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The evolution and coexistence of the nuclear shapes as well as the corresponding low-lying collective states
and electromagnetic transition rates are investigated along the krypton isotopic chain within the framework of the
interacting boson model (IBM). The IBM Hamiltonian is determined through mean-field calculations based on
the several parametrizations of the Gogny energy density functional and the relativistic mean-field Lagrangian.
The mean-field energy surfaces, as functions of the axial β and triaxial γ quadrupole deformations, are
mapped onto the expectation value of the interacting-boson Hamiltonian that explicitly includes the particle-hole
excitations. The resulting boson Hamiltonian is then used to compute low-energy excitation spectra as well as
E2 and E0 transition probabilities for 70–100Kr. Our results point to a number of examples of prolate-oblate shape
transitions and coexistence both on the neutron-deficient and neutron-rich sides. A reasonable agreement with
the available experimental data is obtained for the considered nuclear properties.
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I. INTRODUCTION

The low-lying structure of Kr isotopes is characterized by a
rich variety of shape phenomena, such as shape transitions
when neutron number is varied [1,2] as well as shape
coexistence and mixing [3]. On the neutron-deficient side,
especially in the case of isotopes with approximately the same
number of protons and neutrons, the experimental evidence [4]
regarding the emergence of prolate-oblate shape coexistence
and mixing has already been studied using different theoretical
frameworks [4–9]. Low-lying excited 0+ states have been
observed for some Kr nuclei, e.g., 72–78Kr. Those states have
been associated with intruder excitations [3].

In the last few years, it has become possible to access
neutron-rich Kr nuclei experimentally [10–15]. Even those
isotopes beyond the neutron number N ≈ 60 have been exper-
imentally studied, as reported quite recently in Refs. [14,15],
where the spectroscopy of the radioactive isotopes 96,98,100Kr is
analyzed. The structural evolution in neutron-rich nuclei with
mass number A ≈ 100 is rather sensitive to the underlying
shell structure, and such experimental information is quite
useful to deepen our understanding of it and offers the
possibility to learn about unique features related to shape
transitions in neutron-rich Kr isotopes. For instance, in contrast
to its neighboring neutron-rich Sr and Zr nuclei where the
shape transition is suggested to take place rather rapidly around
N = 60 [16–18], the onset of deformation is shown to emerge
much more moderately along the Kr isotopic chain [11,12,14].

From a theoretical point of view, the large-scale shell model
[19] and the nuclear energy density functional (EDF) [20]
approaches are among the most popular microscopic nuclear
structure models for medium-heavy and heavy nuclei. The
former allows direct access to the spectroscopic properties
via the diagonalization of the Hamiltonian matrix defined in

the corresponding configuration space. However, in open-shell
regions with increasing number of valence nucleons, the di-
mension of the shell-model matrix becomes exceedingly large,
making a systematic investigation of the nuclear spectroscopy
less tractable. On the other hand, the EDF framework allows
the systematic study of several nuclear properties all over the
nuclear chart. A number of self-consistent mean-field (SCMF)
calculations with both nonrelativistic [20] and relativistic
[21,22] EDFs have so far been performed to investigate
structural phenomena in atomic nuclei. Nevertheless, a more
quantitative analysis of shape transitions requires the extension
of the mean-field framework so as to include beyond-mean-
field correlations associated with the restoration of broken
symmetries and/or fluctuations in the collective parameters
within the symmetry-projected generator coordinate method
(GCM) (see, for example, [20,22,23]). Though quite robust,
the method becomes increasingly difficult to implement from a
computational point of view in the case of heavy nuclei and/or
when several collective coordinates have to be considered in
the symmetry-projected GCM ansatz.

To alleviate the computational effort required in symmetry-
projected GCM configuration mixing calculations, several
approximations have already been employed. Among them
we mention here the five-dimensional collective Hamiltonian
(5DCH) approach, based on both nonrelativistic [24] and
relativistic [22] EDFs, and the fermion-to-boson mapping
procedure that allows one to build an algebraic model of
interacting bosons [25] starting from a given EDF. In this
study, we resort to the latter approach [25] and use the
microscopic energy surface of a given nucleus, obtained
via constrained mean-field calculations [26], as input to a
mapping procedure involving the intrinsic wave function of
the boson system, taking into account particle-hole excitations.
This mapping procedure allows the determination of the
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parameters of the corresponding (bosonic) IBM Hamiltonian
that is subsequently used to compute the excitation spectra and
electromagnetic transition rates for a give nuclear system. At
variance with the phenomenological IBM calculations, where
the parameters of the Hamiltonian are fitted to reproduce
spectroscopic data, within the already mentioned fermion-
to-boson mapping procedure [25] the corresponding IBM
Hamiltonian is obtained from microscopic EDF calculations
and, therefore, the method can be extrapolated to regions of
the nuclear chart where experimental data are scarce or even
not available. Several applications of the fermion-to-boson
mapping procedure have been reported in the literature. For
instance, it was recently employed to describe shape transitions
and shape coexistence in Ru, Mo, Zr, and Sr isotopes with mass
number A ≈ 100 [27] as well as for neutron-rich Ge and Se
nuclei with 70 � A � 90 [28].

In this study, we have resorted to the parametrization
D1M [29] of the Gogny EDF to obtain, via mean-field
calculations, the required microscopic input used to build
the IBM Hamiltonian. To examine the robustness of our
fermion-to-boson mapping procedure with respect to the
underlying EDF, calculations have been performed with two
other parametrizations of the Gogny EDF, i.e., D1S [30] and
D1N [31]. Furthermore, mean-field calculations have also
been carried out with the density-dependent meson-exchange
(DD-ME2) [32] and point-coupling (DD-PC1) [33] relativistic
EDFs. Nevertheless, in our discussions we will mainly focus
on the results obtained with the Gogny-D1M EDF since, as
will be shown, the results to be presented later on in this study
do not depend significantly on the underlying EDF employed
in the mapping procedure.

