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We propose a new scheme for constructing an effective-field-theory-based interaction to be used in the
energy-density-functional (EDF) theory with specific assumptions for defining a power counting. This procedure
is developed through the evaluation of the equation of state (EOS) of symmetric and pure neutron matter going
beyond the mean-field scheme and using a functional defined up to next-to-leading order (NLO), which we call
the NLO EDF. A Skyrme-like interaction is constructed based on the condition of renormalizibility and on power
counting on kF /�hi , where kF is the Fermi momentum and �hi is the breakdown scale of our expansion. To
absorb the divergences present in beyond mean-field diagrams, counter interactions are introduced for the NLO
EDF and determined through renormalization conditions. In particular, three scenarios are explored and all of
them lead to satisfactory results. These counter interactions contain also parameters that do not contribute to the
EOS of matter and may eventually be determined through future adjustments to properties of some selected finite
nuclei. Our work serves as a simple starting point for constructing a well-defined power counting within the EDF
framework.
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I. INTRODUCTION

The nuclear many-body problem has been extensively
investigated for several decades. One of the challenges, at
a very fundamental level, is the development of the nucleon-
nucleon (NN ) interaction. Several versions of phenomenolog-
ical and recently developed chiral effective-field-theory (EFT)
potentials have been applied to nuclear matter calculations
through various ab inito methods [1–22]. However, full
convergence with respect to either the method or the version
of the potential has not yet been achieved. Moreover, although
relevant progress was recently made to extend the area of
applicability of ab initio methods [23–30], it is not clear
whether such methods can indeed be applied in the future
to the full nuclear chart, up to heavy nuclei. On the other hand,
energy-density-functional (EDF) theories have been adopted
in nuclear many-body calculations for several decades with
reasonable results [31]. In this approach, one does not start
from the bare interaction between nucleons and assumes
the validity of a mean-field (or beyond-mean-field) picture,
in most cases constructed using effective phenomenological
interactions. The Skyrme interaction [32,33] is one of the
most popular choices adopted in EDF theory. It consists of
series of zero-range terms expanded in powers of momentum,
which have a form identical (except for the density-dependent
term) to that of the contact interactions present in pionless
EFT [34,35]. The success of Skyrme-based calculations in
the EDF framework suggests that an EFT-like expansion
based on a series of contact-type terms may exist, and results
obtained at the mean-field level may be chosen to represent
the leading-order (LO) contribution in such an expansion for
the EDF framework.1

1Additional indication is provided in Ref. [36], where it is shown
that the magnitude of various versions of Skyrme coefficients can be
recovered by an expansion based on the unitarity limit.

To further explore along this direction, higher-order cor-
rections need to be included. For example, in Refs. [37–40],
the second-order contribution to the equation of state (EOS)
of nuclear matter is derived analytically for Skyrme-type
interactions. It is shown that, with the inclusion of a density-
dependent term, a reasonable EOS can be obtained for matter
up to second order at various isospin asymmetries after
the divergence is subtracted in various ways. Furthermore,
Ref. [41] shows that requirements based on renormalizability
restrict the Skyrme interaction to have certain forms. In
particular, only the t0 or t0–t3 Skyrme-type interactions with
some specific powers of the density α are allowed for the
second-order EOS to be renormalizable. In practice, only the
latter interaction (t0–t3 model) could provide an acceptable
second-order EOS for symmetric matter. Note that, except
for the finite part, contributions from second-order diagrams
are regularization-scheme dependent. Whereas pionless EFT
can be easily applied to vacuum or to dilute neutron matter
and results become regularization-scheme independent after
the renormalization is performed (for example, the free
parameters can be matched to the effective-range expansion
in the case of dilute neutron matter [42–48]), the renormal-
ization/regularization process is more involved in the case of
nuclear matter at larger densities. In particular, it is shown that
if one considers symmetric nuclear matter at densities around
the equilibrium point and starts with a Skyrme-like interaction,
second-order results depend on the regularization procedure
quite strongly [41]. In Ref. [41], the conventional definition
of effective mass at the mean-field level was adopted, and no
additional contact interactions were added (no counter terms).

In this work, we do not use a mean-field effective mass, we
add counter terms by defining next-to-leading order (NLO)
effective interactions, and, as a consequence, we do not need
to constrain the values of the density dependence α. Starting
from a t0–t3 model and the related contributions up to NLO and
guided by renormalizibility and renormalization-group (RG)
analysis, we explore three types of possible counter terms and
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FIG. 1. Perturbative expansion of the ground-state energy in a
uniform system. The diagrammatic analysis of many-body perturba-
tion theory is for instance illustrated in Ref. [49].

develop the EOS for symmetric and neutron matter up to NLO
in EDF theory.

The structure of the present work is as follows. In Sec. II, we
describe the theoretical framework of our approach and report
the LO results. In Sec. III, we apply our method to develop a
new Skyrme-like EFT interaction up to NLO and discuss the
results. We summarize our findings in Sec. IV.

II. THEORETICAL FRAMEWORK

A. General considerations

We first clarify the notation that we use in this work for LO
and NLO.

Starting from a given NN interaction, the EOS of nuclear
matter can be evaluated by summing the diagrams of the
perturbative expansion of the energy shown in Fig. 1. The
diagrams to obtain the dressed propagator G (the exact Green’s
function) are shown in Fig. 2. Figures 1 and 2 represent the
usual many-body perturbative expansion for the energy and the
Green’s function, respectively. In particular, the upper part of
Fig. 1 describes the LO (first order or mean field) and the lower
part the NLO (second order) of such a many-body expansion
for the evaluation of the energy.

