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Recently, I proposed a fast computing scheme for generalized seniority on a spherical single-particle basis
[J. Phys. G: Nucl. Part. Phys. 42, 115105 (2015)]. This work redesigns the scheme to make it applicable to
deformed single-particle basis. The algorithm is applied to the rare-earth-metal nucleus 158

64 Gd94 for intrinsic
(body-fixed frame) neutron excitations under the low-momentum NN interaction Vlow-k . By allowing as many as
four broken pairs, I compute the lowest 300 intrinsic states of several multipolarities. These states converge well
to the exact ones, showing generalized seniority is very effective in truncating the deformed shell model. Under
realistic interactions, the picture remains approximately valid: The ground state is a coherent pair condensate and
the pairs gradually break up as excitation energy increases.
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I. INTRODUCTION

The nuclear shell model (configuration interaction) is
the fundamental microscopic method for nuclear structure,
providing detailed spectroscopy. The Hamiltonian, either
phenomenological or microscopic, is diagonalized in the
many-body Hilbert space built as Slater determinants of single-
particle levels. Nowadays, the no-core shell model [1] can
treat light nuclei without assuming an inert core, in which the
single-particle levels are merely a basis that affects the speed
of convergence. For medium and heavy nuclei, truncation to a
valence single-particle space is necessary.

Medium and heavy nuclei usually develop static defor-
mations away from magic numbers. In general, describing
them in the spherical shell model is inefficient, requiring
large valence single-particle spaces for convergence, and
successful implementations remain exceptions (see Sec. VI of
Ref. [2] and, for example, Refs. [3–5]). Spontaneous symmetry
breaking suggests using an efficient deformed single-particle
basis [6,7], as first done by Nilsson [8]. The deformed shell
model mixes Slater determinants built on the deformed valence
single-particle levels and gives the intrinsic wave functions in
the body-fixed frame.

The deformed shell model is less developed than the
spherical version [2]. Most applications are restricted to
the pairing Hamiltonian. Recent advances [9,10] of realistic
interactions aiming at ab initio (starting from the nucleon-
nucleon potential) nuclear structure enjoy great successes with
the spherical shell model [11], and it is meaningful to use
them in statically deformed nuclei. The plain application of
the deformed shell model would suffer the same dimension
problem as in the spherical case, which calls for effective
truncation schemes. This work considers the generalized-
seniority truncation scheme (broken pair approximation) of
the deformed shell model.

In the field, many competing approaches go beyond the
deformed mean field. I classify them by whether they conserve
particle number and rotational symmetry. For methods break-
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ing both symmetries, I mention the successful applications
of the deformed quasiparticle random-phase approximation
(QRPA) [12–14] and the Hartree-Fock-Bogoliubov (HFB)
plus generator coordinator method [15]. These applications
use self-consistently the same energy-density functional for
the mean field and beyond. But they have the drawbacks: The
BCS or HFB treatment breaks the particle number [16,17]
and vanishes for weak pairing [18]. Moreover, treating higher
order correlations better is desirable, as also pointed out in
these works [13–15].

For methods breaking particle number but respecting
rotational symmetry, I mention the fruitful projected shell
model [19–21]. It solves the HFB equation on Nilsson levels,
then builds the basis by projecting the quasiparticle Slater
determinants onto good angular momentum, on which the
Hamiltonian is diagonalized. The method can be viewed as
a truncation scheme of the spherical shell model. However,
usually the particle-number projection is not performed, thus
it truncates the Fock space instead of the Hilbert space, which
may cause problems (see Sec. 2.3.3. of Ref. [22]). Also,
currently the method uses phenomenological separable forces
(quadrupole plus monopole and quadrupole pairing [21]) but
not modern realistic ones.

For methods conserving particle number but breaking
rotational symmetry, I mention the deformed shell model
that diagonalizes the Hamiltonian on Slater determinants
built from deformed (for example, Nilsson) single-particle
levels. Currently this method has been mostly applied to
the (state-dependent) pairing Hamiltonian. This Hamiltonian
conserves the seniority quantum number [23–25] by which
the Hilbert space is block diagonal. Therefore, the dimension
is greatly reduced and the direct diagonalization is possible
[26,27]. Alternatively, the configuration-space Monte Carlo
methods [28–30] may be more efficient, when all the pairing
two-body matrix elements are attractive and free of the sign
problem. I also mention that exact algebraic solutions exist
for a special class [31] of the pairing Hamiltonian following
Richardson’s method [32]. For the state-dependent pairing plus
cranking Hamiltonian, Ref. [26] studied the symmetries on
the many-body level that guide the truncation of the Hilbert
space. For the state-independent monopole (and sometimes
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quadrupole) pairing plus cranking Hamiltonian, truncating the
many-body basis by their energies was extensively used (for
example, see Refs. [33–40]). Despite these achievements, the
large-scale deformed shell model calculations with modern
realistic interactions, comparable to those by the spherical shell
model, have not been performed yet. And the effectiveness of
various truncation schemes with realistic interactions remains
an open question [41].