The paper is organized as follows. In Sec. II, we briefly
outline the fermion-to-boson mapping procedure employed
in this work to study the isotopes 70–100Kr. The results of
our calculations are presented in Sec. III. First, in Sec. III A,
we discuss the microscopic energy surfaces obtained at the
mean-field level as well as the mapped IBM ones. The
IBM parameters derived via the mapping procedure and the
configurations employed in the calculations are presented in
Sec. III B. In Secs. III C and III D, we turn our attention to
spectroscopic properties such as the systematics of the energy
spectra and the transition rates predicted in our calculations
as well as to the comparison with the available experimental
data. The detailed spectroscopy of a selected sample of Kr
isotopes is discussed in Sec. III E. In Sec. III F, we consider
the sensitivity of the results with respect to the underlying EDF
used in the mapping procedure. Finally, Sec. IV is devoted to
concluding remarks and work perspectives.

II. DESCRIPTION OF THE MODEL

In this section, we briefly outline the fermion-to-boson
mapping procedure employed in this work. For a more detailed
account, the reader is referred to [27,28] and references therein.

A. SCMF calculations

The first step in our procedure is to perform
a set of constrained SCMF calculations, within the

Hartree-Fock-Bogoliubov (HFB) method and based on the
Gogny-D1M EDF [34]. We have also carried out mean-field
calculations with the parametrizations D1S [30] and D1N
[31] of the Gogny EDF as well as with the relativistic
DD-ME2 [32] and DD-PC1 [33] EDFs. In this way we obtain
the HFB deformation energy surfaces parametrized by the
usual quadrupole shape degrees of freedom β and γ [35].
Here, we have used constraints on the operators Q̂20 and
Q̂22. They are related to the deformation parameters β and
γ through the relations β = √

4π/5
√

〈Q̂20〉2 + 〈Q̂22〉2/〈r2〉
and γ = arctan (〈Q̂22〉/〈Q̂20〉), respectively. In the previous
expressions, 〈r2〉 denotes the mean-square radius obtained
from the corresponding HFB state.

B. IBM framework

The building blocks of the IBM system, that predominantly
determine the low-energy quadrupole collective states, are the
Jπ = 0+ (s) and 2+ (d) bosons which represent the collective
Jπ = 0+ and 2+ pairs of valence nucleons, respectively
[36,37]. Therefore, the number of bosons nb equals that of
pairs of valence nucleons (particle or hole) [36,37]. The boson
Hamiltonian is diagonalized in a given valence space (one
major shell). In the present work, we use the same model
space for the boson system as in our previous study [28], i.e,
the proton Z = 28–50 major shell and the neutron N = 28–50
(for 70–86Kr) and N = 50–82 (for 88–100Kr) major shells. For
the sake of simplicity, no distinction is made between proton
and neutron bosons.

For many of the studied Kr isotopes, the Gogny-D1M HFB
energy surfaces exhibit more than one minimum, reflecting
a pronounced competition between different intrinsic con-
figurations. Previous IBM calculations already suggest that
the low-lying 0+

2 state in neutron-deficient Kr isotopes, as
well as in the neighboring Se and Ge nuclei, could arise
from particle-hole excitations and therefore have an intrinsic
structure different from the one of the ground state [38–40].
As a consequence, to describe the structure of Kr isotopes, it
is necessary to extend the IBM framework so as to include
the effect of particle-hole excitations. To this end, we have
adapted the configuration mixing technique developed by
Duval and Barrett [41,42]. Within this context, shell-model-
like 2k-particle-2k-hole (k = 0,1,2, . . .) configurations are
associated with boson spaces comprising nb + 2k bosons.
The different boson subspaces are allowed to mix via an
interaction term that does not preserve the boson number. The
configuration-mixing IBM Hamiltonian is then diagonalized
in the space [nb] ⊕ [nb + 2] ⊕ [nb + 4] ⊕ · · · , with [nb + 2k]
being the unperturbed boson subspace. As in several earlier
calculations made in the same mass region (e.g., [28,39,40]),
we have considered proton particle-hole excitations across the
Z = 28 major shell gap. Moreover, as will be shown below,
the Gogny-HFB energy surfaces display up to three mean-field
minima. Those minima are sufficiently well defined so as to
constrain the corresponding unperturbed IBM Hamiltonian
and, therefore, we consider up to three configurations: the
normal 0p-0h as well as the intruder 2p-2h and 4p-4h
excitations.
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The configuration mixing IBM Hamiltonian employed in
this work reads

Ĥ = Ĥ0 + (Ĥ1 + �1) + (Ĥ2 + �2) + Ĥ mix
01 + Ĥ mix

12 , (1)

where Ĥk (k = 0,1,2) is the Hamiltonian for the unperturbed
configuration space [nb + 2k] while Ĥ mix

kk+1 (k = 0,1) stands
for the interaction mixing [nb + 2k] and [nb + 2(k + 1)]
spaces. In Eq. (1), �1 and �2 represent the energy needed
to excite one and two bosons from one major shell to the next.

For each configuration space, we have employed the
simplest form of the IBM-1 Hamiltonian that still simu-
lates the essential ingredients of the low-energy quadrupole
dynamics, i.e.,

Ĥk = εkn̂d + κkQ̂ · Q̂ + κ ′
kV̂ddd . (2)

The first term in Eq. (2) is the d-boson number operator, with εk

(k = 0,1,2) being the single d-boson energy in the [nb + 2k]
space. The second term represents the quadrupole-quadrupole
interaction with strength parameter κk . The quadrupole op-
erator Q̂ reads Q̂ = s†d̃ + d†s + χk[d† × d̃](2), where χk is a
parameter. On the other hand, the third term stands for the most
relevant three-body interaction with strength κ ′

k . This term is
required to describe γ -soft systems [43,44] and takes the form

V̂ddd = [[d† × d† × d†](3) × [d̃ × d̃ × d̃](3)](0). (3)

The mixing interaction Ĥ mix
kk+1 (k = 0 or 1) reads

Ĥ mix
kk+1 = ωs

ks
†s† + ωd

k d
† · d† + (H.c.), (4)

where ωs
k and ωd

k are strength parameters. For simplicity, we
have assumed ωs

k = ωd
k ≡ ωk . There is no direct coupling

between the [nb] and [nb + 4] spaces with the two-body
interactions.