On the other hand, for very dilute neutron matter (densities
ρ < 10−6 fm−3), one can perform a perturbative calculation
based on the effective-range expansion of the interaction,
where higher loops are suppressed by higher powers of akF , a
being the neutron-neutron s-wave scattering length, and can

FIG. 2. Perturbative expansion of the exact Green’s function.
We refer the reader to Ref. [49] for details on the diagrammatic
representation of the many-body perturbation theory.

FIG. 3. The diagrammatic representation of contributions up to
NLO for our EDF calculations.

obtain physical observables at very low densities [42–48].
However, most nuclear systems of interest have a density
ρ much higher than the dilute limit. For example, typical
densities in nuclear matter (of interest for finite nuclei) cover
the range ρ = 0 ∼ 0.3 fm−3. To perform calculations at
such densities one needs to use other procedures. A density-
dependent neutron-neutron scattering length was, for instance,
adopted in Ref. [50].

If one assumes that particles move in an average mean field
constructed from an effective interaction Veff , only the upper
diagram in Fig. 1 (plus the exchange term) has to be evaluated
for the computation of the energy. Generally, the parameters
appearing in the effective interaction Veff are obtained by a
fit to various nuclear properties such as binding energies and
this adjustment is performed in most cases at the mean-field
level. It is shown, for example, that a reasonable fit can be
achieved for nuclear matter and some selected nuclei with a
Veff of zero range (Skyrme-like interaction) or of finite range
(Gogny interaction) [51,52]. From an EFT point of view, this
indicates the following.

(i) For densities of interest (ρ = 0–0.3 fm−3), there might
exist an expansion to arrange diagrams in Figs. 1 and 2
order by order individually.

(ii) When inserting the propagator G, which contains the
LO contribution from Fig. 2 into the LO diagram
(Fig. 1, upper part), the effect on the dressed propagator
can be shifted to an effective interaction. One can thus
define, for instance, an LO effective interaction, VLO,
which is the one used to compute the LO contribution
in Fig. 2 in the dressing of the operator.

To further improve the functional, NLO corrections must
be considered. First, such corrections obviously include the
second-order contribution (NLO in the sense of the many-body
perturbative expansion) computed from VLO by using the lower
diagram in Fig. 1. In addition, one may define an NLO effective
interaction, VNLO (which may be associated with the dressing
of the propagator up to NLO in Fig. 2), and compute with such
an interaction the energy contribution provided by the upper
diagram in Fig. 1.

This defines an expansion related to our EDF calculations
whose strategy is illustrated in Fig. 3. If only diagrams
containing VLO are retained in Fig. 3, such an expansion for
EDF will of course coincide with the many-body expansion of
Fig. 1. By proceeding in such a way, a next-to-next-to-leading
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order (NNLO) correction may then also be obtained, which
contains at least the third-order contribution from VLO and the
mean-field energy contribution coming from VNNLO. The exact
form of VNLO and VNNLO are to be decided by renormalizability
conditions and power counting.

In this work, where the final EOS is to be evaluated using
an NLO EDF, we label the interaction as VLO if its second-
order contribution in the perturbative many-body expansion
is included in the final EOS, and we label the interaction as
VNLO if its mean-field contribution corresponds to NLO in the
functional providing the EOS.

There are two features in our proposal. First, the parameters
in the interaction are to be renormalized at each order. Second,
the Veff constructed in this way is specifically designed for a
beyond-mean-field framework where the independent-particle
picture on which the mean field is based is completely lost.
Corrections related to additional correlations such as, for
instance, pairing correlations are not taken into account at
the present stage.

To establish power counting, some assumptions are neces-
sary here. First, we arrange the interaction terms according
to their contributions in powers of kF in the EOS. We
denote the breakdown scale of our expansion as �hi . Then,
instead of being built on a dilute-limit expansion [43,44],
our power counting will be built on kF

�hi
. We require that this

expansion holds for ρ = ρL − 0.4 fm−3, ρL being the lowest
density where a Skyrme-like interaction holds. To guarantee
that O[( kF

�hi
)n+1] contributes less than O[( kF

�hi
)n], we fix the

breakdown scale �hi so that �hi > kF . For the largest density
that we consider for the validity of our expansion, ρ = 0.4
fm−3, �hi should be larger than 2.3 (1.8) fm−1 for neutron
(symmetric) matter. The fact that O[( kF

�hi
)n+1] contributes less

than O[( kF

�hi
)n] should be confirmed by analyzing the power

counting.
Second, because VLO and VNLO are not calculated directly

in this work, it is preferable to make as few assumptions in
the form of these interactions as possible. It is suggested in
Ref. [41] that, to avoid a proliferation in the number of contact
terms and at the same time have a reasonable fit of the EOS at
LO, the preferable VLO corresponds to a t0–t3-like model. Then,
throughout this work, our strategy is to utilize RG analysis
and renormalizability checks as tools to decide the structure
of VNLO.

