, our results
are of slightly lesser quality than those of Ref. [42] due to
too small adiabatic mass parameters and moments of inertia.
On the other hand, the more intense residual interaction that
we used allowed us to yield calculated heights of the inner
fission barrier in excellent agreement (given the uncertainties
of the so-called experimental estimates) for the 236U and 236Pu
nuclei and only too high by 1 MeV for the 248Cm and 252Cf
nuclei. This does not seem to be the case for the calculations
of Ref. [42] (as inferred from the scarce information given in
the paper on fission barriers) as well as of those reported
in another previous study [18] due to too weak pairing
correlations.

This apparent contradiction between the quality in repro-
ducing collective spectroscopy and fission properties may
point in the direction of some deficiencies of either the theoret-
ical framework or the way in which it is implemented, or both.
This is why even though our approach yields results which are
encouraging, some improvements are called for. While some
care has been exerted to determine parameters of the seniority
force yielding reasonable odd-even mass differences in the

actinide region, a better treatment of pairing correlations is still
to be made. This concerns, in particular, the particle number
conservation. To improve on this point, similar calculations
using the so-called highly truncated diagonalization approach
(HTDA) [45] are currently being performed along the lines
of the work presented in Ref. [46], for nuclei in the A = 100
region.

Upon using a better static description of pairing correlations
and the resulting determination of the least action trajectories,
we will be able to provide better grounds for the evaluation of
fission half-lives. It will be interesting, in particular, to assess
whether or not the consideration of an explicit dynamical
account of pairing correlations is at all required in this respect.
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J. Srebrny, Nucl. Phys. A 648, 181 (1999).

[30] G. G. Dussel and D. R. Bes, Nucl. Phys. A 143, 623 (1970).
[31] K. Kumar and M. Baranger, Nucl. Phys. A 92, 608 (1967).
[32] S. Raman, C. W. Nestor, Jr., and P. Tikkanen, At. Data Nucl.

Data Tables 78, 1 (2001).
[33] E. Browne and J. K. Tuli, Nucl. Data Sheets 107, 2649 (2006).
[34] B. Singh and E. Browne, Nucl. Data Sheets 109, 2439 (2008).
[35] M. J. Martin, Nucl. Data Sheets 122, 377 (2014).
[36] N. Nica, Nucl. Data Sheets 106, 813 (2005).
[37] B. R. Mottelson and J. G. Valatin, Phys. Rev. Lett. 5, 511 (1960).