To associate the configuration-mixing IBM Hamiltonian of
Eq. (1) with the corresponding Gogny-HFB energy surface, an
extended boson coherent state has been introduced [45]:

|n0,(β0,γ0)〉 ⊕ |n1,(β1,γ1)〉 ⊕ |n2,(β2,γ2)〉, (5)

where nk = nb + 2k (k = 0,1,2). For each unperturbed con-
figuration space |nk,(βk,γk)〉 (k = 0,1,2), the coherent state is
taken in the form

|nk,(βk,γk)〉 = 1√
nk!

(
s† + βk cos γkd

†
0

+ 1√
2
βk sin γk(d†

+2 + d
†
−2)

)nk

|0〉, (6)

where |0〉 denotes the inert core. For each unperturbed
configuration [nb + 2k], the boson analogs of the quadrupole
deformation parameters β and γ are denoted by βk and γk ,
respectively [35]. They are assumed to be in correspondence
with the ones of the the Gogny-HFB by means of a linear
dependence with βk = Ckβ and γk = γ . The constants Ck

are also determined by fitting the (fermionic) Gogny-HFB
energy surface to the (bosonic) IBM one by requiring that the
position of the minimum is reproduced for each unperturbed
configuration.

The expectation value of the total Hamiltonian Ĥ in the
coherent state Eq. (5) leads to a 3 × 3 matrix [45]:

E =
⎛
⎝E0(β,γ ) 
01(β) 0


01(β) E1(β,γ ) + �1 
12(β)
0 
12(β) E2(β,γ ) + �2

⎞
⎠, (7)

with diagonal and off-diagonal elements accounting for the
expectation values of the unperturbed and mixing terms,
respectively. The three eigenvalues of E correspond to specific
energy surfaces. It is customary to take the lowest-energy one
[45] as the IBM energy surface. Both Ek(β,γ ) and 
kk+1(β)
are computed analytically. Their expressions can be found in
Ref. [28].

C. Derivation of the IBM parameters: The fitting procedure

The Hamiltonian in Eq. (1) contains 16 parameters. They
have been determined along the following lines:

(i) The unperturbed Hamiltonians are determined by
using the procedure of Refs. [25,27,46]: each diagonal
matrix element Ek(β,γ ) in Eq. (7) is fitted to reproduce
the topology of the Gogny-HFB energy surface in
the neighborhood of the corresponding minimum.
The normal [nb] configuration is assigned to the
HFB minimum with the smallest β deformation, the
[nb + 2] configuration is assigned to the minimum
with the second smallest β deformation, and the
[nb + 4] configuration is associated to the minimum
with the third smallest β deformation. In this way,
each unperturbed Hamiltonian is determined indepen-
dently.

(ii) The energy offset �k+1 (k = 0,1) is determined so
that the energy difference between the two minima
of the Gogny-HFB energy surface, associated with
the [nb + 2k] and [nb + 2(k + 1)] configurations, is
reproduced.

(iii) The strength parameter ωkk+1 (k = 0,1) of the mixing
interaction term Ĥ mix

kk+1 is determined so as to repro-
duce the shapes of the barriers between the minima
corresponding to the [nb + 2k] and [nb + 2(k + 1)]
configurations [47,48]. Steps (ii) and (iii) are repeated
until the best match is obtained between the HFB and
IBM energy surfaces.

We have assumed that the boson-number dependence of the κ
parameter is consistent with earlier IBM calculations [25,37],
i.e., κ decreases in magnitude as a function of nb, to determine
the parameters of the unperturbed Hamiltonians. In step (i),
the link of the unperturbed configurations with the deformed
minima is based on the assumption that the interpretation of
shape coexistence in the neutron-deficient lead region [49–51]
also holds here. In the case of mercury nuclei, for instance, the
0+

1 ground state is associated with a weakly deformed oblate
shape and the intruder 0+

2 state with a prolate shape with a
larger β deformation [49,51]. Obviously, this assumption can
only be tested a posteriori as a function of the results obtained
for the considered nuclei.

Once the IBM parameters are determined for each Kr
nucleus, the Hamiltonian Ĥ is diagonalized in the [nb] ⊕
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FIG. 1. SCMF (β,γ )-deformation energy surfaces for the 70–100Kr nuclei, obtained with the Gogny-D1M EDF. The energy difference
between neighboring contours is 100 keV.

[nb + 2] ⊕ [nb + 4] space by using the code IBM-1 [52]. The
IBM wave functions resulting from the diagonalization are
then used to compute electromagnetic properties, including
E2 and E0 transitions, that could be considered signatures of
shape coexistence and shape transitions. The B(E2) transition
probability reads

B(E2; Ji → Jf ) = 1

2Ji + 1
|〈Jf ||T̂ (E2)||Ji〉|2, (8)

where Ji and Jf are the spins of the initial and final states,
respectively. iOn the other hand, the ρ2(E0) values are
computed as

ρ2(E0; 0+
i → 0+

f ) = Z2

R4
0

|〈0+
f ||T̂ (E0)||0+

i 〉|2, (9)

where R0 = 1.2A1/3 fm.
The E0 and E2 operators take the form T̂ (E0) =∑
n=0,1(es

0,nn̂s + ed
0,nn̂d ) and T̂ (E2) = ∑

n=0,1 e2,nQ̂, respec-
tively. For the effective charges for the E0 operator we
have assumed es

0,0 = es
0,1 = es

0,2 ≡ es
0 as well as ed

0,0 = ed
0,1 =

ed
0,2 ≡ ed

0 . Also, the ratio ed
0/es

0 = 1.4 has been assumed so
as to obtain an overall agreement with the experimental
trend of the ρ2(E0; 0+

2 → 0+
1 ) values around N = 40. The

remaining parameter es
0 is fitted to reproduce the experimental

ρ2(E0; 0+
2 → 0+

1 ) value for 76Kr. For the E2 effective charges,
we have assumed the ratios e2,1/e2,0 = κ1/κ0 and e2,2/e2,0 =
κ2/κ0, based on the fact that both the effective charge and
quadrupole interaction are proportional to the mean-square
proton radius [41,42]. We have then fitted the overall factor
e2,0 to the experimental B(E2; 2+

1 → 0+
1 ) value for 76Kr [53].