B. Leading order for EDF

The simplest form of interaction at LO in the momen-
tum space contains t0(1 + Pσx0) only, where t0 and x0 are
free parameters and Pσ = (1 + σ1σ2)/2 is the spin-exchange
operator. For pure neutron matter, a reasonable fit of EOS
can be achieved by just one constant, that is the Bertsch
parameter [53], which corresponds to the LO result from
an expansion around the unitary limit [36,54].2 However,
this interaction fails to produce a reasonable fit for the EOS

2Note that the Bertsch parameter is proportional to the kinetic term
rather than the t0 term in the Skyrme interaction.

TABLE I. Parameter sets obtained by fitting the renormalized LO
EOS on the SLy5 mean-field EOS.

α t0 (MeV fm3) t3 (MeV fm3+3α) x0 x3 χ 2

0.4 −1686 12 096 0.2751 0.2530 77

of symmetric matter both at the mean-field level and with
the second-order correction included (χ2 > 1000 for both
cases) [41]. Moreover, from the study of pionless EFT, it
is established that the three-body force is required at LO
to avoid the triton from collapsing [55]. This suggests that,
once symmetric matter is considered, a three-body force is
required already at LO in the effective interaction. In the
Skyrme case, the collapse is avoided by introducing the
so-called t3 density-dependent two-body effective interaction.
The next simplest form is a t0–t3-like model, which contains a
density-dependent term, that is,

VLO = t0(1 + x0Pσ ) + t3

6
(1 + x3Pσ )ρα, (1)

and gives the mean-field EOSs for symmetric and neutron
matter as

E
(LO)
SM

A
= 3

10

k2
F

m
+ 1

4

t0

π2
k3
F + 1

16
t3

(
2

3π2

)α+1

k3α+3
F , (2)

E
(LO)
NM

N
= 3

10

k2
F

m
+ 1

12π2
t0(1 − x0)k3

F

+ 1

24
t3(1 − x3)

(
1

3π2

)α+1

k3α+3
F . (3)

Note that we adopt here natural units h̄ = c = 1. The
subscripts SM and NM represent symmetric and neutron
matter, respectively; t0, x0, t3, x3, and α are free parameters; m
is the nucleon mass; and kF = (3π2ρ/2)1/3 (kF = (3π2ρ)1/3)
for SM (NM). Note that, for m, one could choose to have it as
an additional free parameter in principle, as done in Ref. [41].
Here, we adopt the point of view that all effects that modify
the fermion propagator can be transferred order by order into
Veff as an expansion in (kF /�hi)n. Thus, the density-dependent
part of the effective mass will be encoded into our effective
potential, and m = 939 MeV is adopted throughout this work.

We then perform best fits to determine the free parameters
(t0, t3, x0, x3, α). The χ2 values are calculated as χ2 =

1
(N−1)

∑
i

(Ei−Ei,ref )2

�E2
i

, where N is the number of points on which

the adjustment is done, the sum runs over this number, Ei,ref

is the benchmark value corresponding to the point i, and �Ei

are all chosen equal to 1% of the reference value. In this work,
we take N = 10 (ten density values from 0 to 0.3 fm−3), we
choose as benchmark EOSs the mean-field SLy5 EOSs [56],
and we perform a simultaneous fit to symmetric and pure
neutron matter. The χ2 value is listed in Table I together
with the values of the parameters and the LO EOSs after fit
are plotted in Fig. 4. As we can see, both EOSs (symmetric
and neutron matter) are in quite reasonable agreement with
the benchmark SLy5 mean-field curves [56]. In Table II, we
compare the reference SLy5 values of the saturation density ρs ,
the incompressibility K∞, and the saturation energy E(ρs)/A
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FIG. 4. Reference EOS as a function of the density ρ obtained
with the SLy5 functional (black dotted line) for symmetric (upper
panel) and neutron (lower panel) matter. The LO EOSs (red solid
line) are obtained by using Eqs. (2) and (3) with the parameters listed
in Table I.

of symmetric matter to the values obtained at LO with the
minimalist t0–t3 model. Except for the incompressibility,

which is slightly overestimated, the reference EOS properties
are rather well reproduced.

III. NEXT-TO-LEADING ORDER FOR EDF

At NLO EDF one needs to consider the second-order
corrections of the LO interaction and the first-order contri-
bution from an NLO effective interaction. The latter will be
determined based on renormalizability and RG analysis.

A. NLO contribution of VLO to the EDF

The second-order corrections (many-body perturbative
expansion) in the EOS for a t0–t3 LO effective interaction were
evaluated in Refs. [37–39]. Here, we just report the results
relevant for our LO interaction. The second-order corrections

consist of three parts: (a) a finite part,
�E

(2)
f (kF )

A
; (b) a divergent

part with a kF dependence already present at LO, �E
(2)
a (kF ,�)

A
;

and (c) a divergent part with a kF dependence not present at LO,
�E

(2)
d (kF ,�)

A
. Here, � is a sharp cutoff on the outgoing relative

momentum �k′ = (�k′
1 − �k′

2)/2, with �k(′)
1,2 being the incoming

(outgoing) momentum of nucleons 1 and 2. For symmetric
matter, the second-order correction reads

�E
(2)
SM,f (kF )

A
= 3m

π4

[11 − 2 ln 2]

280
k4
F

[
t2
0

(
1 + x2

0

) + 2t0T3(1 + x0x3)k3α
F + (

1 + x2
3

)
T 2

3 k6α
F + 3

8
t0T3k

3α
F α(3 + α)

+ 3

8
T 2

3 k6α
F α(3 + α) + 9

256
T 2

3 k6α
F α2(3 + α)2

]
, (4)