For methods conserving both symmetries, I mention the
deformed shell model with angular-momentum projection
(projected configuration interaction method) [42–46]. It builds
the basis by projecting Slater determinants of deformed
single-particle levels onto good angular momentum. The
Hamiltonian is diagonalized within the basis, and the method
is a truncation scheme of the spherical shell model. For
better accuracy, including multiple deformations has been
studied [46]. However, the current applications are restricted
to small valence single-particle spaces (usually one spherical
major shell), owing to the time-consuming angular-momentum
projection. It explains the huge spherical shell model wave
functions by using a smaller dimension but does not seem
to advance the computation capability. In this category, I
also mention the MONSTER method [47] that projects the
HFB vacuum and two-quasiparticle states onto good particle
number and angular momentum, on which the Hamiltonian is
diagonalized.

This work concerns the deformed shell model that con-
serves particle number but breaks rotational symmetry. Specif-
ically I consider the generalized-seniority truncation of it.
The pairing correlation has long been recognized [48] and
influences practically all nuclei across the nuclear chart
[6,7]. The generalized seniority quantum number, emphasizing
pairing, was proposed [49–53] in the spherical shell model and
frequently used as a truncation scheme [22,54–61]. I recently
proposed an algorithm [62] that greatly reduces the computer
time cost and promotes the generalized-seniority truncation to
an accurate tool for semimagic nuclei [63,64]. The concept
of generalized seniority can be straightforwardly extended
to be defined on a deformed (for example, Nilsson) single-
particle basis. As a truncation scheme for the deformed shell
model, it should be effective for the low-lying intrinsic states:
deformed medium and heavy nuclei usually display pairing
gaps (∼1.5 MeV) in the intrinsic spectrum. The coherent pairs
are preferred by the attractive short-range pairing force, just
as that in semimagic nuclei, but are formed on the deformed
single-particle levels.

Computationally, the spherical version of generalized-
seniority algorithm [62] has difficulties as directly applied
to the deformed case. This work redesigns the computing
scheme to revive it. The generalized-seniority truncation of
the deformed shell model runs as fast as that of the spherical
shell model [62] with the new algorithm (for similar subspace
dimensions after truncation).

I apply the method to the rare-earth-metal nucleus 158
64 Gd94

for intrinsic (body-fixed frame) neutron excitations under the
low-momentum NN interaction Vlow-k [10]. The purpose is
to demonstrate the effectiveness of the generalized-seniority
truncation under realistic interactions. My results show it is
approximately valid that the ground state is a coherent pair

condensate and the pairs gradually break up as excitation
energy increases.

The paper is organized as follows. Section II briefly reviews
the generalized-seniority formalism. Section III reviews the
many-pair density matrix that is key to the family of new
computing schemes. I derive analytical expressions of the
many-pair density matrix in Sec. IV, and how this revives the
spherical algorithm [62] in the case of deformed single-particle
basis is explained in Sec. V. Section VI applies the method to
the rare-earth-metal nucleus 158

64 Gd94.

II. GENERALIZED SENIORITY FORMALISM

I briefly review the generalized-seniority formalism in
relation to the current work. For clarity I consider only one
kind of nucleon; the extension to the case of active protons and
neutrons is straightforward as done in, for example, Ref. [62].
The pair-creation operator

P †
α = a†

αa
†
α̃ (1)

creates a pair of particles on the single-particle level |α〉
and its time-reversed partner |α̃〉 (| ˜̃α〉 = −|α〉, P †

α = P
†
α̃ ). The

coherent pair-creation operator

P † =
∑
α∈�

vαP †
α (2)

creates a pair of particles coherently distributed with structure
coefficients vα over the entire space. � is the set of pair indices
that picks only one from each Kramers-degenerate pair |α〉
and |α̃〉. With axial symmetry, orbits of a positive magnetic
quantum number are a choice for �.

∑
α∈� means summing

over pair indices. The pair-condensate wave function of the
2N -particle system

(P †)N |vac〉 (3)

builds in pairing correlations, where |vac〉 is the vacuum state.
The normalization is

χN = 〈vac|P N (P †)N |vac〉. (4)

Gradually breaking coherent pairs, the state with S = 2s
unpaired nucleons is

a†a† . . . a†︸ ︷︷ ︸
S=2s

(P †)N−s |vac〉. (5)

Loosely speaking, S is defined as the generalized-seniority
quantum number [22,49–54]. More precisely, I distinguish
between the space |S} of S unpaired nucleons and the space
|S〉 of generalized seniority S. The space |S} is spanned by
all the states of the form (5). Any state of S ′ < S unpaired
nucleons can be written as a linear combination of the states of
S unpaired nucleons, after substituting several P † by Eq. (2).
Therefore, |S ′} is a subspace of |S},

|S} ⊃ |S − 2} ⊃ |S − 4} ⊃ · · · ⊃ |2} ⊃ |0}. (6)

In contrast, |S〉 ≡ |S − 2}⊥ is the orthogonal complement of
the subspace |S − 2} of the space |S}, and thus

|S} = |S〉 ⊕ |S − 2}.
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The symbol ⊕ means direct sum. Similarly, |S − 2} = |S −
2〉 ⊕ |S − 4}, and so on. Finally,

|S} = |S〉 ⊕ |S − 2〉 ⊕ · · · ⊕ |2〉 ⊕ |0〉. (7)

In this work, S = 2s is even, and I define |s} ≡ |S} and |s〉 ≡
|S〉. The original basis vectors (5) are not orthogonal. After
orthonormalization, the new basis vectors of the space |s〉 are
enumerated as |s,i〉, where the index i runs from one to the
dimension of |s〉.