III. RESULTS

In this section, we discuss the results of our calculations
for the selected set of Kr isotopes. First, in Sec. III A, we
discuss the (β,γ )-deformation energy surfaces obtained from
the SCMF calculations as well as the mapped IBM ones.
The IBM parameters derived via the mapping procedure
and the configurations employed in the calculations are
presented in Sec. III B. In Secs. III C and III D, we discuss
spectroscopic properties such as the systematics of the energy
spectra and the transition rates predicted in our calculations in
comparison with the available experimental data. The detailed
spectroscopy of a selected sample of Kr isotopes is discussed
in Sec. III E. Finally, in Sec. III F, we consider the sensitivity
of the results with respect to the underlying EDF used in the
mapping procedure.

A. Deformation energy surfaces

The Gogny-D1M HFB energy surfaces are depicted in
Fig. 1 for the studied 70–100Kr isotopes. In the case of 70Kr, one
observes an absolute oblate and a secondary prolate minima.
The energy surface obtained for 72Kr exhibits a complex
topology with two oblate (β ≈ 0.2 and ≈0.3) and a prolate
(β ≈ 0.4) minima. For 74Kr, the two oblate minima (β = 0.04
and 0.15) are much softer in β, while the prolate one becomes
more pronounced. Thus, 74Kr presents one of the best examples
for the prolate-oblate shape coexistence in this region of the
nuclear chart. In the case of 76Kr, we find a spherical global
minimum that could be associated with the neutron N = 40
subshell closure and a very shallow oblate minimum around
β = 0.17. On the other hand, the prolate minimum becomes
less pronounced. For the nucleus 78Kr, we have obtained an
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FIG. 2. The same as in Fig. 1, but for 74Kr, 76Kr, 96Kr, and 98Kr,
computed with the DD-PC1 EDF.

almost invisible prolate minimum, while for 80–86Kr only a
single nearly-spherical minimum is found reflecting, the effect
of the N = 50 shell closure. On the neutron-rich side with
N > 50, one realizes that the Gogny-D1M surfaces for 88–92Kr
exhibit a pronounced γ softness, almost flat independent of
γ deformation. A γ -soft oblate minimum develops for 94Kr.
In the case of 96–100Kr, the prolate local minimum appears
at β ≈ 0.4. Those nuclei exhibit a spectacular prolate-oblate
shape coexistence, similarly to 72–76Kr on the neutron-deficient
side.

Let us mention that similar energy surfaces have been
obtained for the considered nuclei with the Gogny-D1S

and D1N EDFs. However, we observe certain quantitative
differences between the Gogny-D1M and the relativistic EDFs,
especially for those nuclei around N = 40 and N = 60. Hence
we present in Fig. 2 the SCMF energy surfaces obtained
for 74,76Kr and 96,98Kr using relativistic Hartree-Bogoliubov
calculations based on the DD-PC1 EDF. The DD-PC1 EDF
provides stiffer energy surfaces with much higher barriers
between the minima than the Gogny-D1M ones. We have also
confirmed that there are no significant differences between
the energy surfaces obtained with the relativistic DD-PC1 and
DD-ME2 mean-field Lagrangians.

Finally we present in Fig. 3 the mapped IBM energy
surfaces based on the Gogny-D1M ones already shown in
Fig. 1. The comparison between the Gogny-D1M and IBM
surfaces reveals that the latter mimic key features of the former
in the neighborhood of the minima (their locations and depths,
and the curvatures along the β and γ directions). As in previous
works [27,28], the IBM surfaces look simpler than the mean-
field ones. For instance, in the region far from each minimum
the IBM surfaces become too flat. Such a discrepancy can
be attributed to the simplified form of the considered IBM
Hamiltonian and/or to the limited boson model space built only
on the valence nucleons. Nevertheless, as will be shown later
on in this paper, the low-lying collective states are determined
mainly by the configurations around the minima, while the
regions far from the minima are dominated by single-particle
degrees of freedom. This is the reason why we have tried to
reproduce the topology of the Gogny-D1M energy surfaces
only in the neighborhood of the corresponding minima.

B. Configurations and derived parameters

The (β,γ ) coordinates on the Gogny-D1M energy surfaces
associated with the unperturbed IBM Hamiltonians of the [nb],

FIG. 3. The same as in Fig. 1, but for the mapped IBM energy surfaces.
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TABLE I. The (β,γ ) coordinates on the Gogny-D1M energy
surfaces associated with the unperturbed IBM Hamiltonians in the
[nb], [nb + 2], and [nb + 4] configurations.