�E
(2)
SM,a(kF ,�)

A
= − m

8π4
�k3

F

[
t2
0

(
1 + x2

0

) + 2t0T3(1 + x0x3)k3α
F + 3

8 t0T3α(3 + α)k3α
F

]
, (5)

�E
(2)
SM,d (kF ,�)

A
= − m

8π4
�k3+6α

F T 2
3

[(
1 + x2

3

) + 9
256α2(α + 3)2 + 3

8α(α + 3)
]
, (6)

where

T3 =
(

2

3π2

)α
t3

6
. (7)

For neutron matter, one has

�E
(2)
NM,f (kF )

A
= m

π4

[11 − 2 ln 2]

280
k4
F

[(
T0 + k3α

F T R
3

)2]
, (8)

�E
(2)
NM,a(kF ,�)

A
= − m

24π4
�k3

F

[
T 2

0 + 2T0T
R

3 k3α
F

]
, (9)

�E
(2)
NM,d (kF ,�)

A
= − m

24π4
�k3+6α

F

[(
T R

3

)2]
, (10)

where

T0 = t0(1 − x0), (11)

T R
3 =

(
1

3π2

)α[
t3

6
(1 − x3) + 1

48
t3(1 − x3)α(3 + α)

]
.

(12)

The contribution from the rearrangement terms [35,57] is
included in the above equations. A summary of the different
kF dependencies in the EOS is shown in Table III.

B. Scenarios for regularization

In Fig. 5 we plot the unrenormalized EOSs obtained by
including the contributions generated from the NLO EDF
using the VLO interaction, where we simply use the LO
parameters listed in Table I. As one can see, both EOSs
show strong cutoff dependence and, with the increase of �,
depart further away from the benchmark value. This shows
that renormalization is required.

The separation of the second-order part into three contri-
butions is at the heart of the strategy we use below to propose
different scenarios for regularization. Let us first start with pre-
liminary remarks that are important for the coming discussion.

(i) Except for the finite parts [Eqs. (4) and (8)], the

exact forms of �E
(2)
a

A
and �E

(2)
d

A
[Eqs. (5) and (6)
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TABLE II. Saturation density ρs , saturation energy E(ρs )
A

, and incompressibility K∞ for symmetric matter provided by the SLy5 mean-field
EOS, the t0–t3 model (LO), and our different scenarios for NLO with three types of counter terms (see text).

SLy5 LO NLOabc NLObc NLOc

E(ρs )
A

(MeV) −16.18 −16.31 −15.93 −15.98 ± 0.1 −15.97 ± 0.1

ρs (fm−3) 0.162 0.162 0.16 0.16 ± 0.003 0.16 ± 0.003

K∞ (MeV) 232.67 254.64 236.32 234.3 ± 3.5 233.2 ± 3.7

and Eqs. (9) and (10)] are regularization-scheme
dependent. However, for our expansion to make sense,
the final EOS should not depend on a particular scheme
after proper renormalization. This is verified in the
following by comparing the effect of various counter
terms.

(ii) The parameter α, which appears in the density-
dependent term, requires special attention because
each value of α would provide a different kF de-
pendence. In the present work, we keep α as a free
parameter in the renormalization.

(iii) The highest kF dependence appearing in the second-
order EOS is k4+6α

F . Thus, by a simple counting in
powers of kF , the t1 and t2 terms of the Skyrme
interaction (which contribute at first order as k5

F in the
EOS) do not enter in the NLO effective interaction for
α < 1

6 . In the following, because α is varied freely, α

might exceed 1
6 . In this case, one should keep in mind

that, a priori, one has also to include the t1 and t2 terms
of the Skyrme interaction.

In a previous study [41], it was shown that the divergence

appearing in �E
(2)
a

A
may be absorbed by a redefinition of

the existing parameters because those terms have the same
kF dependence as in first-order terms. For the divergence

appearing in �E
(2)
d

A
, one could first search for some special

values of α which would give for �E
(2)
d

A
the same kF

dependencies as those appearing in the mean-field part. Then,
one could perform the renormalization by absorbing the �
divergence into a redefinition of the parameters. This approach
was adopted in Ref. [41], where no new counter terms were
included.

In this work, we adopt a more general approach. We release
the requirement on specific values of α and, in general, we al-

low treating �E
(2)
a

A
and �E

(2)
d

A
in the same way: both divergences

present in �E
(2)
a

A
and �E

(2)
d

A
may be directly renormalized by

NLO EDF contributions. This allows us to use the divergence
generated at NLO by an LO interaction as an important guide
for the construction of an NLO effective interaction, denoted
by VNLO. In principle, each �kn

F divergence in the EOS can be
directly associated with an NLO counter part, Ank

n
F , where An

denotes an additional free parameter.3 A term in the effective
interaction of the form of O[(�k − �k′)n−3v−3ρv] will contribute
as O(kn

F ) in the EOS, where v is an arbitrary number that
satisfies n − 3v − 3 = even number. Note that the parameter
v does not appear in the EOS of matter. This additional free
parameter may eventually be adjusted with a fit to reproduce
properties of finite nuclei. Interactions of the above type appear
naturally, for example, when one expands the terms coming
from a resumed expression [60–63].

Without fixing α to specific values, the minimum counter

term required to absorb the divergences present in �E
(2)
d

A
is the

one proportional to k3+6α
F . On the other hand, the divergence

present in �E
(2)
a

A
can be absorbed by just a redefinition of t0, x0,

t3, and x3 or by adding more counter terms proportional to k3
F

and k3+3α
F . Note that, in both cases, the mean-field values of

the parameters are modified.