034320-11

https://doi.org/10.1016/0375-9474(69)90641-1
https://doi.org/10.1016/0375-9474(69)90641-1
https://doi.org/10.1016/0375-9474(69)90641-1
https://doi.org/10.1016/0375-9474(69)90641-1
https://doi.org/10.1016/S0375-9474(99)00126-8
https://doi.org/10.1016/S0375-9474(99)00126-8
https://doi.org/10.1016/S0375-9474(99)00126-8
https://doi.org/10.1016/S0375-9474(99)00126-8
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.90.061304
https://doi.org/10.1103/PhysRevC.93.044315
https://doi.org/10.1103/PhysRevC.93.044315
https://doi.org/10.1103/PhysRevC.93.044315
https://doi.org/10.1103/PhysRevC.93.044315
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(82)90403-1
https://doi.org/10.1016/0375-9474(80)90618-1
https://doi.org/10.1016/0375-9474(80)90618-1
https://doi.org/10.1016/0375-9474(80)90618-1
https://doi.org/10.1016/0375-9474(80)90618-1
https://doi.org/10.1103/PhysRevC.95.014315
https://doi.org/10.1103/PhysRevC.95.014315
https://doi.org/10.1103/PhysRevC.95.014315
https://doi.org/10.1103/PhysRevC.95.014315
http://www.nndc.bnl.gov/chart/
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1103/PhysRevC.21.2060
https://doi.org/10.1103/PhysRevC.21.2060
https://doi.org/10.1103/PhysRevC.21.2060
https://doi.org/10.1103/PhysRevC.21.2060
https://doi.org/10.1103/PhysRevC.21.2076
https://doi.org/10.1103/PhysRevC.21.2076
https://doi.org/10.1103/PhysRevC.21.2076
https://doi.org/10.1016/S0370-2693(99)00836-9
https://doi.org/10.1016/S0370-2693(99)00836-9
https://doi.org/10.1016/S0370-2693(99)00836-9
https://doi.org/10.1016/S0370-2693(99)00836-9
https://doi.org/10.1016/0029-5582(62)90741-1
https://doi.org/10.1016/0029-5582(62)90741-1
https://doi.org/10.1016/0029-5582(62)90741-1
https://doi.org/10.1016/0029-5582(62)90741-1
https://doi.org/10.1103/PhysRevC.60.054301
https://doi.org/10.1103/PhysRevC.60.054301
https://doi.org/10.1103/PhysRevC.60.054301
https://doi.org/10.1103/PhysRevC.60.054301
https://doi.org/10.1016/0375-9474(73)90357-6
https://doi.org/10.1016/0375-9474(73)90357-6
https://doi.org/10.1016/0375-9474(73)90357-6
https://doi.org/10.1016/0375-9474(73)90357-6
https://doi.org/10.1016/S0375-9474(99)00134-7
https://doi.org/10.1016/S0375-9474(99)00134-7
https://doi.org/10.1016/S0375-9474(99)00134-7
https://doi.org/10.1016/S0375-9474(99)00134-7
https://doi.org/10.1103/PhysRevC.7.296
https://doi.org/10.1103/PhysRevC.7.296
https://doi.org/10.1103/PhysRevC.7.296
https://doi.org/10.1103/PhysRevC.7.296
https://doi.org/10.1140/epja/i2003-10224-x
https://doi.org/10.1140/epja/i2003-10224-x
https://doi.org/10.1140/epja/i2003-10224-x
https://doi.org/10.1140/epja/i2003-10224-x
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1103/PhysRev.81.385
https://doi.org/10.1016/0370-2693(74)90617-0
https://doi.org/10.1016/0370-2693(74)90617-0
https://doi.org/10.1016/0370-2693(74)90617-0
https://doi.org/10.1016/0370-2693(74)90617-0
https://doi.org/10.1103/PhysRevC.63.024312
https://doi.org/10.1103/PhysRevC.63.024312
https://doi.org/10.1103/PhysRevC.63.024312
https://doi.org/10.1103/PhysRevC.63.024312
https://doi.org/10.1103/PhysRevC.84.014310
https://doi.org/10.1103/PhysRevC.84.014310
https://doi.org/10.1103/PhysRevC.84.014310
https://doi.org/10.1103/PhysRevC.84.014310
https://doi.org/10.1103/PhysRevC.63.024308
https://doi.org/10.1103/PhysRevC.63.024308
https://doi.org/10.1103/PhysRevC.63.024308
https://doi.org/10.1103/PhysRevC.63.024308
https://doi.org/10.1103/PhysRevC.65.014310
https://doi.org/10.1103/PhysRevC.65.014310
https://doi.org/10.1103/PhysRevC.65.014310
https://doi.org/10.1103/PhysRevC.65.014310
https://doi.org/10.1140/epja/i2016-16003-8
https://doi.org/10.1140/epja/i2016-16003-8
https://doi.org/10.1140/epja/i2016-16003-8
https://doi.org/10.1140/epja/i2016-16003-8
https://doi.org/10.1016/0003-4916(60)90032-4
https://doi.org/10.1016/0003-4916(60)90032-4
https://doi.org/10.1016/0003-4916(60)90032-4
https://doi.org/10.1016/0003-4916(60)90032-4
https://doi.org/10.1016/S0375-9474(99)00023-8
https://doi.org/10.1016/S0375-9474(99)00023-8
https://doi.org/10.1016/S0375-9474(99)00023-8
https://doi.org/10.1016/S0375-9474(99)00023-8
https://doi.org/10.1016/0375-9474(70)90552-X
https://doi.org/10.1016/0375-9474(70)90552-X
https://doi.org/10.1016/0375-9474(70)90552-X
https://doi.org/10.1016/0375-9474(70)90552-X
https://doi.org/10.1016/0375-9474(67)90636-7
https://doi.org/10.1016/0375-9474(67)90636-7
https://doi.org/10.1016/0375-9474(67)90636-7
https://doi.org/10.1016/0375-9474(67)90636-7
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1006/adnd.2001.0858
https://doi.org/10.1016/j.nds.2006.09.002
https://doi.org/10.1016/j.nds.2006.09.002
https://doi.org/10.1016/j.nds.2006.09.002
https://doi.org/10.1016/j.nds.2006.09.002
https://doi.org/10.1016/j.nds.2008.09.002
https://doi.org/10.1016/j.nds.2008.09.002
https://doi.org/10.1016/j.nds.2008.09.002
https://doi.org/10.1016/j.nds.2008.09.002
https://doi.org/10.1016/j.nds.2014.11.004
https://doi.org/10.1016/j.nds.2014.11.004
https://doi.org/10.1016/j.nds.2014.11.004
https://doi.org/10.1016/j.nds.2014.11.004
https://doi.org/10.1016/j.nds.2005.11.003
https://doi.org/10.1016/j.nds.2005.11.003
https://doi.org/10.1016/j.nds.2005.11.003
https://doi.org/10.1016/j.nds.2005.11.003
https://doi.org/10.1103/PhysRevLett.5.511
https://doi.org/10.1103/PhysRevLett.5.511
https://doi.org/10.1103/PhysRevLett.5.511
https://doi.org/10.1103/PhysRevLett.5.511