Practical generalized-seniority calculations usually trun-
cate the full many-body space to the subspace |s} and then
diagonalize the Hamiltonian (s = N corresponds to the full
space without truncation). The eigen wave function is

|E〉 =
∑
s ′�s

∑
i

cs ′,i |s ′,i〉. (8)

If the wave function (8) is considered in terms of generalized
seniority, the amplitude for generalized seniority 2s ′ is

P (s ′) =
∑

i

|cs ′,i |2. (9)

And
∑

s ′�s P (s ′) = 1.

III. MANY-PAIR DENSITY MATRIX

The many-pair density matrix (MPDM) [62] has clear
physical meaning and is key to the new algorithm. In this
section, I introduce the MPDM in a natural way and explain
how it speeds up generalized-seniority calculations. One
recalls the conventional many-body density matrix

ρi1i2...ik ;i ′1i
′
2...i

′
k
≡ 〈gs|ai1ai2 . . . aik a

†
i ′1
a
†
i ′2

. . . a
†
i ′k
|gs〉 (10)

that characterizes properties of the ground state
|gs〉. Equation (10) with k = 1 and k = 2 give the
one-body and two-body density matrix. When pairing
correlation is strong, the ground state |gs〉 can be
approximated by a seniority-zero state |gs,ν = 0〉
(seniority ν [23–25] and generalized seniority S [49–53]
are different quantum numbers), where two single-particle
levels of Kramers degeneracy are either both occupied or
both empty. For example, one can take |gs,ν = 0〉 as the
lowest eigenstate of diagonalizing H in the ν = 0 subspace.
On |gs,ν = 0〉, the many-body density matrix ρi1...ik ;i ′1...i

′
k

(10)
is inefficient with many vanished matrix elements. More
efficiently, I introduce the MPDM

tα1α2...αp ;β1β2...βp

≡ 〈gs,ν = 0|Pα1Pα2 . . . Pαp
P

†
β1

P
†
β2

. . . P
†
βp

|gs,ν = 0〉, (11)

that is physically pair-hopping amplitudes. Reference [62]
shows that ρi1...ik ;i ′1...i

′
k

of |gs,ν = 0〉 reduces to the form (11) in
a many-to-one correspondence. Storing tα1...αp ;β1...βp

requires
much less computer memory than storing ρi1...ik ;i ′1...i

′
k
.

The proposed fast algorithm [62] for generalized seniority
has been applied to semimagic Sn [63] and Pb [64] isotopes
with realistic interactions. The key idea is to precalculate and
store the MPDM. Let me consider, for example, computing
the two-body part of the Hamiltonian. The matrix element is

schematically written as

〈vac|P N−s aa . . . a︸ ︷︷ ︸
S=2s

(aaa†a†)︸ ︷︷ ︸
H

a†a† . . . a†︸ ︷︷ ︸
S=2s

(P †)N−s |vac〉. (12)

It is of the form of a (S + 2)-body density matrix, and the
nonvanished matrix elements reduce to the MPDM

t
[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

= 〈vac[γ1γ2...γr ]|P N−sPα1Pα2 . . . Pαp

×P
†
β1

P
†
β2

. . . P
†
βp

(P †)N−s |vac[γ1γ2...γr ]〉.
(13)

The superscripts [γ1γ2 . . . γr ] mean MPDM in the Pauli-
blocked single-particle space, where pairs of single-particle
levels γ1,γ̃1,γ2,γ̃2, . . . ,γr ,γ̃r are removed from the origi-
nal single-particle space. Equation (13) is a special case
of Eq. (11), where the seniority-zero state |gs,ν = 0〉 is
taken to be the generalized-seniority-zero state |gs,S = 0〉 =
(P †)N−s |vac[γ1γ2...γr ]〉.

In realistic applications usually the number of
t

[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

(13) is still too large to fit into memory,
and further simplification is necessary. On the spherical
single-particle basis, I switch to the “occupation number
representation” [62–64]

t
[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

→ t
[nγ

1 ,n
γ
2 ,...]

nα
1 ,nα

2 ,...;nβ
1 ,n

β
2 ,...

, (14)

where nα
i is the number of ji’s (with arbitrary magnetic

quantum number m) present in the series α1,α2, . . . ,αp.
Similarly for n

β
i and n

γ
i . The reduction (14) is justified by

rotational symmetry and is again a many-to-one correspon-

dence. As shown in Fig. 1 of Ref. [62], t
[nγ

1 ,n
γ
2 ,...]

nα
1 ,nα

2 ,...;nβ
1 ,n

β
2 ,...

could be

easily stored in memory of modern computers. Precalculating

t
[nγ

1 ,n
γ
2 ,...]

nα
1 ,nα

2 ,...;nβ
1 ,n

β
2 ,...

is through the recursive relation (Eq. (7) of

Ref. [62]).
On the deformed (for example, Nilsson) single-particle

basis, the reduction (14) is impossible in the absence of
rotational symmetry. One aim of this work is to propose, in
Sec. IV, an alternative simplification.