3A recent approach that constructs the interaction directly on a
particular power series of

∑
n kn

F is introduced in Refs. [58,59].
However, in the present work we consider n to be any real number.

TABLE III. Different kF dependencies in the EOSs of neutron and symmetric matter obtained for different interactions discussed in the
text. All the terms without underline are cutoff independent. In the second-order contribution of VLO, the terms with single or double underline
are linearly cutoff dependent. In particular, the terms with single underline can be treated either by absorbing them in the mean-field part by a
redefinition of the parameters or by introducing counter terms of the type V

(a)
NLO and V

(b)
NLO. The terms with double underline in the second-order

contribution correspond, in the absence of restrictions on the α values, to terms that require explicitly the introduction of counter terms, V
(c)

NLO.
Note finally that the second-order contributions of VNLO are not shown since they will appear only when going to higher orders.

Contribution to E/A VLO V
(a)

NLO V
(b)

NLO V
(c)

NLO

Mean field k3
F , k3+3α

F k3
F k3+3α

F k3+6α
F

Second-order k4
F , k4+3α

F , k4+6α
F

k3
F , k3+3α

F

k3+6α
F
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FIG. 5. EOS as a function of the density ρ for symmetric (upper
panel) and neutron (lower panel) matter. The dotted line represents
the mean-field SLy5 EOSs. The LO parameters listed in Table I are
used to compute the EOSs generated from the NLO EDF using VLO.

The three contact interactions that correspond to the three

divergences appearing in �E
(2)
a

A
and �E

(2)
d

A
can be written as

V
(a)

NLO = a(1 + Pσ xa)fa[(�k − �k′)−3va ,ρva ], (13)

V
(b)

NLO = b(1 + Pσxb)fb[(�k − �k′)3α−3vb ,ρvb ], (14)

V
(c)

NLO = c(1 + Pσxc)fb[(�k − �k′)6α−3vc ,ρvc ], (15)

where fa,b,c are functions that contain infrared regulators to
prevent potential singularities at ρ → 0 or |�k − �k′| → 0; it
may turn out that a best fit to finite nuclei would provide
negative powers for (�k − �k′) or ρ. Away from singularities,
we have fa,b,c[(�k − �k′)n−3v−3,ρv] ≈ (�k − �k′)n−3v−3ρv . a, b, c,
xa , xb, and xc are free parameters to be determined by an
adjustment of the EOS. On the other hand, va , vb, and vc

are extra parameters that could be determined only through
further adjustments done for finite nuclei. With their mean-
field contribution directly entering in the NLO EOS, the above
three counter terms provide k3

F , k3α+3
F , and k6α+3

F terms to the

EOS (see Table III). Note that only Eq. (15) (with contribution
k6α+3
F ) is necessarily required by renormalizability. The effect

of the other two terms [Eqs. (13) and (14)] can be replaced by
readjusting the values of ti ′s and xi ′s so that these two counter
terms, for nuclear matter, should just modify the values of the
parameters and not the power counting.

In Table IV, we list all Skyrme-type VLO and VNLO

interactions and the kF dependencies generated in the EOS
from the LO and NLO EDFs. We show in the last two rows
the VNLO contributions which are not included in the present
study because we limit α to be less than 1/6.

The scenario we consider for regularization will depend on
the type of counter terms that are included in VNLO. Because
the case with no counter term has already been discussed
in Ref. [41], we consider three possible scenarios, referred
to as scenario (c), (bc), and (abc), which refers to the fact
that only V

(c)
NLO, only V

(b)
NLO plus V

(c)
NLO, or all three counter

terms are used to construct VNLO, respectively. The resulting
EOSs are respectively called EOS-NLOc, EOS-NLObc, and
EOS-NLOabc.

Scenario (abc). Adopting all three types of counter terms,
the EOS up to NLO reads

E
(NLO)
SM (kF )

A
= 3

10

k2
F

m
+ k3

F

4π2
[t0 + A] + k3α+3

F

4π2
[T3 + B]

− m

8π4
k3+6α
F C + �E

(2)
SM,f (kF )

A
(16)

for symmetric matter and

E
(NLO)
NM (kF )

A
= 3

10

k2
F

m
+ 1

12π2
[t0(1 − x0) + A∗]k3

F

+
[

1

24
t3(1 − x3)

(
1

3π2

)α+1

+ B∗

4π2

]
k3α+3
F

− m

8π4
k3+6α
F C∗ + �E

(2)
NM,f (kF )

A
(17)

for neutron matter. Note that, to simplify the notation, we have
defined A(∗), B(∗), and C(∗) as the parameters originating from
Eqs. (13), (14), and (15) for symmetric (neutron) matter. The
parameters a, b, and c in Eqs. (13), (14), and (15) can be split

TABLE IV. Skyrme-type VLO and VNLO interactions and kF dependencies generated in the EOSs from the LO and NLO EDFs. We show in
the last two rows the VNLO contributions which are not included in the present study because we limit α to be less than 1/6. Note that, here,
we do not include spin-orbit and tensor interactions that should a priori appear as VNLO and contribute at EDF NLO with their mean-field
functional. The reason is that such mean-field contributions are zero in infinite matter.