[nb] [nb + 2] [nb + 4]

70Kr (0.26, 60◦) (0.23, 0◦)
72Kr (0.19, 60◦) (0.32, 60◦) (0.40, 0◦)
74Kr (0.04, 60◦) (0.15, 60◦) (0.48, 0◦)
76Kr (0.0, 0◦) (0.17, 60◦) (0.43, 0◦)
78Kr (0.0, 0◦) (0.15, 60◦)
80Kr (0.04, 0◦)
82Kr (0.11, 0◦)
84Kr (0.06, 0◦)
86Kr (0.0, 0◦)
88Kr (0.08, 0◦)
90Kr (0.14, 0◦)
92Kr (0.19, 60◦) (0.21, 0◦)
94Kr (0.25, 60◦) (0.21, 0◦)
96Kr (0.31, 60◦) (0.40, 0◦)
98Kr (0.28, 60◦) (0.40, 0◦)
100Kr (0.25, 60◦) (0.38, 0◦)

[nb + 2], and [nb + 4] configurations are given in Table I.
Let us mention that the assignment of the unperturbed
configurations for 70Kr and 94Kr does not follow the rule
mentioned in Sec. II C [step (i)]. For those nuclei, the normal
[nb] configuration is assigned to the oblate minimum while
the [nb + 2] configuration is assigned to the prolate one with
smaller β value than the former. The reason is that we assume
that the intrinsic structure of each unperturbed Hamiltonian
does not change too much from one nucleus to the next.
As can be seen from the table, the assignment of the [nb]
and [nb + 2] configurations to oblate and prolate shapes in
the nuclei 72Kr and 92,96Kr is similar to the cases of 70Kr
and 94Kr, respectively. It is also apparent from the table that
the number of configurations included in the model space
differs from nucleus to nucleus. Let us stress that intruder
configurations are included in our calculations depending on
whether the curvatures around the HFB minimum in both β
and γ directions are large enough to uniquely determine the
corresponding unperturbed Hamiltonian.

The parameters of the IBM Hamiltonian (1) are plotted in
Fig. 4 as functions of the neutron number N . Since, as already
mentioned, the configuration space is different from nucleus to
nucleus, in some Kr nuclei not all the parameters appear in the
figure. For instance, values of the parameters ω [panel (e)] and
� [panel (f)] are not plotted for those nuclei with N = 44–56
as the configuration mixing was not performed for them.

In the case of the unperturbed Hamiltonians [panels (a)
to (d)] those parameters reflect the structural evolution along
the considered isotopic chain. For example, the ε value for the
[nb] configuration becomes larger towards the neutron subshell
closure N ≈ 40 [see panel (a)], though this is not taken into
account explicitly in the model space we have employed in this
study. On the other hand, the parameter κ [panel (b)] is much
larger than the one employed in the IBM-1 phenomenology
[54]. Such a large κ value is required to reproduce the curvature
around the minimum of the Gogny-D1M energy surface.

FIG. 4. Derived IBM parameters for the [nb], [nb + 2], and [nb +
4] configurations as functions of the neutron number.

The positive (negative) values of the parameter χ [panel (c)]
correspond to oblate (prolate) shapes.

The V̂ddd term in Eq. (3) is relevant for γ softness, as it gives
rise to a triaxial minimum with γ �= 0◦ and/or 60◦ [43]. On the
other hand, the Gogny-D1M energy surfaces in Fig. 1 suggest
that none of the considered Kr nuclei exhibit a triaxial mean-
field minimum. Therefore, we have assumed that the effect
of this term is rather perturbative in this particular study, and
the strength parameter κ ′ has been introduced only for those
configurations corresponding to minima that are relatively soft
along the γ direction so that mainly the dependence of the
energy surfaces on γ is reproduced. We have also verified that
the inclusion of the three-body boson term V̂ddd improves only
little the description of the energy spectra.

The behavior of the mixing strength ω [panel (e)] and the
energy offset � [panel (f)] around N = 36 and 60 correspond
to the significant change expected in the nuclear structure
around those neutron numbers.

C. Systematics of excitation spectra

Even though the analysis of the (β,γ )-deformation energy
surfaces provides useful insights into both the shape transition
and shape coexistence phenomena in the studied Kr isotopes,
a more quantitative analysis should go beyond the mean-field
level to examine spectroscopic properties such as the excitation
spectra and transition rates, which can be directly compared
with the available experimental data. In this and the following
Sec. III D, we turn our attention to those properties.
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FIG. 5. Experimental [12–15,53] and computed excitation spec-
tra for the 2+

1 , 4+
1 , 0+

2 , and 2+
2 states in 70–100Kr as functions of N . The

theoretical results are obtained with the Gogny-D1M and relativistic
DD-PC1 EDFs.

The excitation energies of the 2+
1 [panel (a)], 4+

1 [panel (b)],
0+

2 [panel (c)], and 2+
2 [panel (d)] states are plotted in Fig. 5 as

functions of the neutron number N . The results obtained with
the parametrization D1M of the Gogny-EDF are compared
with those obtained using the DD-PC1 relativistic mean-field
Lagrangian as well as with the available experimental data
[12–15,53]. The fraction of the three configurations [nb], [nb +
2], and [nb + 4] in the wave functions of the 0+

1 , 2+
1 , 0+

2 , and
2+

2 states are given in Table II.
The energy spectra, computed with the D1M and DD-PC1

EDFs display a reasonable agreement with the experimental
data. The E(2+

1 ) excitation energy can be regarded as one of
the basic quantities signaling a shape/phase transition [1,2].
The predicted E(2+

1 ) energies, shown in panel (a) of Fig. 5,
nicely follow the experimental trend though at N = 36 our
calculations rather underestimate the experiment. Note that
the lowering of the E(2+

1 ) towards the midshells, on both

TABLE II. Fraction (in units of percent) of the three configura-
tions [n0], [n1], and [n2] (nk = nb + 2k) in the 0+

1 , 0+
2 , 2+

1 , and 2+
2

wave functions of those Kr nuclei where configuration mixing has
been performed in the present calculation.