IV. EXPRESS MANY-PAIR DENSITY MATRIX
BY NORMALIZATION

My previous works [62–64] compute MPDM through the
recursive relation (Eq. (7) of Ref. [62]). In this work, I propose
a simpler way through expressing MPDM by the normalization
(4). The new way is key to generalized seniority on a deformed
single-particle basis.

I derive the results in the general case of unbalanced bra
and ket generalized seniority and define MPDM as

tMα1α2...αp ;β1β2...βq
≡ 〈vac|P M−pPα1Pα2 . . . Pαp

×P
†
β1

P
†
β2

. . . P
†
βq

(P †)M−q |vac〉, (15)

where p (q) is the number of α (β) pair indices, and M equals
the total number of pair-creation operators. Equation (13)
is the special case of Eq. (15) with balanced p = q. The
γ1,γ2, . . . ,γr indices are suppressed for clarity. All the indices
α1,α2, . . . ,αp,β1,β2, . . . ,βq are distinct: The MPDM vanishes
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if there are duplicated α indices, or duplicated β indices,
owing to the Pauli principle; and I require by definition that
α1,α2, . . . ,αp and β1,β2, . . . ,βq have no common index (the
common ones act as Pauli blocking and have been moved to
γ1,γ2, . . . ,γr ).

Now I simplify Eq. (15). By substituting P † = ∑
α∈� vαP †

α

[Eq. (2)] into (P †)M−q and polynomially expanding, terms
with P

†
β1

vanish due to the Pauli principle. Similarly for terms

with P
†
β2

, P
†
β3

, . . . , P
†
βq

. Thus in Eq. (15), (P †)M−q could be

replaced by (P †
[β1β2...βq ])

M−q , where

P
†
[β1β2...βq ] ≡ P † − vβ1P

†
β1

− vβ2P
†
β2

− · · · − vβq
P

†
βq

.

For the same reason, P M−p could be replaced by
(P[α1α2...αp])M−p = (P − vα1Pα1 − · · · − vαp

Pαp
)M−p, and

Eq. (15) becomes

tMα1α2...αp ;β1β2...βq
= 〈vac|(P[α1...αp]

)M−p
Pα1Pα2 . . . Pαp

P
†
β1

P
†
β2

. . . P
†
βq

(
P

†
[β1...βq ]

)M−q |vac〉.
Next, using P[α1...αp] = P[α1...αpβ1...βq ] + vβ1Pβ1 + · · · + vβq

Pβq
and P

†
[β1...βq ] = P

†
[α1...αpβ1...βq ] + vα1P

†
α1

+ · · · + vαq
P †

αq
, I have

tMα1α2...αp ;β1β2...βq
= 〈vac|(P[α1...αpβ1...βq ] + vβ1Pβ1 + · · · + vβq

Pβq

)M−p
Pα1Pα2 . . . Pαp

P
†
β1

P
†
β2

. . . P
†
βq

× (
P

†
[α1...αpβ1...βq ] + vα1P

†
α1

+ · · · + vαp
P †

αp

)M−q |vac〉.
In the polynomial expansion of (P[α1...αpβ1...βq ] + vβ1Pβ1 + · · · + vβq

Pβq
)M−p, each contributing term must have the factor

Pβ1Pβ2 . . . Pβq
to annihilate P

†
β1

P
†
β2

. . . P
†
βq

. Defining Ab
a = a!/(a − b)! as the number of permutations, I write

(
P[α1...αpβ1...βq ] + vβ1Pβ1 + · · · + vβq

Pβq

)M−p = (
P[α1...αpβ1...βq ]

)M−p−q
A

q
M−pvβ1Pβ1vβ2Pβ2 . . . vβq

Pβq
+ · · · .

The neglected terms “. . .” do not contribute. Treating (P †
[α1...αpβ1...βq ] + vα1P

†
α1

+ · · · + vαp
P †

αp
)M−q similarly, Eq. (15) becomes

tMα1α2...αp ;β1β2...βq
= 〈vac|(P[α1...αpβ1...βq ]

)M−p−q
A

q
M−pvβ1Pβ1 . . . vβq

Pβq
Pα1Pα2 . . . Pαp

P
†
β1

P
†
β2

. . . P
†
βq

×A
p
M−qvα1P

†
α1

. . . vαp
P †

αp

(
P

†
[α1...αpβ1...βq ]

)M−p−q |vac〉
= A

p
M−qA

q
M−pvα1 . . . vαp

vβ1 . . . vβq
〈vac|(P[α1...αpβ1...βq ]

)M−p−q(
P

†
[α1...αpβ1...βq ]

)M−p−q |vac〉.

Defining χ
[α1...αpβ1...βq ]
M−p−q = 〈vac|(P[α1...αpβ1...βq ])M−p−q(P †

[α1...αpβ1...βq ])
M−p−q |vac〉 as the normalization (4) in the Pauli-blocked

single-particle space, and using A
p
M−qA

q
M−p = (M − p)!(M − q)!/[(M − p − q)!]2, I have

tMα1α2...αp ;β1β2...βq
= (M − p)!(M − q)!