Skyrme-type interaction kF -dep. in the EOS from LO EDF kF -dep. in the EOS from NLO EDF

VLO: t0(1 + x0Pσ ) k3
F t2

0 terms: k3
F , k4

F

VLO: t3(1 + x3Pσ )ρα k3+3α
F t2

3 terms: k3+6α
F , k4+6α

F

t0t3 terms: k3+3α
F , k4+3α

F

VNLO (counter terms): Eq. (13) k3
F

VNLO (counter terms): Eq. (14) k3+3α
F

VNLO (counter terms): Eq. (15) k3+6α
F

VNLO: t1(1 + x1Pσ )(k′2 + k2) k5
F

VNLO: t2(1 + x2Pσ )k′ · k k5
F
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FIG. 6. EOS as a function of the density ρ, where the subscript SN
(NM) represents symmetric (neutron) matter. The dotted (red solid)
line represents the mean-field SLy5 (renormalized NLO) EOSs. The
NLO EOSs are obtained by using the scenario (abc), that is, Eqs. (16)
and (17), with the parameters listed in Table V.

into two parts. One cancels the linear (�) divergence in the
EOS. The remaining parts are finite, are denoted by A(∗), B(∗),
and C(∗), and enter into the fitting procedure.

No cutoff is present in Eqs. (16) and (17) because all
possible divergences have been absorbed by counter terms.
We then perform the renormalization by refitting Eqs. (16)
and (17) to benchmark symmetric and neutron matter EOSs,
given by the SLy5 Skyrme interaction at the mean-field level,
from ρ = 0 ∼ 0.3 fm−3. In Fig. 6, we plot the resulting EOSs
for symmetric and neutron matter up to ρ = 0.4 fm−3. As one
can see, both the fit in symmetric and neutron matter agree
with the standard value with χ2 = 0.46 as listed in Table V.
However, it is not possible to perform a RG analysis in this
case because no cutoff dependence is present in the final EOS.

Scenario (bc). Next, we renormalize the second-order EOS
in the absence of the a counter term [Eq. (13)] and let the k3

F

divergence be absorbed by a redefinition of the parameters.
The resulting EOS reads

E
(NLO)
SM (kF ,�)

A
= 3

10

k2
F

m
+ k3

F

4π2
t�0 + k3α+3

F

4π2
[T3 + B]

− m

8π4
k3+6α
F C + �E

(2)
SM,f (kF )

A
(18)

for symmetric matter and

E
(NLO)
NM (kF ,�)

A
= 3

10

k2
F

m
+ k3

F

12π2
t�0

(
1 − x�

0

)

+
[

1

24
t3(1 − x3)

(
1

3π2

)α+1

+ B∗

4π2

]
k3α+3
F

− m

8π4
k3+6α
F C∗ + �E

(2)
NM,f (kF )

A
(19)

for neutron matter. Here, t�0 and x�
0 are

t�0 = t0 − m�

2π2
t2
0

(
1 + x2

0

)
, (20)

t�0
(
1 − x�

0

) = t0(1 − x0) − m�

2π2
t2
0 (1 − x0)2. (21)

Note that, through t�0 and x�
0 , � is present in Eqs. (18)

and (19). However, together with Eqs. (20) and (21), it is
clear that the cutoff dependence in the final EOS can always
be eliminated properly4 after the renormalization is done.
We then perform again a best fit to the mean-field SLy5
EOS (from ρ = 0 ∼ 0.3 fm−3), for � = 1.2–20 fm−1. The
resulting EOSs for symmetric and neutron matter are plotted
in Fig. 7, and the parameters and corresponding χ2 are listed in
Table VI.

Scenario (c). For the case where one only allows the
minimum counter term to enter, that is, the counter term
in Eq. (15), the divergences in powers of k3

F and k3α+3
F are

absorbed into a redefinition of t0, x0, t3, and x3, and the
resulting EOS reads

E
(NLO)
SM (kF ,�)

A

= 3

10

k2
F

m
+ k3

F

4π2
t�0 + k3α+3

F

4π2
T3 − m

8π4
k3+6α
F C

− m

8π4
�k3+3α

F t0

[
2T3(1 + x0x3) + 3

8
T3α(3 + α)

]

+ �E
(2)
SM,f (kF )

A
(22)

4After renormalization, one is left with a residual cutoff dependence
of the order R(�,kF ,�hi)(

kF

�hi
)n+1, where R is a function of the natural

size and n is the order of the calculation [64].

TABLE V. Parameter sets obtained by fitting the renormalized second-order EOS to the SLy5 mean-field EOS. Here the second-order EOSs
reported in Eqs. (16) and (17) are used.

α t0 (MeV fm3) t3 (MeV fm3+3α) x0 x3 A(MeV fm3) B (MeV fm3+3α) C (MeV fm3+6α)

−0.083 307.6 97.27 −2.721 −13.31 −7329 8339 14 965

A∗(MeV fm3) B∗(MeV fm3+3α) C∗ (MeV fm3+6α) χ 2

−24 149 11 159 18 781 0.46
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FIG. 7. EOS as a function of the density ρ, where the subscript SN
(NM) represents symmetric (neutron) matter. The dotted line (blue
shaded band) represents the mean-field SLy5 (renormalized NLO)
EOSs. The NLO EOSs are obtained by using the scenario (bc), that
is, Eqs. (18) and (19), with the parameters listed in Table VI. Here,
the cutoff is taken in the window � = 1.2–20 fm−1 and the error bars
correspond to the cutoff dependence of the fit.