0+
1 0+

2 2+
1 2+

2

[n0] [n1] [n2] [n0] [n1] [n2] [n0] [n1] [n2] [n0] [n1] [n2]

70Kr 89 11 18 82 94 6 23 77
72Kr 58 42 0 42 58 0 43 56 0 57 43 0
74Kr 5 77 18 2 17 82 2 54 44 2 44 54
76Kr 23 74 3 68 28 3 12 85 4 13 68 19
78Kr 56 44 44 56 42 58 49 51
94Kr 83 17 17 83 87 13 20 80
96Kr 93 7 10 90 96 4 19 81
98Kr 60 40 42 58 50 50 56 44
100Kr 32 68 68 32 21 79 79 21

the neutron-deficient (N ≈ 40) and the neutron-rich (N ≈
64) sides, signals the emergence of quadrupole collectivity.
Furthermore, the decrease of the predicted E(2+

1 ) energies on
the neutron-rich side agrees well with the smooth onset of
deformation suggested by recent experiments [11,12]. Similar
results are obtained for the E(4+

1 ) excitation energies [panel
(b)]. However, they overestimate the experimental data at
N = 50 due to the limited IBM space consisting only of s
and d bosons. Those results also indicate the need of including
Jπ = 4+ (or g) bosons in our calculations. Work along these
lines is in progress and will be reported elsewhere.

The E(0+
2 ) excitation energies are plotted in panel (c) of

Fig. 5. As can be seen, our calculations describe fairly well
the experimental data around N = 40 where a pronounced
coexistence between oblate and prolate shapes is suggested by
the corresponding Gogny-D1M energy surfaces (see Fig. 1).
The predicted values overestimate the experimental ones
from N = 44 to 50 since configuration mixing has not been
performed for those nuclei. Beyond the neutron shell closure
N = 50 one observes a lowering in the predicted energies
towards N = 64.

The E(0+
2 ) values obtained with both the D1M and DD-PC1

EDFs display a peak at N = 60. This could be a consequence
of the prolate local minimum that emerges for 96Kr at β ≈ 0.4
(see Fig. 1). The 0+

2 state in this nucleus is mainly made of
the prolate configuration (see Tables I and II). The Gogny-
D1M result exhibits an abrupt decrease from N = 60 to 62,
where the prolate minimum becomes much more pronounced.
A similar observation can be made for the systematics of the
E(2+

2 ) excitation energies in panel (d). In the case of the DD-
PC1 EDF, higher E(0+

2 ) and E(2+
2 ) excitation energies than

those obtained with the Gogny-D1M EDF are predicted for
the neutron-rich Kr isotopes. This difference can be mainly
attributed to the different topology of the corresponding energy
surfaces. In fact, as we have already shown in Figs. 1 and 2,
the DD-PC1 surfaces are generally stiffer than the D1M ones.

D. Systematics of E2 and E0 transition rates

In this section we discuss the systematics of the B(E2) and
ρ2(E0) transition strengths. In Fig. 6 we have plotted the ex-
perimental [4,53,55] and theoretical B(E2; 2+

1 → 0+
1 ) [panel

(a)], B(E2; 4+
1 → 2+

1 ) [panel (b)], B(E2; 0+
2 → 2+

1 ) [panel
(c)], and B(E2; 2+

2 → 2+
1 ) [panel (d)] transition strengths as

well as the ρ2(E0; 0+
2 → 0+

1 ) values [panel (e)], as functions
of the neutron number N . Results were obtained with the
Gogny-D1M and DD-PC1 EDFs.

The B(E2; 2+
1 → 0+

1 ) and B(E2; 4+
1 → 2+

1 ) transition
probabilities agree reasonably well with the experimental data.
They display the well-known systematics signaling the devel-
opment of collectivity; i.e., they increase when departing from
the shell closure and become maximal around midshell. On the
other hand, the B(E2; 0+

2 → 2+
1 ) transition probabilities can

be regarded as a measure of shape mixing. As can be seen from
panel (c), the B(E2; 0+

2 → 2+
1 ) values, obtained with both

the D1M and DD-PC1 EDFs, exhibit a peak around N = 40
where the corresponding mean-field energy surfaces display
coexisting minima and their mixing is expected to be strong.
However, the theoretical B(E2; 0+

2 → 2+
1 ) values for 74,76Kr
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FIG. 6. The experimental [4,53,55] and theoretical
B(E2; 2+

1 → 0+
1 ) (a), B(E2; 4+

1 → 2+
1 ) (b), B(E2; 0+

2 → 2+
1 )

(c), and B(E2; 2+
2 → 2+

1 ) (d) transition strengths (in Weisskopf
units), and ρ2(E0; 0+

2 → 0+
1 ) values for the 70–100Kr nuclei depicted

as functions of the neutron number. The theoretical calculations were
performed based on the Gogny-D1M and relativistic DD-PC1 EDFs.

considerably underestimate the experimental ones [4]. Note
that the experimental value B(E2; 0+

2 → 2+
1 ) = 255 ± 27 W.u

[4] for 74Kr is too large compared to the one obtained in our
calculations and, therefore, is not shown in the figure. This is
due to the fact (see Table II) that the compositions of the 0+

2
and 2+

1 IBM wave functions are rather different. Furthermore,
the small B(E2; 0+

2 → 2+
1 ) values obtained for neutron-rich Kr

isotopes indicate that there is almost no mixing between the 0+
2

and 2+
1 states. A pronounced difference between the D1M and

DD-PC1 EDFs is observed in the case of 74Kr for which the
B(E2; 0+

2 → 2+
1 ) value obtained with the latter is almost zero.

As can be seen from Figs. 1 and 2, the DD-PC1 energy surface
for 74Kr displays three minima within 1 MeV a structure, more
complex than the corresponding Gogny-D1M one. Therefore,
the IBM Hamiltonian used in this study seems to be too simple
to account for the large experimental B(E2; 0+

2 → 2+
1 ) value.

Experimental data are also available for the B(E2; 2+
2 →

2+
1 ) transition probability. They are depicted in panel (d) of

Fig. 6. Our calculations, with both the Gogny-D1M and DD-
PC1 EDFs, follow the experimental trend from N = 44 to
50. However, they overestimate the experimental values for
76,78Kr. As can be seen from Table II, the 2+

1 and 2+
2 wave

functions for those nuclei have a similar structure, leading to
large E2 matrix elements.