[(M − p − q)!]2
vα1vα2 . . . vαp

vβ1vβ2 . . . vβq
χ

[α1α2...αpβ1β2...βq ]
M−p−q . (16)

This finishes the derivation.
In this work, the relevant MPDM (13) has balanced bra and ket generalized seniority. Equation (15) becomes Eq. (13) after

setting q = p and M = N − s + p. The derivation from Eqs. (15) to (16) remains valid if I Pauli block the γ1,γ2, . . . ,γr indices
from the very beginning. Therefore Eq. (16), with these settings, implies the result for Eq. (13)

t
[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

= 〈vac[γ1γ2...γr ]|P N−sPα1Pα2 . . . Pαp
P

†
β1

P
†
β2

. . . P
†
βp

(P †)N−s |vac[γ1γ2...γr ]〉

=
[

(N − s)!

(N − s − p)!

]2

vα1vα2 . . . vαp
vβ1vβ2 . . . vβp

χ
[α1α2...αpβ1β2...βpγ1γ2...γr ]
N−s−p . (17)

Equation (17) expresses MPDM by the Pauli-blocked normal-
izations in a many-to-one correspondence. This result is key
to generalized seniority on deformed single-particle basis, as
will be shown in Sec. V.

V. ESTIMATING COMPUTER MEMORY

The family of new algorithms speeds up generalized-
seniority calculations by precalculating and storing in memory
the selected intermediate quantity. In this section, I compare
the memory requirements of the two methods by selecting
t

[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

[Eq. (13) or the left-hand side of Eq. (17)] and

by selecting χ
[α1...αpβ1...βpγ1...γr ]
N−s−p [the right-hand side of Eq. (17)]

as the intermediate quantity.
Taking the two-body part of the Hamiltonian as an example

and in the reduction from Eqs. (12) to (13), three restrictions
exist on the value of non-negative integers r and p (2	 is the
dimension of the single-particle space),

r + 2p � 2(s + 1) � 2r + 2p, (18)

p + (N − s) + r � 	, (19)

p � N − s. (20)
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Given 	, N , and s, these three equations determine the
possible values of the (p,r) pair. For each (p,r) pair, the
number of different t

[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

is

kt (p,r) = 1

2
Cr

	C
p
	−rC

p
	−r−p = 1

2

	!

r!p!p!(	 − r − 2p)!
.

Cr
	 = 	!/[r!(	 − r)!] is the number of ways for selecting r

of γ indices from the 	 candidates that compose the single-
particle space. C

p
	−r is for selecting p of α indices from the

leftover 	 − r candidates. Similarly C
p
	−r−p is for selecting p

of β indices. The factor 1/2 considers that t
[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

=
t

[γ1γ2...γr ]
β1β2...βp ;α1α2...αp

is symmetric exchanging the α and β indices.∑
(p,r) kt (p,r) sums all possible (p,r) pairs and gives the total

number of different t [γ1γ2...γr ]
α1α2...αp ;β1β2...βp

at given 	, N , and s. Next,

for each (p,r) pair, the number of different χ
[α1...αpβ1...βpγ1...γr ]
N−s−p is

kχ (p,r) = C
2p+r
	 = 	!

(r + 2p)!(	 − r − 2p)!
. (21)

C
2p+r
	 is the number of ways for selecting 2p + r

indices α1 . . . αpβ1 . . . βpγ1 . . . γr from the 	 candidates.∑
(p,r) kχ (p,r) sums all possible (p,r) pairs and gives the total

number of different χ
[α1...αpβ1...βpγ1...γr ]
N−s−p at given 	, N , and s.

In IEEE (Institute of Electrical and Electronics Engineers)
floating-point standard, each double-precision variable occu-
pies 64 bits or 8 bytes of memory. The complete t table needs
4 variables for each t

[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

, storing not only the value,
but also the 3 indices α1 . . . αp, β1 . . . βp, and γ1 . . . γr (each in
one variable bitwise). Hence, the t table needs Mt (	,N,s) =
32

∑
(p,r) kt (p,r) bytes of memory. The complete χ table

needs 2 variables for each χ
[α1...αpβ1...βpγ1...γr ]
N−s−p , storing the value

and the α1 . . . αpβ1 . . . βpγ1 . . . γr index. (The p index can be
stored in an 8-bit variable and used in a first-level indexing;
thus the memory cost is small and neglected.) Hence the χ table
needs Mχ (	,N,s) = 16

∑
(p,r) kχ (p,r) bytes of memory.

Figure 1 plots the memory requirements for the t table
[Mt (	,N,s)] and the χ table [Mχ (	,N,s)] in three model
spaces of (	,N ) = (20,10), (30,15), and (50,25). In each case
the space is half filled with N = 	/2. One sees that the χ table
is considerably smaller than the t table. For large model spaces,
it is impractical or difficult to store the t table in memory of
common modern computers (several dozens of GB, 1 GB ≈
109 bytes), especially if parallel computing stores multiple
copies of the t table. Even if memory is enough, it is preferable
to use a small table that is constantly searched in the algorithm.

To summarize, in realistic deformed applications the
number of t

[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

is frequently too large to fit into
memory. In this work, the proposed deformed generalized-
seniority algorithm precalculates (by Eq. (23) of Ref. [65]) and
stores the Pauli-blocked normalizations χ

[α1...αpβ1...βpγ1...γr ]
N−s−p ,

then computes t
[γ1γ2...γr ]
α1α2...αp ;β1β2...βp

on the fly through Eq. (17).
Section VI applies the algorithm to a semirealistic example.
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FIG. 1. Memory requirements to store the χ and t tables in three
different model spaces. 2	 is the dimension of the single-particle
space, 2N is the number of particles, and S is the generalized seniority
quantum number.