BENRABIA, MEDJADI, IMADALOU, AND QUENTIN PHYSICAL REVIEW C 96, 034320 (2017)

[38] B. Nerlo-Pomorska, K. Pomorski, P. Quentin, and J. Bartel,
Phys. Scr. 89, 054004 (2014).

[39] P. Quentin and J. Bartel (unpublished).
[40] L. Próchniak, P. Quentin, D. Samsoen, and J. Libert, Nucl. Phys.

A 730, 59 (2004).
[41] J. P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S.

Peru, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81, 014303
(2010).

[42] L. Próchniak, Int. J. Mod. Phys. E 17, 160 (2008).

[43] P. Möller and J. R. Nix, in Proceedings of the IAEA Symposium
on Physics and Chemistry of Fission, Rochester, 1973, Vol. I
(IAEA, Vienna, 1974), p. 103.

[44] G. N. Smirenkin, IAEA Technical Report No. INDC(CCP)-359
(unpublished).

[45] N. Pillet, P. Quentin, and J. Libert, Nucl. Phys. A 697, 141
(2002).

[46] M. Imadalou, D. E. Medjadi, P. Quentin, and L. Próchniak,
Eur. Phys. J. 89, 054025 (2014).

034320-12

https://doi.org/10.1088/0031-8949/89/5/054004
https://doi.org/10.1088/0031-8949/89/5/054004
https://doi.org/10.1088/0031-8949/89/5/054004
https://doi.org/10.1088/0031-8949/89/5/054004
https://doi.org/10.1016/j.nuclphysa.2003.10.011
https://doi.org/10.1016/j.nuclphysa.2003.10.011
https://doi.org/10.1016/j.nuclphysa.2003.10.011
https://doi.org/10.1016/j.nuclphysa.2003.10.011
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1142/S0218301308009653
https://doi.org/10.1142/S0218301308009653
https://doi.org/10.1142/S0218301308009653
https://doi.org/10.1142/S0218301308009653
https://doi.org/10.1016/S0375-9474(01)01240-4
https://doi.org/10.1016/S0375-9474(01)01240-4
https://doi.org/10.1016/S0375-9474(01)01240-4
https://doi.org/10.1016/S0375-9474(01)01240-4