for symmetric matter and

E
(NLO)
NM (kF ,�)

A

= 3

10

k2
F

m
+ k3

F

12π2
t�0

(
1−x�

0

) + k3α+3
F

24
t3(1−x3)

(
1

3π2

)α+1

− m�k3+3α
F

12π4
T0T

R
3 − m

8π4
k3+6α
F C∗ + �E

(2)
NM,f (kF )

A

(23)

for neutron matter. Here, only the C(∗) counter term enters into
play. Again, renormalizability is guaranteed as the divergences
can always be absorbed into a redefinition of the Skyrme
parameters. With the same renormalization strategy as for
the previous two cases, the resulting EOSs for symmetric
and neutron matter are plotted in Fig. 8, and the parameters
and corresponding χ2 are listed in Table VII. Note that for
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FIG. 8. EOSs as a function of the density ρ, where the subscript
SN (NM) represents symmetric (neutron) matter. The dotted line
(green shaded band) represents the mean-field SLy5 (renormalized
NLO) EOSs. The NLO EOSs are obtained by using the scenario (c),
that is, Eqs. (22) and (23), with the parameters listed in Table VII.
Here, the cutoff is taken in the window � = 1.2–20 fm−1 and the
error bars correspond to the cutoff dependence of the fit.

� > 4 fm−1, some of the values of α exceed 1/6. In principle,
one should thus include the mean-field contributions from the
t1 and t2 terms in the EOSs in these cases. We have performed
such calculations and found that including nonzero t1 and t2
terms does not improve the overall quality of the fits.

So far, we have checked three out of the four possible
scenarios for the NLO contact terms. We do not consider the
possibility of having an (ac) scenario because the NLO EOS
is unlikely to consist of counter terms proportional to k3

F and
k3+6α
F , without the intermediate term k3+3α

F .
From the fact that satisfactory fits (with similar quality)

can be obtained by all three scenarios, we conclude that the
regularization-scheme dependence present in Eqs. (5) and (6)
and Eqs. (9) and (10) does not affect the NLO results after
renormalization. The differences due to the regularization
scheme can be transferred into the counter terms present in
Eqs. (13) and (14). The independence of the final result of
the regularization scenario is also illustrated in Table II where

TABLE VI. Parameter sets obtained by fitting the renormalized second-order EOS to the SLy5 mean-field EOS. Here the second-order
EOSs reported in Eqs. (18) and (19) are used.

� (fm−1) 2 4 6 8 10 12 14 16 18 20

t0 (fm2) −2.804 2.024 −1.146 4.443 1.415 1.206 −1.960 2.627 −0.6473 0.4415
t3 (fm2+3α) 31.89 −28.99 −4.159 −47.48 2.661 18.31 −15.53 −0.5724 −20.38 −21.44
x0 −2.229 1.350 1.095 0.6359 1.448 1.202 1.203 −0.1834 4.257 0.3196
x3 −1.463 2.059 × 10−3 −6.376 0.1812 −11.70 −0.7088 −0.9565 31.64 −1.103 −0.4495
B (fm2+3α) 14.54 −29.11 −23.61 65.71 −4.749 −16.44 50.99 29.71 39.75 −28.14
C (fm2+6α) −2.713 −146.3 −93.89 67.63 −46.00 −59.68 97.23 51.99 37.24 −104.2
B∗ (fm2+3α) 28.67 37.49 10.77 17.46 7.152 19.17 4.072 25.15 32.86 8.702
C∗ (fm2+6α) 73.58 160.3 49.08 69.76 44.66 96.88 20.12 73.83 114.1 39.76
α 4.77 × 10−2 1.48 × 10−2 3.13 × 10−2 2.28 × 10−2 3.59 × 10−2 1.68 × 10−2 4.96 × 10−2 6.48 × 10−2 1.92 × 10−2 3.44 × 10−2

χ2 0.39 2.19 0.76 0.88 2.41 4.04 1.95 3.62 1.67 1.18

034318-8
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TABLE VII. Parameter sets obtained by fitting the renormalized second-order EOS to the SLy5 mean-field EOS. Here the second-order
EOSs reported in Eqs. (22) and (23) are used.

� (fm−1) 2 4 6 8 10 12 14 16 18 20

t0 (fm2) −2.987 −2.543 −2.140 −2.543 −1.725 1.885 −0.7193 −1.362 1.512 1.407
t3 (fm2+3α) 19.36 −0.9911 −4.586 20.02 0.8675 1.645 10.39 −0.4202 0.7416 2.174
x0 1.291 0.6370 0.8911 0.7149 0.5508 0.5239 2.247 0.6074 0.4943 0.5695
x3 −0.1825 −15.17 −4.145 −0.6774 12.87 −7.037 −6.189 × 10−3 −25.80 −12.45 −4.917
C (fm2+6α) 12.01 −3.791 1.962 20.95 −1.383 −3.364 0.3387 −0.8847 −3.547 −3.286
C∗ (fm2+6α) 10.64 61.689 0.7346 33.21 −2.972 −3.140 −3.027 −3.430 −3.773 −3.953
α 6.88 × 10−2 0.170 0.126 4.20 × 10−2 0.224 0.187 0.226 0.223 0.205 0.190
χ 2 3.01 1.06 1.25 2.53 0.34 0.55 1.63 0.55 1.92 1.23

we see that the properties of symmetric matter are almost
independent of the scenario and match well the reference SLy5
EOS.