VI. SEMIREALISTIC EXAMPLE

In this section, I apply the generalized seniority approx-
imation to the semirealistic example of the rare-earth-metal
nucleus 158

64 Gd94. The purpose is to demonstrate the effective-
ness of this truncation scheme under realistic interactions. For
simplicity, I consider only the neutron degree of freedom,
governed by the antisymmetrized two-body Hamiltonian

H =
∑

α

eαa†
αaα + 1

4

∑
αβγ δ

Vαβγ δa
†
αa

†
βaγ aδ. (22)

(Note the ordering of αβγ δ, thus Vαβγ δ = −〈αβ|V |γ δ〉.) The
single-particle levels eα are assumed to be the eigenstates of
the Nilsson model [8],

h = − h̄2

2m
∇2 + m

2

(
ω2

r x
2 + ω2

r y
2 + ω2

zz
2
)

− κh̄ω̊0[2l · s + μ(l2 − 〈l2〉N )], (23)

where h̄ω̊0 = 41A−1/3 MeV as usual and A = 158 is the
mass number. Other parameters follow the convention in
Ref. [7]. Taking the experimental quadrupole deformation
β = 4

3

√
π
5 δ = 1.0569δ = 0.349 [66], ωr and ωz are fixed

by 2δ = 3(ω2
r − ω2

z )/(2ω2
r + ω2

z ) and conserving the volume
(ωr )2ωz = (ω̊0)3. 〈l2〉N = N (N + 3)/2 is l2 averaged over
one harmonic oscillator major shell N = 2nr + l. I take
κ = 0.0637 and μ = 0.60 as commonly used [7,67].

The neutron residual interaction Vαβγ δ in Eq. (22) is
assumed to be the low-momentum NN interaction Vlow-k [10]
derived from the free-space N3LO potential [68]. Practically, I
use the code distributed by Hjorth-Jensen [69] to compute
(without Coulomb, charge-symmetry breaking, or charge-
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FIG. 2. Part of the Nilsson diagram. The 31 asterisks represent
31 consecutive pairs of Nilsson levels. The horizontal and vertical
axes show their numbering and energy (zero of energy is arbitrary).
The blue solid line is the Fermi surface. The Nilsson levels between
the two red dashed (green dash-dotted) lines compose the valence
space 1 (2).

independence breaking) the two-body matrix elements of
Vlow-k in the spherical harmonic oscillator basis up to (includ-
ing) the N = 12 major shell, with the standard momentum
cutoff 2.1 fm−1. The Nilsson model (23) is diagonalized in
this spherical N � 12 basis, the eigenenergies are eα , and
the eigen wave functions transform the spherical two-body
matrix elements into those on the Nilsson basis as used in the
Hamiltonian (22).

The above procedure assumes that mainly the proton-
neutron interaction generates the static deformation and self-
consistently the Nilsson mean field. The residual proton-
neutron interaction is neglected, and in the Hamiltonian (22)
the part of the neutron-neutron interaction already included
in the Nilsson mean field eα is not removed from Vαβγ δ .
These assumptions make the example semirealistic. My goal
is to demonstrate the effectiveness of the generalized-seniority
truncation scheme, not to accurately reproduce the experimen-
tal data.

The Fermi energy is fixed as usual to be the average of the
last occupied and the first unoccupied Nilsson level (when the
94 neutrons occupy the lowest 47 pairs of Nilsson levels). I
perform two calculations in two valence single-particle spaces
of dimension 34 and 46 as shown in Fig. 2. The dimension-34
space has 18 and 16 valence levels below and above the Fermi
surface, and in calculation 1 I truncate the many-body space
to the subspace |S = 2s = 8} (7). The dimension-46 space has
22 and 24 valence levels below and above the Fermi surface,
and in calculation 2 I truncate to |S = 6}. In each calculation,
the pair structure vα (2) is determined by the variational
principle (using MATLAB function fminunc). The Hamiltonian
(22) conserves parity π and angular-momentum projection K
onto the intrinsic symmetry axis. I compute in the Lanczos
method the lowest 300 eigenstates for K = 0,2,3,6,10 and
both parities.

Figures 3–5 show the K = 0,2,6 results of calculation 1.
To save space, the K = 3,10 results are put in Supplemental
Material [70] as Figs. 1 and 2. The vertical axes show
the amplitudes P (s) (9), and the horizontal axes show the
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FIG. 3. Amplitudes P (s) of each generalized seniority S = 2s

vs the excitation energy of the K = 0 eigenstates by calculation 1.
The left (right) panels plot the lowest 300 eigenstates with positive
(negative) parity. Therefore, each panel has 300 data points. The
vertical dotted line is E = E<

s=1,Kπ =0+ for the left panels and E =
E<

s=1,Kπ =0− for the right panels.

excitation energies E. For clarity and accuracy, I list as
examples the ground state and a few excited states in Table I.
If the pairing force was very strong, the states with s broken
pairs were roughly degenerate at s times the pairing gap. In
reality, other correlations and the nondegeneracy of Nilsson
levels disturb this picture. The pairing gap is about 1.5 MeV
for deformed medium and heavy nuclei, smaller than the gap
of spherical semimagic nuclei around 2 MeV. One would ask
whether the ground state is still a condensate of coherent pairs
(3), to what extent the condensed pairs gradually break up as
the excitation energy increases, and if the generalized-seniority
truncation remains effective.