Finally, another signature of shape coexistence is provided
by the ρ2(E0; 0+

2 → 0+
1 ) values [3]. They are compared in

panel (e) with the experiment [55]. Both the experimental and
theoretical ρ2(E0; 0+

2 → 0+
1 ) values are notably large around
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FIG. 7. The theoretical low-energy excitation spectra and B(E2)
transition strengths (in W.u., indicated by along arrows) of the 74Kr
and 76Kr isotopes obtained from the Gogny-D1M EDF, in comparison
to the available experimental data [4,53].

N = 38–40, signalling the shape coexistence in those isotopes.
Note that, regardless of the considered EDF, the agreement
with the experimental data is rather good.

E. Detailed spectroscopy of selected isotopes

We now turn our attention to a more detailed analysis of
the low-energy spectroscopy of individual nuclei. To this end,
we consider the neutron-deficient 74,76Kr and the neutron-rich
96,98Kr isotopes that exhibit a pronounced shape coexistence.
The corresponding IBM states have been grouped into bands
according to the dominant E2 decay patterns.

The Gogny-D1M energy surfaces for 74,76Kr display co-
existing spherical, oblate and prolate minima (see Fig. 1).
One of the most remarkable features of the spectra obtained
for those nuclei is the presence of low-lying 0+

2 states (see
Fig. 5). As can be seen from Fig. 7, the low-energy excitation
spectra obtained for 74,76Kr, with the Gogny-D1M EDF,
agree reasonably well with the experimental ones [4]. In our
calculations, the 0+

1 ground states for both 74,76Kr are mainly
oblate in nature while the 0+

2 states are predominantly prolate
and spherical, respectively (see Tables I and II). In the case
of 74Kr, our calculations suggest rather large interband B(E2)
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transitions between the lowest-spin states of the ground-state
and the first excited bands. This is confirmed by the strong
B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 ) values, which are

about the same order of magnitude as the B(E2; 2+
1 → 0+

1 )
rate. Note, however, that the predicted B(E2; 0+

2 → 2+
1 ) value

accounts for only half the experimental one [4]. As already
mentioned above, this disagreement suggests that a much
stronger mixing between those states would be necessary to
reproduce the large experimental B(E2; 0+

2 → 2+
1 ) transition

probability. Previous five-dimensional collective Hamiltonian
(5DCH) calculations [6] based on the relativistic PC-PK1
EDF also underestimate the strong B(E2; 0+

2 → 2+
1 ) rate for

74Kr. On the other hand, the 5DCH calculations based on the
Gogny-D1S EDF [4] account for it. Our results also suggest
that in the case of 74Kr the quasi-γ band is built on the 2+

3
state. The computed 0+

3 excitation energy agrees well with the
experimental result whereas the B(E2; 0+

3 → 2+
1 ) value is too

small compared to the latter.
As shown in the lower panel of Fig. 7, our calculations

provide a reasonable agreement with the experimental data for
76Kr. However, as in the case of 74Kr, they underestimate the
B(E2; 0+

2 → 2+
1 ) transition strength. Note, that the theoretical

3+ and 4+ levels in the quasi-γ band, i.e., the second excited
band built on the 2+

3 state, of 76Kr are reversed. This might
be a consequence of the strong level repulsion among the 4+
states due to configuration mixing.

In Fig. 8, we have plotted the low-energy excitation spectra
for the neutron-rich nuclei 96,98Kr, which exhibit spectacular
coexistence between prolate and oblate shapes (see Fig. 1).
As can be seen from Tables I and II, for both nuclei the 0+

1
and 0+

2 states are mainly arising from the oblate and prolate
configurations, respectively, while the two configurations are
more strongly mixed in 98Kr than in 96Kr. The predicted level
schemes for both nuclei look rather similar and reproduce
the experimental systematics [12,14,15] for the lowest-lying
states.

Note that the level of accuracy of our results in describing
the low-energy spectra shown in Figs. 7 and 8 is comparable
with that of the recent symmetry-projected GCM calculation,
based on the Gogny-D1S EDF, in which the triaxial deforma-
tion was included as a generating coordinate [7]. In Ref. [7],
similar low-energy band structure to ours was obtained for
74,76Kr as well as for 96,98Kr. The energy spectra for 96,98Kr in
the present calculation, however, generally look more stretched
than those obtained in Ref. [7].

F. Sensitivity test

Among the various factors that could affect the spectro-
scopic properties obtained for the studied nuclei, the choice
of the EDF at the mean-field level is a relevant one since
the parameters of the IBM Hamiltonian are determined as
so to reproduce the topology of the SCMF energy surfaces.
In this section, we analyze the sensitivity of the calculated
excitation spectra with respect to the choice of the underlying
EDF. To this end, in Fig. 9, we have compared the low-energy
excitation spectra obtained for 76Kr (upper panel) and 98Kr
(lower panel). Calculations have been carried out with three
different parametrizations of the Gogny-EDF, i.e., D1S [30],
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FIG. 8. The same as in Fig. 7, but for 96Kr and 98Kr. The
experimental data were taken from Refs. [12,14,15].

D1M [29], and D1N [31], as well as with two parametrizations
of the relativistic mean-field Lagrangian, i.e., DD-ME2 [32]
and DD-PC1 [33]. The experimental data are also included
in the plots. As can be seen from the figure, all the EDFs
provide similar excitation spectra for 76Kr. On the other
hand, in the case of 98Kr, the spectra obtained with the three
Gogny EDFs are rather similar while there are significant
differences with the ones provided by the DD-ME2 and
DD-PC1 parameter sets, which provide much more stretched
energy levels, particularly for the non-yrast states.