Although in the present work the interactions are treated
perturbatively and the small difference between the LO
and NLO EOSs suggests that the power counting should
be straightforward, the fact that the LO interaction VLO

is not derived from an underlying microscopic theory and
the presence of VNLO counter terms leave the whole theory
into the danger that what is generated could be nothing but
just another phenomenologically fitted functional. Therefore,
an EFT-based power counting analysis is necessary. For an
explicit determination of the power counting, a RG analysis
needs to be performed first. Here, we performed a RG analysis
for the two scenarios where the cutoff dependence is still
present. The cutoff dependence at the density ρ = 0.4 fm−3 is
plotted as a function of the cutoff � in Figs. 9 and 10, where the
EOSs are obtained by Eqs. (18) and (19) and Eqs. (22) and (23),
respectively. In addition, the running of parameters is plotted
as a function of cutoff � in Figs. 11 and 12 for scenarios (bc)
and (c), respectively. Note that the adjustment is performed up
to ρ = 0.3 fm−3, so the results at ρ = 0.4 fm−3 are predictions.
As one can see, the cutoff dependence is reduced at higher �
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FIG. 9. Second-order EOSs obtained by using Eqs. (18) and (19)
[scenario (bc)] at the density value ρ = 0.4 fm−3, as a function of the
cutoff �.

in both cases. In addition, a similar convergence pattern is
observed. However, due to the uncertainty generated by the
large number of parameters (nine for the case in Fig. 9 and
seven for the case in Fig. 10), the convergence patterns in both
cases are not quite smooth. This might give rise to potential
problems in performing a full power counting analysis as
introduced, for example, in Ref. [64]. Nevertheless, such an
analysis is still of interest and should be performed at NLO
and NNLO levels to give further confirmation of our approach.
We leave it as a future work. Finally, for α � 1

6 , one needs to
consider also the mean-field contributions coming from the t1
and t2 terms. They contribute at LO as θs

4π2 k
5
F and θs−θv

4π2 k5
F to

the EOSs of symmetric and pure neutron matter, respectively,
where

θs = 1
10 [3t1 + t2(5 + 4x2)],

θv = 1
10 [t1(2 + x1) + t2(2 + x2)]. (24)

We have repeated the fit for α � 1
6 for the above three cases.

However, we found that, despite the presence of four additional
parameters, the χ2 increases for most of the cutoff values in
the three cases for VNLO. This suggests that the inclusion of
the t1 and t2 terms should be deferred to NNLO.
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FIG. 10. Second-order EOSs obtained by using Eqs. (22) and (23)
[scenario (c)] at the density value ρ = 0.4 fm−3, as a function of the
cutoff �.
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FIG. 11. Parameters in Eqs. (18) and (19) [scenario (bc)] as a
function of the cutoff �. Here the units of parameters are those listed
in Table VI.

A final point we wish to stress is that the sets of parameters
listed in Tables V–VII are obtained through a fit to the SLy5
EOS of symmetric and pure neutron matter with 10 points
ranging from ρ = 0–0.3 fm−3. We have changed the number
of points from 9 to 12 and found that the parameters are stable
with respect to the number of fitting points. However, due
to the large number of parameters and to the fact that the
fits are performed only to two EOSs, there exist other sets of
parameters which generate slightly (<1%) larger χ2. Thus, we
cannot guarantee that the parameters listed in Tables V–VII
are the final values to be used in all applications. A full
determination of parameters is only possible with a general
fit to both nuclear matter and finite nuclei, which we defer to
a future work. Nevertheless, when another set of parameters
(with slightly larger χ2) was adopted, we observed that the
convergence pattern as listed in Figs. 9 and 10 was unchanged,
that is, the oscillation with respect to the cutoff � becomes
smaller at higher �. Also, after canceling the divergence
by the contact terms, it could be possible to keep a subset
of parameters cutoff invariant. For example, one could try
to keep t3, x3, and α cutoff invariant in the scenario (bc)
and α cutoff invariant in the scenario (c). Decreasing the
number of parameters for the fit might indeed help to reduce
the fluctuations seen in Figs. 9–12. This kind of test will
be performed in a future work to gain more insight toward
establishing an EFT-based functional.
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FIG. 12. Parameters in Eqs. (22) and (23) [scenario (c)] as a
function of the cutoff �. Here the units of parameters are those listed
in Table VII.

IV. CONCLUSIONS

We have proposed a new approach to generate an effective
interaction up to NLO in the EDF framework. Two tools
from EFT, renormalizability and RG analysis, are utilized to
construct and analyze the new effective interaction. Under
the condition that the renormalizability is guaranteed, we
explored three possible scenarios for the NLO counter terms.
We found that all three scenarios produce second-order EOSs
with similar quality, which indicates that our EOS up to
NLO is independent of the regularization scheme. Benchmark
symmetric and neutron matter EOSs can be reproduced in our
approach within χ2 < 5 for a wide range of cutoffs.

There are many possibilities to extend the current study. In
particular, the extra parameters provided by the counter terms
may be determined in a future work by a fit to properties of
some selected finite nuclei. Also, a more conclusive power
counting might be drawn after higher-order (e.g., NNLO)
contributions are included, which will be addressed in a future
work. As an interesting step, it is worth mentioning that the
third-order perturbation terms associated with Skyrme forces
have been derived recently in Ref. [65].
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