Table I shows that the ground state 01
+ is a very good

pair condensate. (See also the points at E = 0 in the left
panels of Fig. 3.) The P (s = 0) component (3) dominates
the wave function, the P (s = 1) and P (s = 2) amplitudes
are tiny, and the P (s � 3) amplitudes are negligible. This
suggests that the variational principle on the trial wave function
(3), conventionally called “variation after particle-number
projection”, may be a very accurate method for deformed
nuclei with realistic interactions. To further improve the wave
function, it may be enough to include up to generalized
seniority S = 2s = 4 (recall the QRPA ground state is the
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FIG. 4. Amplitudes of each generalized seniority vs the excitation
energy of the K = 2 eigenstates by calculation 1. The P (s = 0)
amplitudes vanish owing to symmetry, and are not plotted.

quasiparticle vacuum mixed mainly with the four-quasiparticle
components). This could be easily done by the new algorithm
in large valence spaces with over 100 Nilsson levels.
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FIG. 5. Amplitudes of each generalized seniority vs the excitation
energy of the K = 6 eigenstates by calculation 1.

TABLE I. Excitation energies E and amplitudes P (s) for a
few eigenstates by calculation 1. Kπ

i means the ith eigenstate of
projection K and parity π . The last five columns show 104P (s) for
s = 0,1,2,3,4, where P (s) is the amplitude of generalized seniority
S = 2s.

Kπ
i E(MeV) s = 0 s = 1 s = 2 s = 3 s = 4

0+
1 0 9623 164 205 7 1

0+
2 0.725 2 8250 1522 210 16

0−
1 1.067 0 7981 1764 238 17

2+
1 0.985 0 8705 1082 201 11

2−
1 1.049 0 9309 478 206 8

3+
1 1.268 0 9162 658 172 8

3−
1 0.865 0 8015 1732 236 17

6+
1 1.689 0 42 9236 640 83

6−
1 1.103 0 8850 965 173 12

10+
1 1.636 0 2 9340 575 83

10−
1 1.826 0 2 9150 747 101

In Figs. 3–5, the pattern is recognizable that the condensed
pairs gradually break up as the excitation energy increases,
but strong mixing among different S exists in the wave
functions. Also, there are many examples of high-S states
intruding into low energies. As an indicator, I introduce the
symbol E<

s=1,Kπ =0+ as the energy below which the number
of many-body eigenstates is equal to the dimension of the
|s = 1,Kπ = 0+} subspace (6). The vertical dotted lines on
these figures represent E = E<

s=1,Kπ for different Kπ ; to
the left of this line the number of data points is equal to
the dimension of the |s = 1,Kπ } subspace. One finds many
states intruding to the left of this line have large P (s = 2)
and moderate P (s = 3) amplitudes. Similar figures have been
plotted for semimagic Sn isotopes (Figs. 13–21 and 23–26 of
Ref. [63]). Compared with those figures, the pattern of gradual
breakup of condensed pairs is less obvious in deformed nuclei
than in semimagic nuclei.

The method truncates the shell model space to |S} (7).
Increasing S and thus the subspace size, the eigen wave
functions gradually converge to the exact shell model ones
when all the pairs are broken (S = 2s = 2N ). The truncation
scheme is effective if it converges fast. Figures 3–5 show that
the P (s = 4) amplitudes are small, especially below 4 MeV
in excitation energy. No exception exists; therefore I should
not miss any shell model eigenstate. This indicates that the
wave functions have converged very well, and the generalized-
seniority truncation is effective. To actually see how fast
the eigenenergies converge, I perform three additional diago-
nalizations in the subspaces |S = 6}, |S = 4}, and |S = 2}.
The eigenenergies of selected states are shown in Fig. 6.
One sees that the ground-state energy converges very fast,
and the error drops below 10 keV when breaking only two
pairs (S = 4). Other states also converge fast. Together with
Table I, one finds states dominated by the P (s = 1) component
converge faster than those (101

+, 61
+, 101

−) dominated by the
P (s = 2) component.
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FIG. 6. Energies of selected states by four different diagonaliza-
tions. There are 17 states labeled by Kπ

i as listed in the horizontal axis.
The S = 8 staircase curve corresponds to the left vertical axis and
shows the eigenenergies of the 17 states by the S = 8 diagonalization
(choosing the 0+

1 energy as the zero of energy). The S = 2,4,6 points
correspond to the right vertical axis (in logarithmic scale) and show
the errors of the eigenenergies by the S = 2,4,6 diagonalizations,
respectively, relative to the S = 8 results.

The tiny P (s = 4) amplitudes in Figs. 3–5 suggest that
truncating up to S = 2s = 6 is good enough. I do this in
calculation 2 using the (larger) dimension-46 valence single-
particle space. The K = 0 results are shown in Fig. 7 and
the K = 2,3,6,10 results are shown in Figs. 3–6 of the
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FIG. 7. Amplitudes of each generalized seniority vs the excitation
energy of the K = 0 eigenstates by calculation 2.
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FIG. 8. Computer time cost vs subspace dimension, for calculat-
ing the Hamiltonian matrix in different subspaces. The calculations
are done in parallel on two octa-core CPUs (Intel Xeon E5-2620v4
@ 2.1 GHz). “MS1” stands for model space 1. See text for details.