IV. SUMMARY AND PERSPECTIVES

In this paper, we have studied the shape transition and shape
coexistence phenomena along the Kr isotopic chain. To this
end, the nuclei 70–100Kr have been taken as an illustrative
sample. We have resorted to a fermion-to-boson mapping
procedure based on mapping the fermionic (β,γ ) energy
contour plot onto the expectation value of the IBM Hamil-
tonian that includes configuration mixing. The parameters
of the IBM Hamiltonian have been determined through this
procedure and used to compute spectroscopic properties that
characterize the structural evolution along the Kr isotopic
chain. The microscopic input to our calculations is provided by
SCMF calculations based on the nonrelativistic Gogny-EDF as

034310-9



K. NOMURA et al. PHYSICAL REVIEW C 96, 034310 (2017)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

0
+

0
+

0
+0

+

2
+

2
+

2
+

2
+

4
+

4
+

2
+

2
+

6
+6

+

8
+

8
+

4
+

5
+

3
+

3
+0
+

2
+

0
+

76
Kr

D1S Expt.

4
+

4
+

5
+

6
+ 6

+

0
+

0
+

0
+

0
+

2
+

2
+

3
+

(5
+
)

4
+

4
+

8
+

0
+

D1M

2
+

2
+

2
+

(3
+
)

4
+

5
+ 8

+

0
+

0
+

0
+

2
+

2
+

2
+

3
+

4
+

4
+

8
+

5
+

6
+

0
+

0
+

0
+

3
+

2
+

2
+

2
+

5
+

4
+

4
+

8
+

6
+

D1N DD-ME2
DD-PC1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

E
xc

ita
tio

n 
en

er
gy

 (
M

eV
)

0
+

0
+

0
+0

+

2
+

2
+

2
+

2
+

4
+

4
+

2
+

2
+

6
+

8
+ 8

+

5
+

3
+

3
+

0
+

2
+

0
+

98
Kr

D1S

Expt.

4
+

4
+

5
+

6
+ 6

+

0
+

0
+

0
+

0
+

2
+

2
+

3
+

4
+

4
+

8
+

D1M

2
+

5
+

0
+

0
+

0
+

2
+

2
+

2
+

3
+

4
+

4
+

8
+

6
+

0
+

0
+

0
+

3
+

2
+

2
+

2
+

4
+

4
+

8
+

6
+

D1N

DD-ME2 DD-PC1

(4
+
)

(0
+
,2

+
)

FIG. 9. Comparison of the low-energy excitation spectra obtained
for 76Kr and 98Kr with the Gogny D1S, D1M, and D1N EDFs
as well as with the relativistic DD-ME2 and DD-PC1 EDFs. The
corresponding experimental spectra are also included in the plot.

well as different parametrizations of the relativistic mean-field
Lagrangian. In particular, for the former we have considered
the three parameter sets D1S, D1N, and D1M while for
the latter we have considered the DD-ME2 and DD-PC1
parametrizations.

The Gogny-D1M energy surfaces suggest an oblate ground
state for 70Kr, coexisting oblate and prolate minima in
the case of 72,74Kr, and spherical-oblate-prolate triple shape
coexistence for 76,78Kr. On the other hand, nearly spherical
ground states are found for 80–86Kr while γ -softness emerges
in the case of 88,90,92Kr. An oblate ground state is predicted for
94Kr. Moreover, prolate-oblate shape coexistence is obtained
for the heavier nuclei 96,98,100Kr.

The evolution of the low-energy excitation spectra, B(E2)
transition rates, and the ρ2(E0) values, as functions of
the neutron number, correlates well with the systematics
of the Gogny-D1M energy surfaces. Despite the simplicity
of the considered (mapped) IBM approach, the predicted
spectroscopic properties exhibit a reasonable agreement with

the available experimental data. We have also studied the
robustness of our approach by comparing the excitation spectra
obtained from several nonrelativistic and relativistic EDFs.
Such a comparison reveals no essential difference between
the predictions obtained for neutron-deficient Kr isotopes.
On the other hand, we have found that the relativistic and
nonrelativistic EDFs provide notably different predictions in
the case of neutron-rich systems.

Several approximations have been made at various levels
of the mapping procedure. This leads to a disagreement with
the experimental data in some spectroscopic properties. For
example, near N = 40 our approach does not reproduce the
interband B(E2; 0+

2 → 2+
1 ) and B(E2; 2+

2 → 2+
1 ) transitions.

Therefore, further improvement of our mapping procedure
is still required to properly account for shape mixing. A
similar conclusion has been reached in our previous studies
of nuclei in this region of the nuclear chart [27,28] regardless
of the underlying EDF employed in the mapping procedure.
A possible improvement would be to use a more general
form of the IBM Hamiltonian that includes additional degrees
of freedom like proton and neutron bosons. This, however,
would increase the number of parameters in our model. Those
parameters could not be uniquely determined just by looking
at the (static) mean-field energy surfaces, and additional
microscopic input would be needed for the mapping procedure.

Another example is the assumption on the IBM configura-
tion space. We have associated the particle-hole configurations
with the mean-field minima with larger β deformation. This
assumption, however, may not obviously provide a proper
interpretation of coexisting shapes in the considered Kr nuclei.
In addition, while we have considered only the proton particle-
hole excitations across the Z = 28 shell gap as the source
of shape coexistence, there could be some other possibilities
of particle-hole excitations, e.g., those of neutrons especially
around the subshell closure N = 40. Therefore, in order to
associate a configuration to each mean-field minimum in a
more unambiguous manner, a more elaborate analysis would
be required to examine the nature of the underlying SCMF
state at each minimum to see which particle-hole components
play a role, and then incorporate it into the corresponding
boson subspace. Such an analysis would require another
extensive study with further complications arising, e.g., from
the inclusion of additional boson degrees of freedom, which is
well beyond the scope of the present work. Work along these
lines represents an important step for further developing our
mapping procedure and will be considered in future studies.
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