Supplemental Material [70]. These figures are similar to those
of calculation 1, and similar comments apply.

I provide the actual computer time cost. Most of time
is spent on computing the Hamiltonian matrix, and Fig. 8
plots this part of time. MS1 (model space 1) means using
the dimension-34 valence single-particle space (see Fig. 2).
MS2 means the dimension-46 one. There are four square
symbols of legend MS1, K = 0, and they correspond to the
subspaces |S,K = 0} (including both parities) of S = 2,4,6,8.
The square symbol with smaller time and dimension (to the
lower-left corner) corresponds to smaller S and similarly for
other symbols of legend MS1. For each symbol of legend
MS2, there are three of them, corresponding to S = 2,4,6.
Except for the two leftmost points (at horizontal coordinate
2), time increases approximately linearly with dimension on
the log-log plot. I perform a linear least-squares fit (without
the two leftmost points) in the form log(T ) = α log(D) + C
(T is time in unit of second, D is dimension, α and C are
fitting parameters). The result is T = 0.183D0.928. With the
new computing scheme, the generalized-seniority truncation
of the deformed shell model runs as fast as that of the spherical
shell model (see Fig. 7 of Ref. [62]) for similar dimensions.

It is straightforward to include proton-neutron mixing into
the formalism (for example, see Ref. [62]). The proton-neutron
interaction, responsible for static deformations away from
magic numbers, does not destroy the generalized-seniority
truncation in the intrinsic body-fixed frame. The majority
of the proton-neutron interaction is included in the deformed
self-consistent mean field. The attractive short-range pairing
force prefers coherent pairs (pairing gap around 1.5 MeV)
formed on the deformed single-particle levels. The residual
interaction is not strong enough to destroy many pairs. Work
with active protons and neutrons is in progress.

034313-8



GENERALIZED SENIORITY ON A DEFORMED SINGLE- . . . PHYSICAL REVIEW C 96, 034313 (2017)

VII. CONCLUSION

This work proposes a fast computing scheme for gen-
eralized seniority on a deformed single-particle basis. The
spherical version of the algorithm [62] precalculates and
stores the MPDM. Without rotational symmetry, the number
of different MPDM is usually too large to fit into computer
memory, and further simplification is necessary. This work
analytically expresses MPDM by the normalization of the
pair condensate. Precalculating and storing the normalizations
instead of the MPDM greatly reduces the memory cost and
revives the algorithm. The generalized-seniority truncation of
the deformed shell model runs as fast as that of the spherical
shell model [62] with the new computing scheme (for similar
subspace dimensions after truncation).

The generalized-seniority truncation converges to the exact
shell model when all the pairs are broken. The truncation is
effective if it converges quickly when only a few pairs are
broken. I study the effectiveness in truncating the deformed
shell model under realistic interactions by the rare-earth-metal
nucleus 158

64 Gd94. The intrinsic neutron excitations (the lowest
300 states of several multipolarities) are computed under the
low-momentum NN interaction Vlow-k , allowing as many as
four broken pairs. The eigen wave functions are investigated
in terms of amplitudes of different generalized seniority S.
The tiny amplitudes of S = 8 (four broken pairs) indicate the
wave functions indeed have converged, and the truncation is
very effective. Schematic pairing models usually imply that
the ground state is a coherent pair condensate, and the pairs
gradually break up as excitation energy increases. My results
show how well this picture survives the full realistic interaction
in the intrinsic body-fixed frame. Under the full complexity of
the realistic interaction, the pairing force remains important
in forming the low-lying spectrum, and the picture remains
approximately valid.

It is interesting to consider further truncation schemes on
top of the generalized-seniority truncation. There are many
mature truncation schemes in the shell model, such as restrict-
ing the maximal number of particle-hole excitations, cutting
by mean energies of the Slater determinant basis, and more
advanced techniques of selecting the basis on the fly. In fact,
some of them have demonstrated effectiveness to truncate the
deformed Slater determinant basis under the schematic pairing
Hamiltonian [26,33–40]. These truncation schemes could be
straightforwardly imposed on the unpaired nucleons of the
generalized-seniority basis [the S a† operators of Eq. (5)],
in the same way they truncate the Slater determinant basis.
They further reduce the dimension, and their effectiveness
with realistic interactions is interesting.

For the ground state in the intrinsic body-fixed frame,
my results suggest that the variational principle on the trial
wave function (3), conventionally called “variation after
particle-number projection”, may be an accurate method.
Including higher-order correlations, truncation up to
generalized-seniority S = 4 (two broken pairs) may be
enough. Amplitudes of S > 4 may be negligible. (This is
consistent with the conventional wisdom that the QRPA
ground state is the quasiparticle vacuum mixed mainly with
the four-quasiparticle components.) It is interesting to see
how general the conclusion is in other nuclei. Wherever the
conclusion is valid, improving the pair condensate (3) by
breaking two pairs can be easily done with the new algorithm
in large valence spaces of over 100 Nilsson levels. Work with
active protons and neutrons is also in progress.
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